INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and continuing
from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

\S

‘\00
e

-

2.
Y

Sededed et et i e

N
)

et

|
. . . . + + . . ’ + + ‘ ? [} .
- ~ ~ ~ - ~ '~
B e 0 B A R A D S O I

ITERATIVE ALGORITHMS FOR TIMING
AND LOW POWER DRIVEN
VLSI STANDARD-CELL PLACEMENT

!

%W%%%%%@ﬁ

BY
MAHMOOD-UR-REHMAN MINHAS

PR

,
-
!
!

A Thesis Presented to the
DEANSHIP OF GRADUATE STUDIES

KING FAHD UNIVERSITY OF PETROLEUM & MINERALS
DHAHRAN, SAUDI ARABIA

In Partial Fulfillment of the
Requirements for the Degree of

i i i i i St i i R

MASTER OF SCIENCE

In

f

7

COMPUTER ENGINEERING

MRS

\ -rz%iziaf;z#:#ﬁ;r:af;zakiakzmx:::k:4::4;:4;::};:4;:4:13::%};:4;::1::4

JUNE 2001
’_\._
A T 2 S e S S S S S S R S S e S e Y

UMI Number: 1404202

®

UMI

UMI Microform 1404202

Copyright 2001 by Bell & Howell Information and Learning Company.

All rights reserved. This microform edition is protected against
unauthorized copying under Title 17, United States Code.

Bell & Howell Information and Leaming Company
300 North Zeeb Road
P.O. Box 1346
Ann Arbor, Mi 48106-1346

KING FAHD UNIVERSITY OF PETROLEUM & MINERALS

DHAHRAN 31261, SAUDI ARABIA

DEANSHIP OF GRADUATE STUDIES

This thesis. written by
MAHMOOD-UR-REHMAN MINHAS
under the direction of his thesis advisor and approved by his thesis committee.

has been presented to and accepted by the Dean of Graduate Studies. in partial

fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER ENGINEERING

Thesis Committee

Dr. Sadiq M. Sait (Chairman)

Dr. Aiman H. El<"VMaleh (Member)
Ay

(}\/ Dr/Habib "m%f (Member)~__
Departiyent Zhairman

Dean of Graduate Studies

V& /et

Date

Heartily dedicated to my family and especially to
my dear mother

whose prayers, love, and guidance

led to this accomplishment.

iii

Acknowledgements

All praise to Allah, the most Beneficent and the most Merciful, who enabled me
to complete my thesis work. I make a humble effort to thank Allah for his endless
blessings on me, as His infinite blessings cannot be thanked for. Then, I pray Allah
to bestow peace on his last prophet Muhammad (Sal-allah-'Alaihe- Wa-Sallam) and
on all his righteous followers till the day of judgement.

[pay a heartily tribute to all of my family members and especially to my parents,
who guided me during all my life endeavors. Their love and support motivated me
to continue my education and achieve higher academic goals. Without their moral
support and sincere prayers, [would have been unable to accomplish this task.

Next, [am deeply grateful to my thesis advisor Dr. Sadiq M. Sait for his valuable
guidance throughout my thesis work. At the same time, gratitude is due to my thesis
committee members Dr. Habib Youssef and Dr. Aiman H. El-Maleh. I express my
thanks to all of them for their valuable time and support.

I acknowledge the academic and computing facilities provided by the Com-
puter Engineering Department of King Fahd University of Petroleum and Minerals
(KFUPM).

Finally, I appreciate the friendly support from all my colleagues at KFUPM. In
particular, I want to thank Junaid, Salman, Shazli, Yassir, Atif, Ahmer, Raslan,

and Aamir.

iv

Contents

Acknowledgements
List of Tables

List of Figures
Abstract (English)
Abstract (Arabic)

1 Introduction
1.1 Background
1.2 VLSI Cell Placement
1.3 Iterative Algorithms

1.4 Organizationof Thesis

2 Literature Review

2.1 Introduction

iv

xi

xiv

Xv

11

12

2.2 Techniques for Low Power Design
2.2.1 Techniques at Higher Levels

222 Physical Level

2.3 Techniques for Performance-Driven Placement

Problem and Cost Function Formulation

3.1 Introduction

3.21 Assumptions.
322 InputsandOutputs.
3.3 Cost Functions Modeling
3.3.1 Cost Function for Interconnect wirelength
3.3.2 Cost Function for Power Consumption
3.3.3 Cost Functionfor Delay
3.3.4 Cost Function for Layout Width
3.4 Interconnect Capacitance and Resistance
35 Fuzzy Logic
3.5.1 Fuzzy Reasoning
3.5.2 Fuzzy Operators
3.5.3 Ordered Weighted Averaging (OWA) Operator.

3.6 Fuzzy Cost Function for VLSI standard-cell Placement Problem . . .

vi

23

23

24

26

28

30

32

32

34

37

38

39

3.7 Technology Parameters

4 Iterative Algorithms for VLSI standard-cell Placement
4.1 Introduction
4.2 GA for Timing and Low Power Driven VLSI Cell Placement
4.2.1 Chromosome Encoding and Initial Solution.
4.2.2 Fitness Evaluation
423 Parent Choice
424 Crossover
425 Selection
42,6 Mutation
4.2.7 Stopping Criterion

4.3 TS for Timing and Low Power Driven VLSI Cell Placement

4.3.1 Initialization and Cost Evaluation
4.3.2 Neighborhood Generation
4.3.3 Tabu List and Aspiration Criterion
4.3.4 Stopping Criterion

5 GATS: A Hybrid Algorithm for VLSI standard-cell Placement
5.1 Imtroduction

5.2 Hybridization

5.3 GATS:Hybridof GAand TS

vii

44

44

46

48

30

o1

54

a8

38

39

60

61

5.3.1 Parametersof GATS 65

6 Experiments and Results 67
6.1 Introduction 67
6.2 Circuits Details, 68
6.3 Comparison of Proposed Techniques 68

631 GAwversusTS 69

6.3.2 Comparison between TSand GATS 77
6.4 Sensitivity Analysis 78
6.5 Comparison of Various Crossover Operators and Selection Schemes

for GA L 83
6.6 Single Objective Versus Multiobjective Optimization 86

6.6.1 wirelength only optimization versus MOP 87

6.6.2 Power only optimizationvs MOP 88

6.6.3 Delay only optimizationvs MOP 92

7 Conclusions and Future Directions 95
BIBLIOGRAPHY 98

viii

List of Tables

3.1

6.1

6.3

6.4

6.6

6.7

6.8

A comparison between the quality of the best solutions generated by

TSand GATS.

The effect of varying the crossover probability in GA.

A comparison between using fixed and dynamic mutation probability

Effect of TS population size (Nt) on the performance of GATS.

A Comparison between the quality of the best solutions obtained from
GA by performing SOP for wirelength and MOP.
A Comparison between the quality of the best solutions obtained from

TS by performing SOP for wirelength and MOP.

ix

70

79

81

83

6.9 A Comparison between the quality of the best solutions obtained from
GATS by performing SOP for wirelength and MOP.
6.10 A Comparison between the quality of the best solutions obtained from
GA by performing SOP for power consumption and MOP.
6.11 A Comparison between the quality of the best solutions obtained from
TS by performing SOP for power consumption and MOP.
6.12 A Comparison between the quality of the best solutions obtained from
GATS by performing SOP for power consumption and MOP.

6.13 A Comparison between the quality of the best solutions obtained by

performing optimization for delay only and multiobjective optimization. 93

6.14 A Comparison between the quality of the best solutions obtained from
TS by performing SOP for delay and MOP.
6.15 A Comparison between the quality of the best solutions obtained from

GATS by performing SOP for delay and MOP.

List of Figures

1.1 Various steps in VLSI design process. 4
1.2 Layout of a standard-cell placement. 3
1.3 Outline of simple Genetic Algorithm [1]. 7
1.4 Outline of Tabu Search algorithm {1]. 10
3.1 Steiner tree approximation to calculate the wirelength of a net. 27
3.2 Membership function of a fuzzy set A. 36
3.3 Range of acceptable solutionset. 40
3.4 Membership functions within acceptable range. 41
4.1 An example of PMX operation. 52

4.2 An example of possible problems in using PMX when dummy cells

are non-distinct negative integers. 33

xi

6.1

6.2

6.3

6.4

6.6

6.7

GATS: A Proposed Hybrid of Genetic Algorithm (GA) and Tabu

Search (TS) for Timing and Low Power Driven VLSI standard-cell

Placement.

A comparison between GA and TS for circuit s832. (a) and (b) show

the fuzzy membership of the best solution against run time for GA

and TS respectively.

A comparison between GA and TS for circuit s832. (a) and (b) show

actual costs for wirelength of the best solution against run time in

case of GA and TS respectively.

A comparison between GA and TS for circuit s832. (a) and (b) show

actual costs for power consumption of the best solution against run

time in case of GA and TS respectively.

A comparison between GA and TS for circuit s832. (a) and (b) show
actual costs for delay of the best solution against run time in case of

GA and TSrespectively.

Effect of population size on the quality of the best solution generated

by GAforcircuit s832.

xii

73

4

6.8 A comparison between using dynamic and fixed mutation probability
forcircuit s832. 80

6.9 The effect of varying the neighborhood size on the performance of TS

forcircuit s832. 82
6.10 A comparison of Order, PMX, and CDX for circuit s832. 84
6.11 A comparison of three different selection schemes of GA for s832. . . 86

Xiii

THESIS ABSTRACT

Name: MAHMOOD-UR-REHMAN MINHAS

Title: ITERATIVE ALGORITHMS FOR TIMING AND LOW POWER
DRIVEN VLSI STANDARD CELL PLACEMENT

Major Field: COMPUTER ENGINEERING

Date of Degree: June 2001

In this thesis, the VLSI standard-cell placement problem is addressed with the
objective of optimizing power consumption, timing performance, and interconnect
wirelength, while layout width is taken as a constraint. This is known to be a hard
optimization problem. Two iterative algorithms namely Genetic Algorithm (GA) and
Tabu Search (TS) are presented for finding a good quality solution to the above said
problem. In addition, a novel hybrid of GA and TS is proposed. Since the problem
involves multiple possibly conflicting objectives, fuzzy rules have been incorporated in
designing the overall cost function that integrates the costs of individual objectives in
a single value. The proposed techniques are applied to the ISCAS-85/89 benchmark

circuits and the results are promising.

MASTER OF SCIENCE DEGREE
King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia.

June 2001

‘UL.:LJ' AL

NERPLVICVE N RFVE Y e ¥

las At QU Sl oISl 51 gall &y ylaad) Luls) &3 A, 555 Sl 5 415 Ayl o 190
Skt | B 3 g3l 3let o (VLST)

!,J-)Ul...\... ! dais 1 paaaindl|

Yool pig g A a6

Staa¥l wa (VLSI) 1o LW BESIH @ty WSS Styall Tyjluall ksl (P S8 3SP ULaka §
USis oes) U s 120 0iS ‘.,....-..Jl o8 34 Wiy Jeosll Jab 3 o zudsdlt choi LG Ui Bl o
(Tabu Search) yb @ty (Genetic Algorithm) Giss 5255 < 5,155 bl Ulanini 1w Jils
oo Lsars USED p3lEs S ane Jlawind Uyl o203 BLYL TS oa J) o> I oba
L 50l Slaa¥l S s 1 IS TS sl gt 3510 ol 5y . 20 Ml ¥l

e 5Ll g ISCAS-85/89 jlms 51y Ji 1) SISASH1 clanini Sanly

oolall g Jg fiull agd Ul dasl>
G0 ganad) Loy pall ASLall ¢ o pgdid)

Xv

Chapter 1

Introduction

1.1 Background

VLSI circuit design can be performed with a view of achieving different objectives.
Until the beginning of this decade, two main objectives of VLSI circuit design were
focused. One was the minimization of interconnect wirelength and the other was
the improvement of timing performance. A large number of efforts targeting either
one or both of the above objectives is reported in the literature [2, 3]. The power
consumption of the circuit was not of concern while trying to optimize the above
two objectives.

Recently, the need for low power design has emerged. The optimization for
power consumption can be performed at various levels of VLSI design including

behavioral level, architectural level, logic level, and physical level. Some power

optimization techniques that have been proposed in the literature are reviewed in
the next chapter. The optimization at each level can be performed subject to the
degree of actual realization of the circuit. For example, it is not possible to optimize
power consumption due to the interconnect capacitance at logic level, because a real
wirelength estimation cannot be done at this stage. This fact enhances the need to
perform the interconnect capacitance optimization at physical level. However, not
much work is reported at the physical level.

This thesis addresses the multi-objective problem of simultaneously optimizing
power consumption, timing performance, and wirelength of VLSI circuits at the
placement step in physical level. standard-cell layout is considered in which all the
cells in a circuit have the same height, but varying widths [2]. General iterative

heuristics are suggested for solving this optimization problem.

Motivation

Since the mid 1990’s, there has been a rapid increase in the use of mobile devices

such as laptop computers, mobile phones and many others. Such kind of devices

rely on a battery for their power needs. The battery power is limited by the factors

of its size and weight, both of which are desired to be as small as possible. Also,

the battery technology is expected to improve by only 30% in the near future [4].
Another compelling reason for the desire of low power consumption is the in-

creasing density of VLSI circuits. With the rapid advancement in technology, VLSI

circuits are reducing in size resulting in higher transistor density on a chip. The
present technology allows to integrate millions of transistors on a single chip and
the still advancing technology is allowing further high integration. The excessive
power consumption of the circuit results in heating and thus becoming a hindrance
towards high integration and hence the feasible packaging of circuits [5, 6].

Also, the circuits are operating at much higher clock frequency than before.
Therefore, the power dissipation which is a function of the clock frequency, is getting
significantly prominent. This phenomenon is offering an obstacle in further increase
of clock frequency. Due to these reasons, there is an emerging need for minimizing

the power requirement of VLSI circuits.

1.2 VLSI Cell Placement

In this section, VLSI cell placement is described in brief. VLSI design is a complex
process and is therefore broken down into a number of intermediate steps [2]. The
design cycle starts from an abstract idea, and then each intermediate step contin-
ues refining the design and the process ends with the fabrication of a new chip as

illustrated in Figure 1.1.

Placement is a phase in physical design responsible for the arrangement of cells
on a layout surface while optimizing the costs of certain objectives such as the total

wirelength or power consumption. The placement problem can be stated as follows.

CAD subproblem levei Generic CAD tocls

Behavioral modeling and
Simulation tcol

Behavicral/Architectural [Architectural design]

[Logical design I Functional and 'ogic minimization,

Register transferflogic logic fitting and simulation tools

|
Cellmask | Physical design I Tools for partitioning,

? placament, routing, etc.
L Fabrication —I

Figure 1.1: Various steps in VLSI design process.

Given a collection of cells or modules with pins (inputs, outputs, power and ground
pins) on the boundaries, the dimensions of these cells, and a collection of nets (which
are sets of pins that are to be wired together), the process of placement consists of
finding suitable physical locations for each cell on the entire layout. By suitable
we mean those locations that minimize given objective functions, subject to certain
constraints imposed by the designer, the implementation process, or layout strategy
and the design style [2]. The cells may be standard-cells, macro blocks, etc., but in
this work, we shall be concerned with standard-cell design layout methodology.

In standard-cell placement, all the cells in the cell library are of the same height
with variable widths (depending upon the complexity of the cell). Each cell has its
ports at the top and at the bottom. Figure 1.2 shows the diagram of a standard-cell
layout.

The placement of cells in order to optimize even a single objective e.g. intercon-
nect wirelength is an NP-complete problem [2]. The simplest case of the problem,

namely one-dimensional placement, is hard to solve due to the large size of search

[| T a] |]

(T T e
pd

L] | s] T 1

“——— Routng Channel

L1 [1 []

Figure 1.2: Layout of a standard-cell placement.

space. For n given cells, there are as many as 221 possible linear arrangements.
Therefore, it is not possible to check all the arrangements in polynomial time. This
fact favors the application of non-deterministic iterative algorithms over determin-
istic ones. The following section describes the suggested iterative algorithms to be

employed for the present multi-objective placement problem.

1.3 Iterative Algorithms

A number of iterative algorithms are proposed in the literature. The motivation
for using iterative algorithms becomes clear when recalling the hard nature of the
VLSI cell placement problem as mentioned above. These algorithms are capable of
efficiently searching for a near optimal solution in a large solution space and have
been very successful in solving a number of combinatorial optimization problems in
various disciplines of science and engineering including standard-cell placement {1].

In the following, a brief description of genetic algorithms (GAs) , tabu search (TS),

and simulated annealing (SA) is presented.

Genetic Algorithm (GA)
GA is an elegant search technique that emulates the process of natural evolution
as a means of progressing towards the optimal solution. A high level algorithmic
description of GA is given in Figure 1.3 [1]. GA uses an encoded representation
of a solution in the form of a string made up of symbols called genes. The string
of genes is called chromosome. The algorithm starts with a set of initial solutions
called population that may be generated randomly or taken from the results of
a constructive algorithm. Then, in each iteration (known as generation in GA
terminology), all the individual chromosomes in the population are evaluated using
a fitness function. Then, in the selection step, two of the above chromosomes at a
time are selected from the population. The individuals having higher fitness values
are more likely to be selected. After the selection step, different operators namely
crossover, mutation, and inversion act on the selected individuals for evolving new
individuals called offsprings. These genetic operators are described below.
Crossover is an important genetic operator. It is applied on two individuals
that are selected in the selection step to generate an offspring. The generated
offspring inherits some characteristics from both its parents in a way similar to
natural evolution. There are different crossover operators namely simple, order,

partially mapped, and cycle. The simple crossover operation for instance, works by

Algorithm (Genetic_Algorithm)
(Np = Population Size)
(N = Number of Generations)
(N = Number of Offsprings)
(P; = Inversion Probability)
(P, = Mutation Probabilty)
Begin
(Construct initial population)
Construct_Population(N,);
Forj=11w0N,
Evaluate_Fitness (Population(j])
EndFor;
Fori=1tN,
Forj=1toN,
(Choose parents with probability proportional to fitness value)
(x,y) € Choose_parents;
(Perform crossover to generate offsprings)
offspring[j] € Crossover(x,y)
Fork=1to N,
With probability P, apply Muration (Population[k])
With probability P; apply Inversion (Population[k])
EndFor;
Evaluate Fitness(offspring(j])
EndFor;
Population € Select(Population. offspring, N;)
EndFor;
Return highest scoring configuration in population
End. (Genetic Algorithm)

Figure 1.3: Outline of simple Genetic Algorithm [1].

~1

choosing a random cut point in both parent chromosomes (the cut point should be
the same in both parents) and generating the offspring by combining the segment
of one parent to the left of the cut point with the segment of the other parent to
the right of the cut [1]. For description of other crossover operators, see [3, 1, 7].

The mutation operator is used to introduce new random information in the pop-
ulation. It helps to prevent the search process from trapping in local minima. An
example of mutation operation is the swapping of two randomly selected genes of
a chromosome. The importance of this operation is that it can introduce a desired
characteristic in the solution that could not be introduced by the application of the
crossover operator alone. However, mutation is applied with a low rate so that GA
does not turn into a memory-less search process [3].

The quality of the solution obtained from GA is dependent on the choice of
certain parameters such as population size, number of generations, crossover and
mutation rates and also the type of crossover used. The selection of values for
these parameters is problem specific and so there are no hard and fast rules for this
purpose. The choice of these parameters is left to the conception and intuition of

the person applying GA to a specific problem.

Tabu Search (TS)
Tabu search is an iterative heuristic that has been applied for solving a range of

combinatorial optimization problems in different fields [1]. Tabu search starts from

an initial feasible solution and carries out its search by making a sequence of random
moves or perturbations. A tabu list is maintained that stores the attributes of a
number of previous moves. This list prevents bringing the search process back to
already visited states. In each iteration, a subset of neighbor solutions is generated
by making a certain number of moves and the best move (the move that resulted
in the best solution) is accepted, provided it is not in the tabu list. Otherwise, if
the said move is in the tabu list, the best solution is checked against an aspiration
criterion and if satisfied, the move is accepted. Thus, the aspiration criterion can
override the tabu list restrictions. It is desirable in certain conditions to accept a
move even it is in the tabu list, because it may take the search into a new region due
to the effect of intermediate moves. The behavior of tabu search heavily depends on
the size of tabu list as well as on the chosen aspiration criterion. Different sizes of
tabu list result in short-term, intermediate term, and long-term memory components
that can be used for intensifying or diversifying the search. The aspiration criterion
determines the extent to which the tabu list can restrict the possible moves. If a tabu
move satisfies aspiration criterion, then the move is accepted and tabu restriction is
overridden. The structure of TS is given in Figure 1.4. The detailed description of

tabu search can be found in [1].

Algorithm Tabu_Search

Q : Setof feasible solutions

S : Current solution

S§* : Bestsolution

Cost: Objective function

N(S): Neighborhood of S € Q

V* : Sample of neighborhood solutions
T : Tabulist

AL : Aspirartion level

Begin

Start with an initial feasible solution S € Q
Initialize tabu list and aspiration level
For fixed number of iterations Do
Generate neighbor solutions V* < N(S)
Find best S* € V*
If move S to S* is not in T Then
Accept move and update best solution
Update T and AL
Else
If Cost(S*) < AL Then
Accept move and update best solution
Update T and AL
End If
End If
End For

End.

Figure 1.4: Outline of Tabu Search algorithm [1].

10

11

1.4 Organization of Thesis

The rest of this thesis is organized as follows. Chapter 2 presents a survey of tech-
niques reported in literature for VLSI cell placement. In particular, the application
of iterative algorithms to the placement problem is reviewed. Also, a brief review of
performance driven placement techniques is given.

In Chapter 3, the multi-objective placement problem is formulated. The cost
functions for objectives i.e., interconnect wirelength, timing performance, power
consumption as well as for width constraint are designed. An overview of fuzzy
logic is also presented. Finally, the overall cost function used in multi-objective
optimization is designed using fuzzy operators.

Chapter 4 discusses the implementation details of the proposed GA and TS, for
multi-objective VLSI standard-cell placement. The setting of various GA and TS
parameters is discussed. Then, Chapter 5 presents the implementation aspects of
the proposed novel hybrid algorithm.

Experimental results for the application of the proposed techniques to ISCAS-
85/89 benchmarks are discussed and compared in Chapter 6. The effect of various
parameters on the quality of the final placement solution is studied. Some conclu-

sions and possible future directions of work are given in Chapter 7.

Chapter 2

Literature Review

2.1 Introduction

This chapter reviews some recent techniques reported for optimizing the power con-
sumption in VLSI circuits. As various techniques have been reported at different
levels of the VLSI design process (see Figure. 1.1), we first review the power mini-
mization techniques at the higher levels and then we review the techniques at the
physical level. Later in the chapter, we also review some approaches that are tar-

geted for optimization of the timing performance only.

12

13

2.2 Techniques for Low Power Design

In standard CMOS VLSI circuits, switching activity of circuit nodes is responsible
for most of the power dissipation. It is reported in [8] that this switching activity
contributes 90% to the total power dissipation in the circuit. Therefore, most of
the reported techniques focus on minimizing the power consumption due to this

switching activity at various levels of abstraction [9).

2.2.1 Techniques at Higher Levels

A brief review of the techniques for low power design at the higher levels is presented

here,

Behavioral Level

Behavioral synthesis is the process of transforming high-level specification of a cir-
cuit into a register-transfer level design. There are a number of techniques reported
that can be used to optimize power at this design step [10, 11]. The first technique
is to modify the input high-level specifications through applying specific transfor-
mations that lead to power reduction. One of the most important transformation
for fixed throughput systems is that which can reduce the number of control steps.
Another class of transformations results from extension of the transformations that

are employed to reduce the amount of resources required for the implementation of

14

a given control-graph. These transformations are then used to reduce the amount
of capacitance that switches [9]. Some of such transformations that can be used
in automated systems are described in [12]. Some specific transformations for DSP
circuits can be found in [13].

Another technique for reducing power consumption at this level is to choose ap-
propriate modules at the time of allocation in behavioral synthesis. But this choice of
modules is limited by the availability of modules with a range of power consumption
values, that can be used to implement a given operation type [9]. Although there is
a trade-off between the power and the delay values for modules, even then appropri-
ate choice of modules can optimize the power cost without increasing the delay [14].
Moreover there are a number of decisions made during the allocation step, including
the sequence of mapping of operations in the control/data flow graphs to functional
units, and extent of hardware sharing that affect the switched capacitance in the
data path. Some techniques that have been used to control these critical decisions

in order to minimize the resulting capacitance are described in [15, 16]

Logic Level

Different power optimization techniques have been reported for combinational and
sequential circuits. We review techniques for both in brief.
For combinational circuits, logic synthesis is performed in two steps, namely tech-

nology independent and technology dependent. Power optimization can be achieved

15

by logic equations manipulation in the former and by appropriate mapping to a
library in the latter. A technique to reduce the switching activity and hence the
power consumption of a gate is through the use of don’t care sets [17]. A method
to reduce switching activity by utilizing don’t care optimization is reported in (18].

Another technique for power optimization attempts to reduce spurious transi-
tions that may contribute as much as 40% to the switching activity in the circuit
[19]. This is achieved by path balancing in which the delays of paths that converge at
each gate in the circuit are made roughly equal by inserting unit-delay buffers to the
inputs of a gate. An application of such path balancing method is described in [20].
Another power optimization approach targets at reducing the number of transistors
required in the implementation of a logic function. This is accomplished by Ker-
nel eztraction method that can be used to find and reuse common sub-expressions
across multiple functions. Although the above method directly aims at reducing the
number of literals and thus area, it has been modified to also reduce the switching
activity and thus the dynamic power consumption [21].

Better technology mapping can also help in reducing power requirements of the
resulting circuit. Typical cell libraries contain a large number of gates with different
transistor sizes. Various low power oriented technology mapping techniques based
on a graph covering method have been proposed {22, 23, 24].

For sequential circuits, power optimization techniques can be applied at the

State Transition Graph (STG) level as well as at the logic-gate and flip-flop level.

16

One technique for power optimization is related with state encoding in the STG of a
sequential circuit. It works by assigning uni-distant codes to two states that involve a
large number of transitions between them. This will minimize the switching activity
at the flip-flop outputs. Two such optimization techniques for assignment of codes
to states are presented in [21, 25].

Another technique for power optimization is retiming that repositions the flip-
flops to reduce the required clock period [26]. The switching activity at flip-flop
inputs is much higher than that at flip-lop outputs. This is due to the filtration of
many spurious transitions occurring at the inputs of flip-flops by the clock signal.
This fact has been utilized for power optimization in a retiming technique reported
in {27].

Gating of clocks is also a well-known technique for reducing power consumption
in a sequential circuit. The Basic idea is to determine the conditions under which a
particular set of registers do not change their state, and then to gate the clocks of
these particular registers with those conditions (28]. The purpose is to save power by
reducing the switching activity in these registers under certain values of the above
conditions. Gating technique is also useful in the case of arithmetic units. When a
particular unit is idle in a particular clock cycle, the power can be saved by turning
off that unit. The gating idea is extended further in the form of another approach for
power optimization called pre-computation [29]. In this technique, certain modules

within a circuit are identified that remain idle during a particular computation and

17

those can be turned off to save the power consumption.

2.2.2 Physical Level

Reviewing the efforts for power optimization at the physical design step is important
in the scope of this work because we are interested in this particular step of the VLSI
design. Relatively, a small number of low-power-driven techniques at this design step
has been proposed so far. The physical design process is carried out in a number of
phases, including circuit partitioning, floorplanning, placement, and routing. Here,
we review the power optimization techniques for all these phases.

For the partitioning phase, two low-power oriented techniques based on the sim-
ulated annealing algorithm have recently been presented in {30]. One algorithm uses
the Shannon expansion-based scheme and the other uses the Kernel-based scheme.
These algorithms partition the circuit into a number of sub-circuits such that a sin-
gle sub-circuit needs to be active at a particular time. In this way, the unnecessary
signal transitions are prevented. The circuit partitioning is performed by using an
adaptive SA algorithm. The cost function is modeled for low-power consumption
under given area constraints. A partitioning solution is obtained by recursive bi-
partitioning of the circuit and the solution space is represented as a binary tree. The
stopping criteria used is non-improvement in the solution for a constant number of
moves. The performance of the algorithm is evaluated by its application to MCNC

benchmark circuits and compared with the results of Synopsis design Analyzer to

18

show 8.7% power reduction over the latter without allowing any increase in the
layout area.

An approach for optimizing power consumption at the floorplanning step has
been proposed in [31]. This technique proceeds by selecting and placing circuit
modules with the objective of reducing total power consumption as well as area.
The proposed technique is based on the simulated annealing algorithm and works
by bottom-up calculation of power consumption in interconnected wires in the slicing
floorplan tree. The results presented show marginal improvements but with slight
increase in layout area. The low power placement and routing problem of FPGA
layout style under timing constraints is addressed in [32].

An automated layout synthesis system namely VPNR has been extended to
incorporate the objective of reducing power consumption by decreasing switched ca-
pacitances. The modified system is named as EPNR. The authors used the classical
physics notion of minimum energy systems and viewed the placement problem from
the perspective of a system of interconnected springs. Consequently, EPNR worked
by reducing wirelength of nets driven by the cells having high switching proba-
bility values [33]. The performance of EPNR was evaluated by using the MCNC
benchmark circuits and results exhibited approximately 18% reduction in power
consumption but not without an increase in the circuit area.

A couple of placement approaches based on Genetic algorithm have been re-

ported. One such approach namely PCUBE is proposed in [34]. In this approach,

19

the placement problem is first formulated as a constrained programming problem
and is then addressed in two subsequent steps named as global optimization and slot
assignment. The total weighted net length is taken as an objective function where
the weight of a net corresponds to the switching probability of the gates driving
that net. The authors used a quadratic objective function in which the sum of the
squares of power consumption values of each net is taken over all the nets to ob-
tain the value of objective function. Then, they combined quadratic optimization
with iterative circuit partitioning and proceeded by incorporating the partitioning
information in each subsequent global quadratic optimization step. The iterative
partitioning continues until they remained with 5 to 10 number of gates in each
partition. It was assumed that each partition has at least as many number of slots
as the number of cells and hence the problem reduced to the linear assignment prob-
lem. The circuit performance degradation is prevented throughout the above power
optimization process by putting constraints on total path delays. The experimental
results of PCUBE were compared with an older performance driven placement ap-
proach RITUAL (35] and an improvement of 7% in terms of power consumption was
shown with an increase of 8% in total wirelength and an increase of 2% in circuit
delay. The authors also considered the low-power placement problem under real
delay model.

Another such technique namely GEEP has been proposed in [36]. Like PCUBE,

it is also considering the standard cell placement problem. This approach differs

20

from the previous one in the sense that the potential search here is limited based
on the information of the search space obtained from another approach namely
EPNR that was described above. In this way, the search process is made efficient
at the cost of global optimality. The encoding of the solution is drawn from [37]
and the initial population is constructed by making some random perturbations of
an area optimization solution generated by another placement package VPNR. The
fitness function used in GEEP is based on bounding-boz method that approximates
the total interconnect power consumption in a circuit [38]. Furthermore, PMX
crossover operator has been used in GEEP with a rate of 0.3 and the offsprings
generated were accepted only if their fitness values were higher than one of their
corresponding parents. Two types of mutation operators namely blind mutation
and directed mutation were applied, and a reversal inversion operator similar to
the one reported in [37] is used. The technique was evaluated by its application
to some of the MCNC benchmark circuits and an improvement of 20% over VPNR.
was shown in terms of power consumption. However, nothing was mentioned about
the effects of GEEP on the values of circuit area and delay. Moreover, the authors
did not claim global optimality of their solution rather they were more interested

in investigating the trade-off between solution quality and run time requirements of

GA.

21
2.3 Techniques for Performance-Driven Placement

Circuit performance is determined by the maximum clock rate that can result in
correct function of the circuit. However, the maximum clock rate is limited by the
delay along the longest path in a circuit, called critical path. The critical path
delay is determined by the maximum time needed by a signal to propagate along
a path between an input and an output, or from an input to a storage element
or from a storage element to an output or between two storage elements. With
advancement in technology, the cell switching delays have been reduced and as a
result the interconnect delays have become prominent contributors towards path
delays. Hence, if the path delays are to be kept under control, then the interconnect
delays need to be reduced. Since the placement phase has a direct relation with
interconnect delays, the objective of the placement problem can be altered to satisfy
the path timing requirements. Previously, when low power consumption in circuits
was not realized as a design objective, the efforts targeting low delay (performance-
driven) with less wirelength (area-driven) designs were dominating the literature.
The performance-driven placement techniques usually work by imposing timing
constraints on the interconnects and paths of the circuit. We can classify these
techniques into three types. In the first type, timing constraints on the paths are
transformed into weights on nets. These weights are then used to classify the nets

into certain categories and in this way the placement process is affected by net

o
[A]

weights [39]. In the second type, the path timing constraints are rather converted
into timing bounds on the nets. The net timing bounds are then transformed into
length bounds and provided as input to the placement process that attempts to
keep the net lengths under these given length bounds [40, 41]. The last type is
characterized by finding the timing requirements for a set of the critical paths in the
circuit and supplying this information to the placement process which then monitors

these paths throughout placement. {35, 42, 43, 44].

Chapter 3

Problem and Cost Function

Formulation

3.1 Introduction

In this chapter, the multi-objective VLSI standard placement problem is formu-
lated. The objective is simultaneous optimization of power consumption, timing
performance and interconnect wire length, whereas layout width is considered as a
constraint. The cost functions for the estimation of costs of the above three ob-
jectives as well as width constraint are modeled. Then, the overall cost function
used for multi-objective optimization (MOP) is designed using fuzzy logic. This is
preceded by an overview of fuzzy sets and rules, which is helpful for understanding

the details of the presented fuzzy cost function.

23

3.2 Problem Statement

An informal description of the VLSI cell placement problem was given in Chapter 1.
Formally, the problem can be stated as follows. Assume that a set of modules
M = {my,my,...,m,} and a set of signals S = {s1, 52, ..., Sk} is given and a set of
signals Sp,,. where Sp, C S, is associated with each module m; € M. Similarly, a
set of modules M, (where M, = {m;|s; € Sp, } is called a signal net) is associated
with each signal s; € S. Also, a set of locations L = {L,, Lo, ..., Ly}, where p > n,
is given. The problem is to assign each m; € M to a unique location L,, while
optimizing an objective function subject to certain design constraints [2]. In the
present problem, the objectives to be optimized are power consumption, timing

performance, and wirelength, whereas the constraint is the width of the layout.

3.2.1 Assumptions

Here are some assumption that are made before proceeding to the design of cost

functions and solution methodologies.

e The logic level design of the circuit is available.

All the cells have predefined input and output terminals.

e The cells are interconnected in a predefined way.

A set of critical paths and switching probabilities of cells are available.

[\
n

e The circuit is represented in the form of a directed graph G = (V, E) where 1" =

by a vertex v; and the connection from the output of gate i to input of gate j

can be represented by a directed edge (v;, v;) or simply (3, j) [33].

3.2.2 Inputs and Outputs

The solution methodologies presented in this thesis consider the following informa-

tion as input.

e A net list describing the interconnections between the terminals of cells in the

circuit in VPNR netlist format [43].

The number of rows in the layout that is obtained from a min cut placement

program.

The height of each routing channel that lies between two adjacent rows.

e The delay parameters, width, and pin locations of cells obtained from a standard-

cell library, namely OASIS SCMOS library [46].

Timing information of the K most-critical paths obtained from a pre-placement

timing analysis program.

The outputs produced are as follows.

e A cell placement solution consisting of the physical location of each cell.

26

* The quality measure of the final placement solution in terms of costs of power

consumption, circuit delay and wirelength as well as layout width.

3.3 Cost Functions Modeling

This section discusses the modeling of cost functions used for estimating values of

the three objectives as well as the constraint.

3.3.1 Cost Function for Interconnect wirelength

The wirelength cost can be computed by adding the wirelength estimates for all
the nets in the circuit. The complexity of a wirelength estimation technique affects
the CPU time requirement of a placement algorithm. There are several estimation
techniques including semi-perimeter, complete graph, minimum chain, source to sink
connection, minimum spanning tree, and Steiner tree approximation [2]. A Steiner
tree is the shortest route for connecting a set of pins. However, determination of
minimum Steiner tree is known to be NP-Complete [2]. Therefore an estimation of
Steiner tree is made as follows.

For each net, a bounding rectangle is formed, as shown in Figure 3.1. Then, the
dimensions of the bounding rectangle are compared. If dz > dy then, the rectangle
is partitioned into two parts by a horizontal line passing through the center of the

rectangle, as shown in Figure 3.1(a). In this case, wirelength /; associated with net

[\]
-1

xl

x3

(a) (b)
Figure 3.1: Steiner tree approximation to calculate the wirelength of a net.

v; Is given as follows.

l,‘ =dr + Z Yy (31)

JEM;
If dy > dz then, the rectangle is partitioned into two parts by a vertical line
passing through the center of the rectangle, as shown in Figure 3.1(b). In this case,

wirelength [; associated with net v; is given as follows.

li=dy+ Z T (3'2)
JEM,

The wirelength cost can be computed by adding the wirelength estimates for all

the nets in the circuit, as shown in the following Equation.

Costuire = 3_ I; (3.3)

ieM

3.3.2 Cost Function for Power Consumption

In a standard CMOS circuit, the total power consumption can be given by the

following Equation.

A=Y

teM

. Ci . VDzD . f : S{ ,B) + Z QSC, : VDD f : Si + Ilealc : VDD (34)
eV

o

In Equation 3.4, P, is the total power consumption, Vpp is the supply voltage, S;
is the switching probability at the output node of cell i i.e., the number of transitions
per clock cycle at the output of gate ¢, and f is the clock frequency.

The first term in the above equation gives the dynamic power consumption
during charging or discharging of a node in the circuit. Here, C; denotes the total
capacitance of node i whereas 3 is a technology dependent constant.

The second term in Equation 3.4 gives the power consumption due to the short
circuit current from Vpp to ground during output transition. Here, Qsc, represents
the charge carried by the short circuit current per transition.

The third term represents the static power dissipation due to leakage current
lteak-

In the VLSI circuits with well designed logic gates, the dynamic power consump-
tion contributes the 90% to the total power consumption [9, 47]. Hence, most of

the reported work is focused on minimizing the dynamic power consumption. Also,

29

in the case of standard-cell placement, the cells are obtained from the technology
library and nothing can be done to reduce the power consumption due to the second
and the third term in Equation 3.4. Due to this fact, the emphasis in this work is
on optimizing the dynamic power consumption. Since the first term is dominant,

Equation 3.4 can be approximated as follows.

1
Hﬁzg'ci'v}go'f'si'ﬂ (3.5)

eEM ~

Assuming the clock frequency and input voltage to be fixed, the total power con-
sumption of the circuit becomes a function of the total capacitance and the switching
probabilities as shown below.

P~Y C-S (3.6)

€M

The total capacitance C; of gate i is comprised of the interconnect capacitance

at the output node of gate ¢ and the sum of the capacitances of the input nodes of
the gates driven by gate i.

Ci=Cl+ > C! (3.7)

JEM;
where C7 is the capacitance of the input node of a gate j driven by gate i and CcT
represents the interconnect capacitance at the output node of cell .
In the case of standard-cell design, the cell properties are fixed for a particular

library and hence the term C;-’ cannot be manipulated. Thus, the cost of the overall

30

power consumption in VLSI circuits can be given as follows.

Costyower = . Si- CT (3.8)

i€M

Further, the interconnect capacitance at a gate is related to the correspond-

ing interconnect wirelength. Therefore, the above cost function can be written as
follows.

Costopower = J_ Si - l; (3.9)

ieM

3.3.3 Cost Function for Delay

The overall performance of the VLSI circuit depends upon how fast it can process
signals i.e., its clock speed. The propagation delay of signals in VLSI circuit consists
of two elements, switching delay of gates and interconnect delay. Due to improved
technology, libraries with considerably low switching delay are available. This fact
and the increased gate density in the chip make the interconnect delay the prominent
factor in the overall circuit delay. Therefore, most of the work focuses on reducing
the interconnect delay [48].

If a path 7 consist of nets {v;, vy, ..., v}, then, the delay T} along = is expressed

by the following Equation.

T, = 'i‘l(cui +1D;) (3.10)

i=1

31

Where €D, is the switching delay of the cell driving gate v; and ID; is the inter-
connect delay of net v;.

Since the term CD; is independent of the placement, the above Equation can be
simplified as shown below.

n-1

T, = Z(ID,-) (3.11)

=1
Using the RC delay model, /D; depends on the load factor, interconnect resistance

and load capacitance, as shown in Equation 3.12.

ID; = (LF,+R) x C, (3.12)

Where LF; is the load factor of the driving block (which is independent of layout),
R; is the interconnect resistance of net v;, and C; is the load capacitance of cell ¢
given by Equation 3.7.

The overall circuit delay is determined by the delay along the longest path (the

most critical path) in the layout. If the most critical path is denoted by . then,

the cost function for the circuit delay can be given as follows.

Costyelay = Tn, = maz {T;} vie{l,2,...,K} (3.13)

Where K represents the total number of critical paths determined by the timing

analysis program.

3.3.4 Cost Function for Layout Width

In standard-cell design, cells have fixed height and variable widths. Cells are placed
in rows separated by routing channels. The overall area of the layout is represented
by the rectangle that bounds all the rows and routing channels. In this work, the
channels heights are initially estimated using an area efficient placement tool and
then assumed to be fixed. This leaves only the width of the layout that can effect
the layout area. Since the available area for the placement is normally predefined,
therefore the width of the layout is used as a constraint. The upper limit on the

layout width is defined in Equation 3.14.

Widthmez = (1 + a) x Width,py, (3.14)

Where Widthm,, is the maximum allowable width of the layout, Widthep is
the minimum possible layout width obtained by adding the widths of all cells and
dividing by number of rows in the layout, and a denotes the maximum allowed

fractional increase in the layout width as compared to the optimal width.

3.4 Interconnect Capacitance and Resistance

Since the interconnect capacitance and resistance are to be used in the delay calcu-

lation, so it is necessary to compute these values. If two layers of metal are used for

33

routing in such a way that metal 1 is used for horizontal segments of the net and
metal 2 for the vertical segments then, the following set of equations can be used to

compute interconnect capacitance CT associated with net v;.

cr = c*+cf (3.15)
C} = (Coy X B +Crma x Bb) xw (3.16)
Cl = 2x ((W+1)x Cp + (w+1) x Cpa) (3.17)

The following formula is used to calculate the interconnect resistance.

- l'[X Rsh.l + l; X RshZ

R] - (3.18)

Where

Ci = Interconnect capacitance of net v;.

C? = Area capacitance of net v;.

C,f = Fringe capacitance of net v;.

Cm1 = Plate capacitance per unit area of metal 1.

Cm2 = Plate capacitance per unit area of metal 2.

Cy1 = Fringe capacitance per unit perimeter length of metal 1.

Cy, = Fringe capacitance per unit perimeter length of metal 2.

34

R,n1 = Sheet resistance per square of metal 1.

Rgna = Sheet resistance per square of metal 2.

w = Width of metal 1 and metal 2.
li = Horizontal segment of ;, associated with metal 1.
I5 = Vertical segment of [;, associated with metal 2.

In Equations 3.15-3.17, w, Cmi, Cma, C1 and Cy, are technology dependent pa-

rameters discussed in Section 3.7.

3.5 Fuzzy Logic

Fuzzy Logic is a mathematical tool invented to express human reasoning. In classical
(crisp) reasoning a proposition is either true or false whereas in fuzzy system a
proposition can be true or false with some degree.

A classical (crisp) set is normally defined as collection of elements or objects
r € .X. Each single z element is either belong to the set X (true statement), or not

belong to the set (false statement). Whereas a fuzzy set can be defined as follows.

A= {(z, pa(@)lz € X}

pa(z) is called the membership function or grade of membership(or degree of

truth) of z in A that maps X to the membership space M. The range of the

35

membership function is a subset of the non-negative real numbers whose supremum
is finite [49]. Elements with zero degree of membership are normally not listed.
Like crisp sets, set operations such as union, intersection, and complementation
etc.. are also defined on fuzzy sets. There are many operators for fuzzy union and
fuzzy intersection. For fuzzy union, the operators are known as s-norm operators

(denoted as @). While fuzzy intersection operators are known as t-norm (denoted

as *).

3.5.1 Fuzzy Reasoning

Fuzzy reasoning is a mathematical discipline to express human reasoning in vigorous
mathematical notation. Unlike classical reasoning in which propositions are wither
true or false, fuzzy logic establishes approximate truth value of propositions based on
linguistic variables and inference rules [48]. A linguistic variable is a variable whose
values are words or sentences in natural or artificial language [50]. For example,
wirelength is a linguistic variable is its values are linguistic rather than numerical,
L.e., very short, short, medium, long, very long and very long etc., rather than 20um,
25um, 35um, 45um, 55um and 80um. The linguistic variables can be composed to
form propositions using connectors like AND, OR and NOT. Formally, a linguistic

variable comprises five elements [51].

1. The variable name.

36
2. The primary term set.
3. The Universe of discourse U.

4. A set of syntactical rules that allows composition of the primary terms and

hedges to generate the term set.

5. A set of semantic rules that assigns each element in the term set a linguistic

meaning.

1.0

U,y

(x5, 4, (x5))

My (x)) \
>

X
XA

Figure 3.2: Membership function of a fuzzy set A.

For example wirelength can be used as linguistic variable for VLSI placement
problem. According to the syntactical rule, the set of linguistic values of wirelength
may be defined as very short, short, medium, long, very long and very long wire-
length. The universe of discourse for linguistic variable is positive range of wirelength

of a design, eg., [25um, 80um|. The set of semantic rules define fuzzy sets for each

37

linguistic value. A linguistic value is characterized by its corresponding fuzzy set.
The membership in fuzzy set is controlled by membership functions like Figure 3.2.

It shows the designer knowledge of problem [48].

3.5.2 Fuzzy Operators

There are two basic types of fuzzy operators. The operators for the intersection,
interpreted as the logical “and”, and the operators for the union, interpreted as the
logical “or” of fuzzy sets. The intersection operators are known as triangular norms
(t-norms), and union operator as triangular co-norms (t-co-norms or s-norms) [49].
Some examples of s-norm operators are given below, (were 4 and B are the fuzzy

sets of universe of discourse .X).
1. Maximum. [/.LAUB(.'L') = maz{pa(z), us(z)}].
2. Algebric sum. (4} 5(2) = pa(z) + u8(z) - pa(z)ua(z).
3. Bounded sum. [#.4UB(I) = min(1, pa(z) + pa(z))|

4. Drastic sum. [#.4UB(I) = pa(z) if pp(z) =0, wp(z) if pa(z) =0, 1if

ta(z), pa(z) > 0.

An s-norm operator satisfies commutativity, monotonicity, associativity and Bayy olz) =

pa(zx) properties. Following are some examples of t-norm operators.

L. Minimum. [p,np(z) = min{ua(z), us(z)}.

38

[Sv]

. Algebraic product. [#.4(]3(1) = pa(z)ps(z)].

3. Bounded product. [#.4(}3(17) = maz(0, pa(z) + pa(z) - 1)].

N

. Drastic product. ['“Aﬂ 8(z) = palz) if pa(z) =1, pp(z)if pa(z) =1, 0if

pa(z), pe(z) < 1.

Like s-norm, t-norms also satisfy commutativity, monotonicity, associativity and

;LAnl(l') = p4(z). Also, the fuzzy complementation operator is defined as follows.

pe(z) =1 - pp(z) (3.19)

3.5.3 Ordered Weighted Averaging (OWA) Operator

Generally, the formulation of multi criterion decision functions neither desires the
pure “anding” of t-norm nor the pure “oring” of s-norm. The reason for this is the
complete lack of compensation of t-norm for any partial fulfillment and complete
submission of s-norm to fulfillment of any criteria. Also the indifference to the
individual criteria of each of these two forms of operators led to the development of
Ordered Weighted Averaging (OWA) operators [52, 53]. This operator allows easy
adjustment of the degree of “anding” and “oring” embedded in the aggregation.

According to [52, 53], “orlike” and “andlike” OWA for two fuzzy sets A and B are

39

implemented as given in Equations 3.20 and 3.21 respectively.
1
paug(z) = 8 x max(ps, pg) + (1 — 3) x 5 (kA + pg) (3.20)

. 1
#ang(z) = 8 x min(uy, up) + (1 = 8) x 5(pa + ps) (3.21)

3 is a constant parameter in the range [0,1]. It represents the degree to which OWA
operator resembles a pure “or” or pure “and” respectively.

To solve an MOP using fuzzy logic, the problem is first defined in linguistic
terms then the membership of different fuzzy sets is combined using t-norm or s-
norm operator (depends upon problem). Then the resulting membership is used in

minimization or maximization problem.

3.6 Fuzzy Cost Function for VLSI standard-cell

Placement Problem

In this method, it is assumed that there are I' Pareto-optimal solutions. Also a p-
valued cost vector C(z) = (Cy(z), Ci(z), ..., Cp(z)), where = € T is given. There is a
vector O = (Oy, O, ..., Op) that gives the lower bounds on the cost for each objective
such that O; < Cj(z) Vj, and Vz € T. These lower bounds are normally not
reachable in practice. There is another user defined goal vector G = (g, go, ..., 9p)

that represents the relative acceptance limits for each objective. It means that z is

40

an acceptable solution if Cj(z) < g, x O,, Vj where g; > 1.0. For two dimension

problem, Figure 3.3 shows the region of acceptable solution.

C,(x)
|

0
9272 Acceptable

. Solutions |
0o, O —

Lower
Bound

Figure 3.3: Range of acceptable solution set.

In order to solve multiobjective placement problem, three linguistic variables
wirelength, power dissipation, and delay are defined. The following fuzzy rule is
used to combine the conflicting objectives.

Rule R1:

IF a solution has
small wirelength
AND
low power dissipation
AND
short delay
THEN it is a good solution.

The above mentioned linguistic variables are mapped to the membership values

41

in fuzzy sets small wirelength, low power dissipation, and short delay respectively.
These membership values are computed using the fuzzy membership functions shown

in Figure 3.4.

- C/0;

1.0 @ g

Figure 3.4: Membership functions within acceptable range.

As layout width is a constraint, therefore if a solution violates this constraint,
it is not a valid solution and is hence discarded. However, for the objectives, by
increasing and decreasing the value of g;, its preference can be varied in combined
membership function. The lower bounds O; (shown in Figure 3.4) for different

objectives are computed as given in Equations 3.22-3.25.

O

i Vu; € {v1,va,..., U} (3.22)
=1

O, = ZS}Z; Yo, € {v,ve,...,un} (3.23)
i=1

k
Oq4 = Z CD;+1ID; Vu; € {v,vs,...,u} in path 7, (3.24)
=1
., Width,
of rows in layout

Owidth

where O; for j € {{, p, d, width} are the lower bounds on the costs for wirelength,
power dissipation, delay and layout width respectively, n is the number of nets in
layout, I} is the lower bound on wirelength of net v;, CD; is the switching delay
of the cell i driving net v;, ID; is the lower bound on interconnect delay of net v
calculated with the help of [{, S; is the switching probability of net v;, T. is the most
critical path with respect to optimal interconnect delays, k is the number of nets in
e and Width; is the width of the individual cell driving net v;.

Using Equation 3.21 and minimum operator, rule R1 is interpreted as follows:

p(z) = B x min(uy(z) wala) (@) + (1= 8) x 3 T m@) (326)
j=p.dl

where u(z) is the membership of solution z in fuzzy set of acceptable solutions,
whereas u;(z) for j = p,d, [, are the membership values in the fuzzy sets within ac-
ceptable power, within acceptable delay, and within acceptable wirelength respectively.
3 is the constant in the range [0,1]. In this thesis, u(z) is used as the aggregating
function. The solution that results in maximum value of u(z) is reported as the best

solution found by the search heuristic.

f

| Metal Type w (um) R, /0 C, aF/u? CraF/p |
Metal 1 0.36 0.07 39 26
Metal 2 0.36 0.07 19 60

3.7 Technology Parameters

In this work, all the cell are taken from the 0.25 x MOSIS TSMC CMOS technology

library. The cell parameters like the cell delay, the input capacitance, and the cell

Table 3.1: 0.25 u technology parameters.

width are given in [46].

[t is assumed that two layers of metal routing are used. Metal 1 is used in the

routing of horizontal and metal 2 in the routing of vertical tracks. The values of

capacitances and resistances for these two metal layers are given in Table 3.1.

Chapter 4

Iterative Algorithms for VLSI

standard-cell Placement

4.1 Introduction

Genetic Algorithm was proposed by Holland in 1975 [54], whereas Tabu Search (TS)
[53] was presented by Fred Glover. After their introduction, these have found ap-
plications in optimization problems from various areas of science and engineering.
There has been many efforts involving application of GA to the VLSI placement
problem. Earliest application of GA for the placement problem targeted the objec-
tive of minimizing interconnect wirelength only {7]. Also, the application of TS to
the Quadratic Assignment Problem (QAP), which is a generalization of the place-

ment problem is reported in [56].

44

45

However, with the advancement in technology, standard-cell libraries with smaller
cell delays and smaller input pin capacitances became available. As a consequence,
interconnect capacitance turned into prominent part in the computation of over-
all circuit timing and power consumption. A number of GA based techniques for
timing-driven placement were presented [2, 44]. A brief review of some of the re-
ported timing-driven placement techniques is given in Chapter 2.

Recently, for obvious reasons, power consumption in VLSI circuits appeared as
an important design objective. The present work addresses this issue by developing
iterative algorithms for low-power and timing-driven VLSI standard-cell placement.
This chapter discusses the implementation details of Genetic algorithm and Tabu

search for the above problem.

4.2 GA for Timing and Low Power Driven VLSI

Cell Placement

Genetic algorithms belong to the class of general iterative heuristics that may be
applicable to a variety of optimization problems. For employing GA to a certain
problem, it needs to be tailored according to the specific characteristics of the un-
derlying problem. Some significant modifications in the implementation of simple
GA (as shown in Figure 1.3) are suggested for engineering it to the present multi-

objective VLSI standard-cell placement problem. For instance, it is suggested to

16

use mutation operator after selection for the nezt generation. The implementation

details of the GA steps are described in following sub-sections.

4.2.1 Chromosome Encoding and Initial Solution

For a solution to be processed by G4, it is required to be represented in form of a
string. A placement solution is an arrangement of cells in two dimensional physical
layout surface. For instance, consider a circuit comprising of 11 cells {1,2,3,.. ., 11}.

A possible layout is as shown below.

rowl: 3 5 8 6
row 2: 9 10

row3d: 7 11 1

o

row 4: 4

The above layout is generated after computing the average row width. Then,
average row width is divided by the smallest cell width to compute the maximum
possible number of slots in a row. Assume there are four slots and it is known from
the input information that there are four rows in layout. The initial solution is
constructed by randomly selecting a cell from eleven cells and placing it in the first
row. Before placing a cell, it is checked whether adding it will violate the width
constraint, and if so, it is placed at the start of next row and so on. In the above

example, it is assumed that sum of widths of cells 3, 5, 8, 6 is within width constraint,

47

but adding cell 9 was violating it, so cell 9 is placed in second row. Similarly, all
cells are placed on the layout. As a result, five slots remain empty, two in second
row, one in third row, and two in last row.

To form a chromosome, it is proposed to concatenate all the rows of a solution.
After concatenation, the chromosome that is to be used for the application of GA
operators becomes as shown below.

3586910711142

In each iteration, the above chromosome needs to be mapped back to a two
dimensional layout in order to compute the fitness value. There should be some
mechanism for this mapping. Due to varying widths of the cells in a circuit, all rows
may not have equal number of cells in them as can be observed in the layout example
shown above. This fact introduces a problem in mapping of chromosome to the
layout that at which points the above chromosome should be cut. A simple solution
could be to follow the same process that was adopted above for creating initial
solution i.e., start from the left of chromosome and keep on placing the encountered
cells in first row until the width constraint is violated, then move to second row and
so on. But this scheme enforces a deterministic width cost throughout the search
process and may restrict visiting certain points in search space.

A better approach to deal with this problem is the introduction of dummy cells.
Assuming there are NV cells in the circuit while L slots in 2-D layout, where L > N,

L — N dummy cells represented by distinct negative integers are inserted to fill the

48

empty slots of 2-D layout. The reason for choosing distinct negative integers will
become clear when crossover operation will be explained. After insertion of dummy

cells, the resulting layout is as shown below.

rowl: 3 5 8 6
row2: 9 10 -1 -2
row3: 7 11 1 -3

rowd: 4 2 -4 -5

The chromosome representation corresponding to the above layout is

3 586 910-1-2 711 1-3 4 24 -5

In addition to random initial solution, constructive initial solution was also in-
vestigated. The latter was generated by greedy pair wise interchange approach. The
comparison of two approaches in terms of the quality of final solution is presented
in Chapter 6.

The results obtained from using GA depend heavily on the population size i.e.,
number of chromosomes in the population. Therefore, Experiments are carried out

using various population sizes.

4.2.2 Fitness Evaluation

For addressing a multi-objective optimization problem to minimize three mutually

conflicting objectives, a measure is needed which can quantify the overall quality of a

49

solution with respect to all three objectives collectively. Fuzzy membership functions
and fuzzy rules are used for evaluating the fitness of a solution. A fitness value
between 0 and 1 is assigned to each solution. The fitness value of a chromosome is
its membership value x(z) in the fuzzy set of acceptable solution. This membership
is computed using Equation 3.26. Moreover, if a solution violates width constraint,
it is not considered a valid one and is discarded.

The fitness of a solution is a measure of its proximity to the optimal solution.
The higher the fitness value of a solution, the closer is it to the optimal solution. In
the present implementation, initial random solution is assigned a membership value
of 0 and the optimal solution is assigned a fitness value of 1. This implies that any
solution may have a fitness value in range [0.0,1.0).

For evaluation of cost, the chromosome is translated into the placement structure
that maps each cell to its corresponding ordered pair (X,Y). Here X represents the
actual horizontal location of left edge of the cell whereas Y represents the index of the
row in which the cell lies. The dummy cells introduced in chromosome representation
are used primarily for facilitating encoding as well as for the appropriate application
of genetic operators like crossover. They are ignored in the above translation process

and hence do not contribute in cost computation of the solution.

4.2.3 Parent Choice

In each generation of GA, certain number of off-springs are created. Each offspring
is the result of mating two chromosomes called parents. There are many different
schemes including roulette wheel, and ranking choice of parents [1]. The former
scheme was employed in the present work as it is the most widely reported scheme in
the literature. It is based on the idea of stochastic sampling with replacement. In this
scheme, an individual chromosome is selected with a probability that is proportional
to its fitness value. The probability P.ueice(z) of choosing a chromosome z can be

given as

Paraice(z) = —HE_

4.1
i u(1) -

where V, denotes population size. Although using this scheme, there is higher
chance for fitter chromosomes to be chosen, but it also allows the individuals having
low fitness values to be selected with a non-zero probability.

The motivation for using such scheme that favors the choice of fitter chromosomes
over the weaker ones is following. The mating of two fitter chromosomes is more
likely to reproduce fitter chromosomes than mating of two weaker ones. However, the
choice of fitter individuals only is a greedy approach that may lead the algorithm to a

local optimal. Therefore roulette wheel choice also permits the weaker chromosomes

3l

to take part in crossover. This property ensures the diversity in population, that
is known to be essential for healthy progress of GA towards better points in search
space.

In addition to roulette wheel, random choice scheme was experimented for com-
parison purposes. In this scheme, parents are chosen randomly from the current
population irrespective to their fitness values. The effect of these two schemes is
discussed in Chapter 6.

At start of each generation, N, number of parent pairs are chosen for crossover.

As a result NV, offsprings are created.

4.2.4 Crossover

Crossover is the operator that causes inheritance of characteristics from one gen-
eration to the next. Many different types of crossover including are one-point or
two-point simple crossover, order crossover, and partially mapped crossover (PMX)
are reported in the literature [1]. In the present problem, each gene in the chromo-
some representation is distinct and this property must be preserved from generation
to generation for a chromosome to represent a valid solution. Therefore, simple
crossover operators can not be used as these may result in duplicate genes.

In this work, different types of existing crossover operator like Order crossover
and Partially Mapped Crossover (PMX) are experimented. An example of PMX

working is shown in Figure 4.1. The detailed description of PMX can be found

(@]
(8]

in [1]. Figure 4.2 illustrates the problem that may occur if the distinct negative

integers are not used for representing the dummy cells in the layout.

1316 411 [2T-2]5 |

Parent 1

LS5 13]204]1]6]17]2]

Parent 2

1316l afJ2T-1]5T17]27]

Offspring

<4— Cut point =3

Figure 4.1: An example of PMX operation.

In addition, a modified form of PMX application is investigated, which is named
Controlled Dual PMX (CDX) and it works as follows. Since PMX is not a symmetric
operator, first PMX is applied between parent-1 and parent-2 and then it is applied
between parent-2 and parent-1. As a result, two offsprings are generated. The better
of two offsprings is chosen with a certain high probability P.4 and any one of two
is chosen randomly with probability 1 — P.4;.

The crossover operation is generally performed with a high probability p.. Dif-
ferent high crossover probabilities are used. The implementation of crossover prob-

ability is done as follows. After choosing two parents, a random number rand in

L4 11 3JTafl15]2T%6]

Parent 1

L5 1 [-1]Ja]JaJe 3] 2]

Parent 2

* Conflicts +

(4 [-1]3]1]XJ6[XT[2]

Offspring

<4— Cut point =4

Figure 4.2: An example of possible problems in using PMX when dummy cells are
non-distinct negative integers.

range (0, 1] is generated, and if rand < p., crossover is applied; otherwise, other two
parents are chosen and another random number is regenerated and so on. In this
way, it is ensured that the same number of offsprings are generated in each itera-
tion. The number of offsprings generated are equal to the population size. Each
time when a new offspring is generated, it is checked whether its width cost is vio-
lating the width constraint. If it is so, then the offspring is discarded and another
crossover is performed after choosing other parents. This process is repeated until
the desired number of offsprings are generated.

Another phenomenon is observed that sometimes an offspring resulting from

crossover of two dissimilar parents is exactly similar to one of the parents. This

34

leads to duplicate chromosomes in the population which decreases diversity of the
population. This phenomenon is not desired in GA because it offers hindrance to
search process in moving to the un-explored regions of the search space. Therefore
this phenomenon is restricted by discarding any such duplicate offsprings. Some
other measures for maintaining diversity in the population are also proposed as

described below in the following sub-sections.

4.2.5 Selection

A modification in simple GA is suggested by moving selection for the nezt genera-
tion before mutation. The purpose is to encourage the diversity in the population
by ensuring the transfer of mutation effect into next generation. The mutation op-
erator introduces new characteristics in the population that help in preventing the
algorithm from trapping in local minima. Therefore, it is important to preserve the
effect of mutation with generations.

In simple GA, selection is performed after mutation. In this case, it may happen
that the mutated chromosomes are not selected for the next generation and thus
the effect of mutation is lost. While in the presented approach, all the selected
chromosomes are subjected to mutation.

Experiments are carried out using following seven different selection schemes.

o roulette wheel selection (rlt): Chromosomes for the next generation are selected

(S]]
Ut

with probabilities proportional to their fitness value. In this scheme, chromo-
somes having lower fitness values may also propagate with small probability

to the next generation.

random selection (rnd): All chromosomes for the next generation are selected
randomly. The average fitness of chromosomes in the next generation is un-

predictable.

elitist-roulette selection (erlt): The best chromosome from current population
is selected and then remaining /V, — 1 chromosomes are selected using roulette
wheel. Using this approach, the global best over generations is always remem-

bered.

eztended-elitist-roulette selection (eerlt): lf_,z best chromosomes are selected
and remaining 522 are selected proportional to their fitness. This scheme as
well as the previous one may lead the search process to local minima, because

weaker individuals are not selected and thus diversity in population is lost.

elitist-random selection (ernd): The best chromosome is selected from par-
ents and offsprings, whereas the remaining NV, — 1 chromosomes are selected

randomly.

eztended-elitist-random selection (eernd): %E best chromosomes are selected

and remaining 521 are selected randomly. This scheme and the last one offer

balance between greediness and randomness.

e elitist-pareto-random selection (eprnd): The best chromosome is selected, then
one best with respect to each of the objectives is selected, and remaining .V, —3

are selected randomly.

4.2.6 Mutation

In this work, it is suggested to apply mutation with a dynamic probability P,f , which

is a function of the diversity of the population. The standard deviation a}ff Y of the

population in (k + 1)** generation is taken as a measure of the diversity. The idea

is to increase the mutation probability when population tends to lose diversity. The

P

Hmaz

mutation probability Pf is varied in a range [P,]. This is another effort

min?!

to enhance diversity and thus GA search capability. The following set of equations

specifies how mutation probability is updated dynamically.

P = P, if ok, <002 (4.2)
P{ = P,.. if of,>005 (4.3)
Plf = 0.05—3 (a'f‘,-t—0.0Q) otherwise (4.4)

For each chromosome in the population selected for the next generation, a ran-

(3}
-

dom number rand in range (0, 1] is generated, and mutation is applied if rand < P
The mutation operation is implemented as a series of random pair wise interchanges
of randomly chosen cells. The restriction on the selected pair for swap is that both
of them can not be dummy cells at the same time. The reason for this restriction is
that swapping of two dummy cells has no realization in circuit layout and therefore
this swap does not introduce any new characteristics in the solution.

The number of interchanges to be performed is a function of the size of circuit
i.e., the number of cells in the circuit. A random fraction f between 0.03 and 0.05
is generated and f x NV interchanges are made, where V is the total number of cells
in the circuit.

For the comparison purpose, fixed mutation probability is also implemented.

The results of both schemes are discussed in Chapter 6.

4.2.7 Stopping Criterion

The experiments are carried out for various number of total generations. It is ob-
served that after certain number of generations, GA tends to convergence and there
is no further significant improvement in the solution quality. As a result, it is decided

to use a fixed number of generations as a stopping criterion for GA.

58
4.3 TS for Timing and Low Power Driven VLSI

Cell Placement

In this section, the implementation details of Tabu Search (TS) are described. TS is
a powerful search heuristic. In contrast with GA, TS uses a single solution and tries
to optimize it with iterations. The unique feature of TS is its memory element, that
is used to record some characteristics of a certain number of previous moves. This
feature is realized by the use of tabu list. The number of moves whose characteristics
can be recorded depends on the size of this list. This feature prevents the search
process from cycling (i.e., revisiting a point) in the search space. The details of

various steps are presented in the following sub-sections.

4.3.1 Initialization and Cost Evaluation

The solution encoding and initialization steps are similar to those described above
for the GA implementation. The only difference is that a single random initial

solution is created.

4.3.2 Neighborhood Generation

In each iteration, a number of neighbors of the current solution are generated by
making perturbations as follows. Two cells are selected randomly with a restriction

that both of them are not dummy cells at the same time. Then the locations of

selected cells are mutually interchanged.

The quality of the final solution generated by TS depends on the number of
neighbor solutions generated. Too small number of neighbor solutions prevents
TS from searching the solution space effectively. On the other hand, too large
number of neighbor solutions costs excessive run time without providing a significant
improvement in the quality of solution. Therefore, the number of neighbor solutions
to be generated in each iteration, needs to be chosen after a careful observation of
the underlying problem’s nature and size. In this work, the number of neighbor
solutions is dependent on the problem size, i.e., the number of cells in the circuit.

The effect of neighborhood size on the solution quality is discussed in Chapter 6.

4.3.3 Tabu List and Aspiration Criterion

Tabu list introduces memory element in search process. Its purpose is to avoid
revisiting a point (solution) in the search space. This is implemented by storing
some characteristic of a certain number of previously accepted moves.
Implementation of tabu list requires two decisions to be made. First, what char-
acteristic of the move should be stored in tabu list. This decision has a significant
effect on search quality as well as memory requirements of TS. The chosen char-
acteristic should identify the move, so that it can be accurately used to restrict
the corresponding move and to consequently fulfill the purpose of tabu list. In the

present implementation, the characteristic of the move stored in tabu list is the in-

60

dex of any one of the two cells involved in mutual interchange. In case one of the
cells is a dummy cell, the index of other cell is stored. The reason is that the move
of a dummy cell in the solution representation has no realization in circuit layout.
Therefore, it should not be restricted to take part in future perturbations by storing
its index in tabu list.

The second decision that needs to be made is regarding the size of tabu list. This
decision affects time and space requirements of TS. Various sizes of tabu list were
investigated and consequently a reasonable fixed size is decided.

The aspiration criterion used is the following. If the best neighbor solution of the
current iteration is better than the global best solution, then tabu list restrictions
are overridden and the solution is accepted. Also, the global best solution and the

aspiration criterion are updated.

4.3.4 Stopping Criterion

TS was run for a different number of total iterations, and depending on experimental
observations, it is decided to run the algorithm for a fixed number of iterations as is
done in case of GA. The major reason for stopping after a fixed number of iterations
in both cases is that continuing beyond it costs run time without any significant

improvement in the results.

Chapter 5

GATS: A Hybrid Algorithm for

VLSI standard-cell Placement

5.1 Introduction

This chapter presents a novel hybrid algorithm and describes its implementation
details. Hybrid algorithms combine features from various heuristics as an effort to
develop efficient techniques for solving hard optimization problems. A brief intro-
duction to hybridization and hybrid algorithms is presented in the first section of
this chapter. The following section presents the algorithm named GATS, which is a

hybrid of GA and TS.

61

5.2 Hybridization

Hybridization involves combining of features from more than one algorithm with a
view of developing better techniques for solving hard problems [1]. In the scope of
the present work, hybridization refers to mixing of good characteristics from different
iterative algorithms. There are several iterative heuristics including GA, TS, and
Simulated Evolution (SE). The details of the first two are given in Chapter 1, whereas
the details of SE and some other iterative heuristics can be found in [1].

Any of these iterative heuristic may be considered for hybridization purpose.
The choice of iterative algorithms to be hybridized needs some careful analysis of
the underlying problem and these individual algorithms. The application of an
individual algorithm to the problem may give an insight of its suitability to the
problem. If the results of application of the individual algorithms are encouraging,

then their hybridization is also likely to produce the better performance.

5.3 GATS: Hybrid of GA and TS

In this work, GA and TS are used for addressing the VLSI standard cell placement
problem. Both of these algorithms exhibited good performance for the present
problem. Especially TS proved to be an excellent technique. Therefore, it seems
reasonable to hybridize GA and TS with the view of developing an efficient hybrid

technique for timing and low power driven placement.

63

A good property of GA is its implicit parallel nature that helps in exploring the
search space efficiently. This parallelism is due to the fact that GA processes a popu-
lation of solutions instead of a single solution. On the other hand, TS showed better
results than GA, and this better performance can be attributed to TS searching
mechanism. This means that a good hybrid technique can be developed by combin-
ing the features from these two iterative algorithms.

Figure 5.1 illustrates the proposed hybrid algorithm named GATS. An interesting
novel idea is the introduction of a population of solutions instead of single solution in
TS. This is likely to enhance the power of TS by allowing it to visit the search space
in a parallel fashion. The algorithm starts by taking a random initial population of
solutions. Then, for each individual in the population, a certain number of neighbor
solutions are generated and the best neighbor is found. A characteristic of the move
leading to the best neighbor solution is stored in a tabu list. There are as many tabu
lists as the number of solutions in the population i.e., Nr. The reason for taking NVt
tabu lists is obvious that the series of moves for each individual in the population
is different. Therefore, each series should be stored in a separate list so that a tabu
list restricts the cyclic moves on its corresponding individual only. However, the
aspiration level (AL) is unique for all the individuals. The purpose is that the tabu
move on an individual solution is allowed only if it results in a solution that is better
than an overall unique best solution.

The above process continues for a certain number of iterations and a record

64

Algorithm GATS

S : Current solutions

S* Best solutions

N@) : Neighborhood of S € Q

V* Sample of neighborhood solutions
AL : Aspiration levels

Ne Population size for GA portion
Nr : Population size for TS portion

No Number of Offsprings

Begin

For fixed number of times Do
Start with random initial population Nt
For fixed number of iterations Do
Forj=1To Ny
Generate neighbor solutions V* (j) € N (S (j)) by random swap
Find best S* (j) € V* (j)
If move S (j) to S* (j) is not in T (j) Then
Accept move and update T (j)
Else
If Cost (S* (j)) < AL (j) Then
Accept move and update T (j) and AL
End If
End If
End For
End For
Pass best or current solutions to GA
For fixed number of generations Do
Forj=1ToN,
(x, y) € Choose parents
Offspring [j] € Crossover (x, y)
Evaluate Fitness (offspring (j])
End For
Population € Select (Population, offspring, Ng)
Forj=1ToNg
Apply Mutation (chromosome [j])
Evaluate Fitness (chromosome [j])
End For
End For
Pass best or current solutions to TS
End For
End.

Figure 5.1: GATS: A Proposed Hybrid of Genetic Algorithm (GA) and Tabu Search
(TS) for Timing and Low Power Driven VLSI standard-cell Placement.

65

is kept of the .V; individual best solutions obtained from perturbing Nt individ-
ual initial solutions. Then either these best solutions or the current solutions are
passed to GA for further optimization. These semi-optimized individuals are likely
to produce good offsprings by mating with one another. Now, GA is run for a given
number of generations on these passed solutions and a record of the best individuals
is kept. Again, either the current individuals or best ones are passed back to TS.

The switching between TS and GA is repeated for a given number of times.

5.3.1 Parameters of GATS

There are several performance parameters to be tuned. These parameters can affect
the performance of GATS significantly. For instance, a parameter is whether to
pass best or current individual solutions between GA and TS portions at the time
of alternate switching.

Some possible parameters are listed below.

e The cumulative number of iterations of GATS to be run and the number of

times the switching between TS and GA is made.

e Should the number of iterations for TS and the number of generations for GA

be equal. If not, then what should be the proportion.

e Should the population size in case of TS and GA be same ie., Np = Ng. If

not, then what should be the ratio among these.

66

The above parameters can be tuned experimentally to achieve the best perfor-
mance from GATS. The different settings of these parameters and their effect is

discussed in Chapter 6.

Chapter 6

Experiments and Results

6.1 Introduction

This chapter presents the experimental results of different iterative heuristics pre-
sented in this thesis. A comparison of results obtained from different techniques is
made in the terms of the quality of the final solution as well as the run time. The
detailed study of the effects of different important parameters of each heuristic is
conducted.

The organization of this chapter is as follows. Section 6.2 describes the details
of ISCAS 85/89 circuits, because these are used as benchmarks for evaluating the
performance of the proposed algorithms. In Section 6.3, the performance of the
proposed algorithms is compared. Then, Section 6.4 analyzes the sensitivity of it-

erative algorithms to setting of certain parameters like crossover probability and

67

68

neighborhood size. In Section 6.6, an interesting comparison between single objec-

tive optimization and multiobjective optimization is reported.

6.2 Circuits Detalils

Eleven ISCAS-85/89 benchmark circuits are used. Most of the considered circuits
are sequential because, in real life, almost all the circuits used are sequential in na-
ture. Also, sequential circuits have more severe delay problems than combinational
circuits, as most of the combinational circuits are well structured. The key charac-
teristics of these circuits are given in Table 6.1. The number of rows in layout and
the average channel heights are estimated using a min-cut based layout placer. The
details of the cell characteristics are obtained from the 0.25 x MOSIS TSMC CMOS

technology library [46].

6.3 Comparison of Proposed Techniques

The comparison is divided in two sub-section. First, a comparison between GA and
TS is presented and then the performance of the hybrid approach is compared with

that of TS approach.

69

Circuit Layout
Name | Cells | Rows | Avg. Channel
Height (um)
s2081 | 122 4 6.66
s298 136 3 7.08
s386 172 5 7.68
s641 433 7 9.72
s832 310 7 9.78
s953 440 8 11.76
s1196 | 561 9 11.58
s1238 | 540 9 11.64
s1488 | 667 | 11 10.92
s1494 | 661 | 11 10.56
c3540 | 1753 | 16 13.68

Table 6.1: Circuit and layout details.

6.3.1 GA versus TS

The results obtained from GA and TS are compared in terms of the overall quality
of the best solution and run time in Table 6.2. In this table, L represents the wire
length in um, P represents the cost due to power, which is the sum of the product
of switching probabilities and wirelength of all the nets, D represents the delay of
the most critical path in pico seconds (ps), x(z) is the membership value, and T is
the execution time in seconds for reaching the best solution. In case of TS, 5,000
iterations are run, whereas for GA, the stopping criterion is 10,000 generations. The
width constraint is satisfied in obtaining all the results shown here.

The results shown are the best case results obtained by the best possible tuning

of the various algorithmic parameters of GA and TS. In case of GA, the population

GA TS

Circuit | L (um) P D (ps) | u(z) | T(s) | L (pm) P D (ps) | u(z) | T(s)

s2081 2426 388 113 | 0.785 | 2341 2323 379 111 | 0.823 298

5298 4062 838 130 | 0.775 | 2922 3579 635 127 | 0.821 212
5386 6824 1665 193 | 0.695 | 3945 6643 1595 190 | 0.709 | 524
s641 17812 4332 740 | 0.685 | 21982 | 12620 2868 656 | 0.800 | 1505
5832 21015 4787 395 | 0.598 | 7206 18760 | 4311 349 | 0.638 981
$953 31004 5027 235 | 0.606 | 11221 | 27287 | 4230 214 | 0.669 | 1036

s1196 48729 | 14755 372 1 0.543 | 16120 | 39054 | 11700 | 332 | 0.650 | 1138

s1238 50387 | 15035 396 |0.536 | 16208 | 39186 | 11594 | 353 [0.656 | 1124

s1488 69792 | 17346 784 | 0.518 | 21434 | 56888 | 13867 | 662 | 0.621 | 2256

51494 69223 | 17169 771 1 0.540 | 26032 | 34710 | 13533 | 674 | 0.650 | 2499

c3540 310996 | 109850 | 924 | 0.425 | 57724 | 164581 | 38143 | 699 | 0.708 | 19215

Table 6.2: Comparison between costs of the best solutions generated by GA and
TS.

size is 32, and the crossover used is CDX with a probability equal to 0.99. The
value of parameter Py, is set equal to 0.95. It was discussed in Chapter 4 that)
determines the probability with which the better of the two offsprings is selected.
The selection scheme used is eernd. Dynamic mutation probability is used in most
of the cases except for circuits s641 and s1196, for which the shown results are for
fixed mutation probability. In case of TS, the size of neighborhood is varied from
24 solutions for s2081 to 70 solutions for ¢3540, while the tabu list size is 100. The
effect of using other settings in GA and TS is discussed later in this chapter.

From the results, it is clear that TS performed better than GA for all the circuits
in terms of the quality of the best solution as well as the CPU run time. The
significant observation is that in case of smaller circuits like s2081, s298, and s386,
the quality of the final solutions obtained from GA is comparable with that obtained

from TS. But as the size of circuit increases i.e., when the size of search space

7l

increases, TS consistently performs better, and the difference between GA and TS
performance gets higher. Also, the execution time of GA increases significantly
with the increase in circuit complexity. The higher execution time of GA can be
attributed to its parallel nature, i.e., a population of solutions is to be processed in
each generation.

Figures 6.1 (a) and (b) show the trend of best solution’s membership for GA
and TS respectively, in case of circuit s832. It is clear from the shown plots that
TS achieves a membership in 1000 seconds that is better than that reached by GA
even after 8000 seconds. Figures 6.2, 6.3, and 6.4 show the trend of actual costs of
the best solution for all three objectives in case of GA and TS.

Another interesting and novel comparison is performed between GA and TS as
shown in Figures 6.5 and 6.6. This comparison gives an insight of an algorithm’s
suitability to the problem. For instance, the bar chart shown in Figure 6.5 illustrates
the number of generations spent in searching for a particular quality solution in the
solution space. These plots indicate that both GA and TS searched most of the time
in better solution space and are thus well engineered to the present multiobjective

problem. These plots show the best case performance of both techniques.

0.7
06t e
[—
2 —
3
3 0.5+ /
@
-]
2 e
2 o4
5 /
=
I o3t / 4
=3
= '
§
0.2
€
2
0.1}
0‘_—'_ S S i — 4 e ——— e
0 1000 2000 3000 4000 5000 6000 7000 8000
Time (seconds)
(a)
0.7y —— ——-—- e - =
- /—‘—'—’—_
c 06 o —
-]
3
2 ost
@ 7
2 /
2 o04r -
z /
= f
3 0.3</
Q
2 X
8 /
é 0.2} .
2
0.1
0 ;
0 200 400 600 800 1000
Time (seconds)
(b)

-~

[

Figure 6.1: A comparison between GA and TS for circuit s832. (a) and (b) show the
fuzzy membership of the best solution against run time for GA and TS respectively.

x 10

w
)

w

Wire length (um)

2.5-

2 T 2000 4000 6000 8000
Time (seconds)

(a)

Wire length (um)

3 200 400 600 800 1000

Time (seconds)

(b)

Figure 6.2: A comparison between GA and TS for circuit s832. (a) and (b) show

actual costs for wirelength of the best solution against run time in case of GA and
TS respectively.

Power consumption

10000 eI TR U

Power Consumption
~
[=3
o
o

AN
6000 \
—.
—
5000 - e
4
0005 2000 4000 6000 8000
Time (seconds)
(a)
11000 ; .
10000‘
90001
|
aooo-’»‘
!
|
7000- |
\
8000- "\
5000- \
. —
'*-\‘_WH
4000 L —- -
00 0 200 400 600 800 1000

Time (seconds)

(b)

Figure 6.3: A comparison between GA and TS for circuit s832. (a) and (b) show
actual costs for power consumption of the best solution against run time in case of
GA and TS respectively.

580
s60}
sa0}
s20}
s00}
480}

460}

Delay (pico seconds)

4401

420+

400+

e m—e—m s - - -= . R e — =

Y
J‘L"}"‘-a —i—_
-1 .

“'_ILL_ fil _‘—'—\._‘__._. ——

]

380
0

600,

Delay (pico seconds)

1000 2000 3000 4000 5000 6000 7000 8000
Time (seconds)

(a)

—_ IS -]

0 200 400 600 800 1000

Time (seconds)

(b)

-1

Ut

Figure 6.4: A comparison between GA and TS for circuit s832. (a) and (b) show
actual costs for delay of the best solution against run time in case of GA and TS

respectively.

Frequency of generations

Frequency of iterations

6000

5000

4000

3000

2000

4000

3500

3000

2500

2000

1500

1000

500

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Membership Range

Figure 6.5: A histogram of GA search for circuit s832.

T

0.1 0.2 0.3 04 0.5 0.6 0.7
Membership Range

Figure 6.6: A histogram of TS search for circuit s832.

6.3.2 Comparison between TS and GATS

Here. the performance of proposed hybrid algorithm GATS is compared with that
of TS. Since TS out-performed GA in terms of the quality of final solution obtained,
so the comparison presented in this section is of great interest.

The costs of the best solutions generated by TS and GATS are listed in Table 6.3.
The results of TS are obtained by best settings of its parameters as described above.
The settings of GATS parameters used for achieving theses results are as follows.
Total number of iterations run are 5000, which comprise of 2000 TS iterations and
3000 GA generations. The switch from TS to GA is made only once. The population
size N7 used in TS part is 4 while in GA part the population size is 16 chromosomes.
This fine tuning of parameters is made after careful study of the results obtained
by choosing different settings. The population size in case of TS is reduced after
observing that large population size increases run time of TS part without providing
any significant performance. By taking this step, the run time of GATS is shortened
very significantly.

It can be observed from the results that in most of cases, GATS produced solu-
tions which are better in quality as compared to those obtained from TS. Although,
the execution time of GATS is higher than TS, but this is tolerable considering the
better quality of solutions. The overall performance of GATS is comparable to that

of TS, and much better than GA.

TS GATS
Circuit | L (um) P D (ps) | u(z) | T (s)|L (um) P D(ps) | w(z)]| T(s)
$2081 2323 379 111 | 0.823 298 2162 356 110 | 0.845 426
s208 3579 635 127 | 0.821 212 3454 631 125 | 0.832 362
s386 6643 | 1595 190 | 0.709 524 6329 | 1486 191 0.727 656
s641 12620 | 2868 | 656 | 0.800 | 1505 12433 | 2882 | 664 | 0.802 | 2143
s832 18760 | 4311 | 349 | 0.658 981 18451 | 4257 | 351 0.664 | 1929
s953 27287 | 4230 | 214 | 0.669 | 1036 | 25967 | 4239 | 212 | 0.679 | 1846

s1196 39054 | 11700 | 332 | 0.650 | 1138 38574 | 11526 | 334 0.654 | 3276

$1238 39186 | 11594 | 353 | 0.636 | 1124 | 39065 | 11342 | 351 0.660 | 3667

51488 56888 | 13867 | 662 | 0.621 | 2256 | 56148 | 14135 | 669 | 0.624 | 35157

s1494 34710 | 13533 | 674 [0.650 | 2499 | 54914 | 13763 | 668 0.649 | 3643

c3540 164581 | 58143 | 699 | 0.708 | 19215 | 164245 | 57905 703 | 0.709 | 33247

Table 6.3: A comparison between the quality of the best solutions generated by TS
and GATS.

6.4 Sensitivity Analysis

The performance of iterative algorithms is sensitive to fine tuning of various algo-
rithmic parameters. This section discusses the effect of these settings on the quality
of the final solution. For instance, in case of GA, the effect of varying population
sizes, crossover and mutation probability is analyzed. Similarly, in case of TS, the
effect of neighborhood size is discussed.

The effect of population size on the performance of GA can be seen in Figure 6.7.
It is observed that by increasing the population size from 16 to 32 chromosomes, the
quality of the solution improves significantly, however, population sizes beyond 32
result in smaller improvement with the excessive CPU time requirement. The prob-
lem is that the execution time of GA rises sharply with the increase in population
size. The reason for this behavior is that the complexity of GA heavily depends on

population size. As the population size increases, the run time boosts up. Due to

this reason, population size is chosen to be equal to 32 chromosomes.

0.7

———
-

c
g

3

Q

(]

@

©

a

2 - Popsize = 16

= - - Pop size = 32

o —— Pop size = 50

=

3

a

=

14

@

a

E

]

=

01
0 ;) : " A
0 2000 4000 6000 8000 10000
Generations

79

Figure 6.7: Effect of population size on the quality of the best solution generated

by GA for circuit s832.

Crossover probability | L (um) P D (ps)
0.70 21669 | 5132 403
0.80 21661 | 5031 396
0.90 21605 | 4972 398
0.99 21015 | 4787 394

Table 6.4: The effect of varying the crossover probability in GA.

Table 6.4 shows the effect of changing crossover probability in GA. Different

crossover rates from 0.7 to 0.99 are tried. The increase in crossover rate improves

the quality of the final solution. The reason is that higher crossover rate encourages

the inheritance of characteristics and thus GA capability.

30

0.7 T o

0.6¢

~ Dynamic
- -~ Fixed

c
kel
3
Q
(2}
@
Q
Fel
2 o4t
S
x
3 o3H
&
£
[Z]
3 0.2
g)
7]
p-
0.1}
% 1000 2000 3000 4000 5000 6000 7000 8000

Time (seconds)

Figure 6.8: A comparison between using dynamic and fixed mutation probability
for circuit s832.

Figure 6.8 compares the trend of the best solution cost for circuit s832, both
in case of fixed and dynamic mutation probability. It is clear that using dynamic
mutation probability results in slightly better performance. The detailed comparison
of the quality of the best solutions obtained by using dynamic and fixed mutation
probability is given in Table 6.5. It is observed in most cases, that dynamic mutation
probability results in a marginal better performance over fixed mutation probability.
This trend can be explained as follows. Fixed mutation rate affects chromosomes
in the current population irrespective of the diversity in the population. This may
disturb the solutions and hence the search direction needlessly. On the other hand,

dynamic mutation probability approach has a built in mechanism to control that

81

how much mutation needs to be applied depending on the diversity. If diversity is

sufficient then mutation rate is dropped to as low as 0.02.

Fixed Mutation Probability = 0.1 | Dynamic Mutation Probability
Circuit | L (um) P |D(ps)| w(z)|L (um) P | D(ps) | u(z)

s2081 2551 410 | 114 0.764 2426 388 | 113 |0.785
s298 4424 861 | 130 0.749 4062 8381 130 |0.775
s386 7384 1809 | 195 0.650 6824 1665 | 193 | 0.695
s641 17812 4532 | 740 0.685 | 18320 4365 | 736 | 0.679
s832 21817 5107 | 368 0.587 | 21015 4787 | 395 | 0.598
$953 32031 5156 | 230 0.597 | 31004 5027 | 235 | 0.606

s1196 48729 | 14735 | 372 0.543 | 49162 | 14721 | 403 | 0.333
s1238 52679 | 15473 | 410 0.517 | 50387 | 15035 | 396 | 0.536
s1488 70400 | 17568 | 747 0.517 | 69792 | 17346 | 784 | 0.518
s1494 71021 | 17497 | 803 0.525 | 69223 | 17169 | 771 | 0.540
c3540 | 314172 | 108447 | 954 0.418 | 310996 | 109850 | 924 | 0.425

Table 6.5: A comparison between using fixed and dynamic mutation probability in
GA.

In case of TS, an important parameter is neighborhood size i.e., the number
of neighbor solutions generated in each iteration. The quality of the final solution
heavily depends on the tuning of this parameter. Experiments are conducted for
different values of this parameter and results indicate that the increase in neighbor-
hood size improves the performance of TS at the cost of an increase in run time.
Figure 6.9 shows the effect of neighborhood size for circuit s832. The reason for the
improvement in the performance of TS by increasing the above parameter is that
the search process becomes more aggressive as larger number of neighbor points in
search space are explored in each iteration.

For GATS, experiments are also performed using equal population sizes for TS

0.9 T T r a y T T T

NS =32

Membership u(x) of the best solution

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Time (seconds)

Figure 6.9: The effect of varying the neighborhood size on the performance of TS
for circuit s832.

and GA parts i.e., Ng = Nr = 16. The comparison between the cases when Nr =4
and Nt = 16 is shown in Table 6.6. It is clear from the results of the two cases
that taking smaller population size in TS part is a better choice, because it does not
affect the quality of solution significantly but cuts down the run time of GATS by

a significant amount.

83

Nr =16 Nr =1
Circuit | L (um) P D (ps) | p(z) | T(s) | L (um) P D (ps) | u(z) T(s)
s2081 2098 329 110 | 0.847 809 2162 356 110 | 0.843 426
s298 3518 700 124 | 0.827 939 3454 631 125 | 0.832 362
5386 3886 | 1360 181 0.763 | 1729 6329 | 1486 191 | 0.727 656
s641 12458 | 2922 | 661 0.802 | 19647 12433 | 2882 | 664 [08021 2143
s832 17927 | 4109 | 331 0.681 | 3762 18451 | 4257 | 351 | 0.664] 1929
5953 24412 | 37951 205 | 0.710 | 6198 25967 | 4239 | 212 | 0.679| 1846

s1196 37135 | 11041 | 336 | 0.667 | 10128 38574 [11526 | 334 | 0.654 | 3276

s1238 39371 | 11549 | 342 | 0.660 | 10009 39065 | 11342 | 351 | 0.660 | 3667
s1488 95789 | 13712 | 664 | 0.628 | 11123 56148 | 14135 | 669 | 0.624 | 35157

s1494 34864 | 13681 | 661 0.647 | 13940 34914 | 13763 | 668 | 0.649 | 5643

c3540 164193 | 57943 701 0.709 | 57060 | 164245 | 57905 | 703 | 0.709 [33247

Table 6.6: Effect of TS population size (V) on the performance of GATS.

6.5 Comparison of Various Crossover Operators

and Selection Schemes for GA

In this section, first, the performance of different crossover operators employed in
this work is analyzed. Then, the effect of using various selection schemes listed in
Chapter 4 is studied.

Different crossover operators used in this work include square crossover [7], order
crossover, PMX, and a proposed modified application of PMX termed Controlled
Dual PMX (CDX). The performance of these operators is compared with one an-
other. Figure 6.10 shows the effect on the quality of the best solution by employing
CDX, PMX and order crossover operators. The proposed CDX is clearly outper-
forming PMX and order crossover operators. Order crossover performs very poor
as compared with the other two crossover operators. For the results shown in the

Figure, all three crossover operators are applied with a probability of 0.99. Further-

84

more. the settings of all other parameters like mutation rate and selection scheme

are kept the same for obtaining these results.

0.7 T T r T T

Membership u(x) of the best solution

0.1}F §

0 2000 4000 6000 8000 10000
Generations

Figure 6.10: A comparison of Order, PMX, and CDX for circuit s832.

The reason for excellent performance of the proposed CDX is that it provides
a balance between greediness and randomness. It selects the better of two newly
generated offsprings with a certain probability P.4, but also selects either of the
two randomly with a probability 1 — P.4;. The worst performance of order crossover
is not surprising considering the work reported in (3, 37]. They also reported similar
behavior of order crossover for single objective (wirelength only) VLSI cell place-
ment.

A comparison of the performance of various selection schemes used is also carried

85

out. Seven different schemes are investigated in this work. The details of all these
schemes is given in Chapter 4. It is observed after experimenting that elitist selection
schemes outperform the others. In addition, when the performance of five elitist
schemes used in this work is compared with one another, it is found that ernd and
eernd perform better than erlt and eerlt respectively. The reason for this trend is
clear that erlt and eerlt have very greedy behavior because these schemes encourage
the selection of fitter individuals even after selecting the best ones. On the other
hand, ernd and eernd have a reasonably balanced approach. After selecting the best
ones, these schemes allow all remaining individuals to be selected at random. As
a result, ernd and eernd allow diversity in the population, which is known to be
necessary for the efficient working of GA.

For simplicity, the best three schemes are compared with each other. Figure 6.11
shows the trend of membership value for the best solution obtained when using
the three different elitist schemes eernd, ernd, and eprnd. The settings for other
parameters are as follows. The population size is 50, crossover applied is CDX with
a probability of 0.99, and the mutation rate is dynamic. It can be seen that eernd
gives the best performance. This behavior can be interpreted as follows. The eernd
scheme selects the best %?- chromosomes in contrast with ernd and eprnd that select
only the best chromosome. This large number of better chromosomes is more likely
to produce fitter offsprings in the following generations.

On the other hand, ernd and eprnd schemes allow larger number of randomly

36

0.7

.............
.......
.....

c
L
3
[=]
(2]
@
Q
Ee]
[+]
£ — EERND
5 - - EPAND
= & e ERND
3
2
L
fl
2 a2l
2 02
1]
s

0.1}

0 . , . 1 ~
0 2000 4000 6000 8000 10000

Generations

Figure 6.11: A comparison of three different selection schemes of GA for s832.

selected individuals to propagate to next generation. These randomly selected chro-
mosomes have unpredictable quality and thus the search direction of GA is more

disturbed than that in case of eernd.

6.6 Single Objective Versus Multiobjective Opti-

mization

In the earliest reported efforts for VLSI cell placement, wirelength was the only
objective to be optimized. Therefore, those placement techniques were of the type of

single objective optimization (SOP). With the advancement in technology and due to

87

some other factors, two more objectives namely performance and power consumption
also came into focus. This resulted in the need of multiobjective optimization (MOP)
techniques. This work also addresses such multiobjective optimization (MOP) in
which, all of above three objectives are being targeted.

It is desirable to compare these two approaches, i.e., MOP and SOP, in terms of
studying their effects on the overall quality of the final solution. Another purpose
of this comparison is to investigate the effect on the costs of individual objectives
when the search process is targeting multiple possibly conflicting objectives. Also,
the effect on the cost of an objective is studied, when another objective is being
targeted for optimization.

The following three sub-sections present the comparison between MOP and SOP
for wirelength, SOP for delay, and SOP for power consumption respectively. Each

sub-section, presents the comparisons in case of GA, TS and GATS.

6.6.1 wirelength only optimization versus MOP

In this section, a comparison between SOP for wirelength and MOP is presented.
This is an interesting comparison since earliest reported placement techniques tar-
geted wirelength as the only objective, and here the effects of MOP on wirelength
cost are studied. Also the effect of SOP for wirelength on the costs of other objec-
tives, i.e., delay and power consumption can be analyzed.

Table 6.7 lists the values of all three objectives in the solutions obtained from

88

GA in both cases, i.e., the case of MOP and the case in which optimization is per-
formed for wirelength only. Similarly, Table 6.8 and 6.9 show the same comparison
for the solutions obtained from TS and GATS respectively. In these tables, L rep-
resents the wirelength in um, P represents the cost due to power, D is the delay of
the most critical path in pico seconds and T is the execution time in seconds for
reaching the best solution. The power cost is the sum of the products of switching
probabilities and wirelength of all the nets. It is observed in most of the circuits
that wirelength optimization approach results in slightly smaller wirelength but not
without an increase in values of the other two objectives. The power consumption
objective is less affected because it is somewhat directly proportional to wirelength,
L.e., minimizing the wirelength of all nets also covers the nets having high switching
probabilities. The delay on the other hand, may not be minimized by minimizing
wire length of nets because the value of delay depends on the delay of the nets that

are on the longest path in the circuit.

6.6.2 Power only optimization vs MOP

Another interesting comparison is between the single-objective optimization for
power and multiobjective optimization. The costs of the three objectives for the
best solutions obtained from GA, TS, and GATS in both cases are given in Ta-
ble 6.10, Table 6.11, and Table 6.12 respectively.

For most of the circuits, it is observed that optimization for power only performs

For wirelength only For all objectives
Circuit | L (um) P 1D (ps)|L (um) P | D (ps)
s2081 2379 464 | 117 2426 388 | 113
$298 3986 816 | 152 4062 838 | 130
s386 6765 1776 | 205 6824 1665 | 193
s641 181359 4654 | 774 18320 4365 | 736
832 20844 5156 | 428 21015 4787 | 395
s953 31065 3356 | 236 32031 3156 | 230
s1196 46371 | 14364 | 431 49162 { 14721 | 403
$1238 49878 | 15451 | 469 52679 | 15473 | 410
s1488 69515 | 17751 | 914 69792 | 17346 | 784
s1494 69013 | 17556 | 900 71021 | 17497 | 803
c3540 | 308260 | 110607 | 1235 | 310996 | 109850 | 924

89

Table 6.7: A Comparison between the quality of the best solutions obtained from
GA by performing SOP for wirelength and MOP.

For wirelength only For all objectives
Circuit | L (um) P | D(ps)|L (um) P | D (ps)
s2081 2172 4471 112 2323 379 | 111
s298 3500 7871 129 3579 635 | 127
s386 6615 | 1708 | 193 6643 | 1595 | 190
s641 12398 | 3092 | 701 12620 | 2868 | 6356
s832 17987 | 4038 | 347 18760 | 4311 | 349
s953 25972 | 4023 | 207 27287 | 4230 214
s1196 38563 | 12222 | 404 39054 | 11700 | 332
s1238 36775 | 11382 | 400 39186 | 11594 | 353
s1488 55249 | 13804 | 775 55788 | 13820 [657
s1494 54485 | 13942 | 814 54710 | 13533 | 674
¢3540 | 153540 | 56591 | 810 | 164581 | 58143 | 699

Table 6.8: A Comparison between the quality of the best solutions obtained from
TS by performing SOP for wirelength and MOP.

For wirelength only For all objectives
Circuit | L (um) P | D(ps)|L (um) P | D (ps)
s2081 1974 344 | 118 2098 329 | 110
$298 3497 705 | 138 3518 700 | 124
s386 5762 | 1417 | 197 5886 | 1360 | 181
s641 12310 | 3295 | 686 12458 | 2922 | 661
s832 17633 | 4131 | 381 17927 | 4109 | 331
s953 24338 | 43251 224 24412 3795 | 205
s1196 35773 | 11397 | 371 37135 | 11041 | 336
s1238 36154 | 11398 | 413 39371 | 11549 | 342
s1488 53660 | 14286 | 837 93789 | 13712 | 664
s1494 54790 | 13578 | 657 54914 | 13763 | 668
c3540 | 153935 | 60207 | 937 | 164193 | 57943 | 701

90

Table 6.9: A Comparison between the quality of the best solutions obtained from
GATS by performing SOP for wirelength and MOP.

For power only For all objectives
Circuit | L (um) P | D(ps) | L (um) P | D (ps)
s2081 3046 381 123 2426 388 | 113
s298 6176 762 172 4062 838 | 130
s386 8996 1514 | 230 6824 1665 | 193
s641 22418 4287 | 783 18320 4365 | 736
s832 25762 4691 | 463 21015 4787 | 395
s953 43184 4487 | 329 32031 5156 | 230
s1196 55412 | 14373 | 459 49162 | 14721 | 403
s1238 59564 | 15373 | 468 52679 | 15473 | 410
s1488 76561 | 16653 | 896 69792 | 17346 | 784
s1494 74375 | 16313 | 903 71021 | 17497 | 803
c3540 | 325340 | 107655 | 1104 | 310996 | 109850 | 924

Table 6.10: A Comparison between the quality of the best solutions obtained from
GA by performing SOP for power consumption and MOP.

91

For power only For all objectives
Circuit | L (um) P I D(ps)|L (um) P | D (ps)
s2081 3226 310 | 118 2323 379 | 111
s298 6654 605 | 169 3579 635 | 127
s386 9733 | 1306 | 238 6643 | 1595 | 190
s641 18372 | 2540 | 735 12620 | 2868 | 636
s832 23707 | 3462 | 453 18760 | 4311 | 349
s953 42271 | 2852 | 344 27287 | 4230 | 214

s1196 46600 | 10571 | 451 39054 | 11700 | 332
s1238 48634 | 10730 | 477 39186 | 11594 | 333
s1488 64769 | 12237 | 876 55788 | 13820 | 657
s1494 63628 | 11941 | 896 54710 | 13533 | 674
c3540 | 190553 | 55152 | 870 164581 | 58143 | 699

Table 6.11: A Comparison between the quality of the best solutions obtained from
TS by performing SOP for power consumption and MOP.

For power only For all objectives
Circuit | L (upm) P | D(ps)| L (um) P | D (ps)
s2081 3275 293 | 129 2098 329 | 110

s298 5398 375 | 165 3518 700 | 124
s386 8955 | 1154 | 232 5886 | 1360 | 181
s641 18355 | 2483 | 708 12458 | 2922 | 661

s832 23880 | 3310 | 435 17927 | 4109 | 331
s953 39777 | 2560 | 320 24412 | 3795 | 205
s1196 45125 | 9434 | 458 37135 | 11041 | 336
s1238 45925 | 9356 | 466 39371 | 11549 | 342
51488 64736 | 12068 | 906 55789 | 13712 | 664
s1494 34864 | 13681 | 661 54914 | 13763 | 668
c3540 | 210316 | 57605 | 844 164193 | 57943 | 701

Table 6.12: A Comparison between the quality of the best solutions obtained from
GATS by performing SOP for power consumption and MOP.

92

better in terms of power cost. But at the same time, the other two objectives
are affected badly for all the circuits. This behavior is easy to understand. When
optimization is done for power only, the target is to minimize the wirelength of
the nets having high switching probabilities. All other nets may be ignored in this
process and thus the overall wirelength is not reduced to that extent as in the case of
multiobjective or wirelength only optimization. The worst results are that of delay
objective. Again the reason is obvious that the process of optimizing power is very
limited in terms of the number of affected nets and thus it may totally ignore the
nets lying on the timing-critical paths. As a result, delay costs are not optimized
at all. As seen in the previous sub-section, when optimization was performed for
wirelength only, the delay costs were lower than in the present case. This is because
the wirelength optimization targets all the nets and in this way, the wirelength of

the nets on critical paths is also minimized with the other nets in circuit.

6.6.3 Delay only optimization vs MOP

In this section, a comparison between SOP for delay and MOP is made. Table 6.13
shows the values of wire length, power, and delay costs for the solutions obtained
from GA in case of SOP for delay and that of MOP. Tables 6.14 and 6.15 show the
similar comparison in case of the solutions obtained from TS and GATS respectively.

As expected, the single-objective optimization for delay ignores the other objec-

tives. The costs of wirelength and power consumption are very high in this case for

For delay only For all objectives
Circuit | L (um) P | D (ps)|L (um) P | D (ps)
s2081 5382 1056 | 110 2426 388 | 113
s298 8639 1906 | 124 4062 8381 130
s386 11037 2945 | 188 6824 1665 | 193
s641 31978 7866 | 680 18320 4365 | 736
s832 30863 8161 | 340 21015 4787 | 395
s953 47478 8861 | 219 32031 3156 | 230
s1196 72187 | 22333] 352 49162 | 14721 | 403
s1238 72689 | 21823 | 384 52679 | 13473 | 410
s1488 97998 | 24294 | 672 69792 | 17346 | T84
s1494 99119 | 24083 | 672 71021 | 17497 | 803
c3540 | 424774 | 149357 | 830 | 310996 | 109850 | 924

93

Table 6.13: A Comparison between the quality of the best solutions obtained by
performing optimization for delay only and multiobjective optimization.

For delay only For all objectives
Circuit | L (um) P | D(ps) | L (um) P | D (ps)
s2081 6140 1318 | 110 2323 379 | 111
s298 10524 2514 | 121 3579 635 | 127
s386 12965 3599 | 179 6643 | 1595 | 190
s641 42954 | 10408 | 642 12620 | 2868 | 656
s832 37804 9867 | 303 18760 | 4311 349
5953 57022 | 11245 197 27287 | 4230 | 214
s1196 81319 | 24546 | 320 39054 | 11700 | 332
s1238 86711 | 25435 | 338 39186 | 11594 | 353
s1488 113713 | 27050 | 554 55788 | 13820 | 657
s1494 109767 | 26835 | 556 54710 | 13533 | 674
c3540 | 535921 | 186235 | 686 164581 | 58143 | 699

Table 6.14: A Comparison between the quality of the best solutions obtained from
TS by performing SOP for delay and MOP.

94

For delay only For all objectives
Circuit | L (um) P | D (ps)|L (um) P | D (ps)
s2081 6569 1434 | 106 2098 329 | 110
5298 11319 2751 119 3518 700 | 124
s386 12596 | 3480 | 177 5886 | 1360 | 181
s641 40529 9563 | 635 12458 | 2922 | 661
s832 35180 9498 | 297 17927 | 4109 | 331
s953 49416 9638 | 187 24412 | 3795 | 205

s1196 79528 | 24799 | 298 37135 | 11041 | 336
s1238 83620 | 24390 | 320 39371 | 11549 | 342
s1488 107599 | 25827 | 515 95789 | 13712 | 664
s1494 54864 | 13681 | 661 54914 | 13763 | 668
c3540 | 501545 | 173429 [6532 164193 | 57943 | 701

Table 6.15: A Comparison between the quality of the best solutions obtained from
GATS by performing SOP for delay and MOP.

all the circuits. The reason for this behavior is that the optimization for delay tar-
gets a limited number of nets which lie on the critical paths. All the other nets are
totally ignored. As a consequence, the overall wirelength and power consumption is
not optimized at all.

In conclusion, it can be said that MOP is better than SOP in the sense that all
the objectives are simultaneously optimized without adversely affecting the cost of
any single objective. On the other hand, SOP for any one of the objectives may
ignore the other objectives at all. While performing MOP, still a certain objective

can be given preference over others according to the designer requirements.

Chapter 7

Conclusions and Future Directions

In this thesis, the problem of timing and low power driven VLSI standard-cell place-
ment is addressed. This is formulated as a multiobjective optimization problem
(MOP) and the use of fuzzy rules is proposed for designing aggregate cost function.
Two iterative algorithms namely GA and TS are presented for solving this hard
problem. In addition, a hybrid algorithm is proposed that combines the powerful
features from two iterative heuristics namely GA and TS. The results of the above
techniques are promising and show that these are well engineered for the problem.

Here are some concluding statements regarding the thesis work.

e The present work successfully addressed the important issue of reducing power

consumption in VLSI circuits.

96

e Tabu search outperformed genetic algorithm in terms of the quality of the final

solution as well as execution time.

e Hybridization of GA and TS provided better quality results than both GA

and TS.

¢ The performance of GA depends heavily on population size whereas that of

TS depends heavily on neighborhood size.

e Considering the above observation, it was suggested in case of GATS to use
smaller population size for the TS sub-process. This resulted in a significant

saving of the execution time without affecting the quality of solutions obtained

from GATS.

e Multiobjective optimization (MOP) resulted in solutions that are better in
terms of the overall cost. On the other hand, single objective optimization
(SOP) for a particular objective may ignore other objectives at all. For in-
stance, in case of delay optimization, the costs of interconnect wirelength and

power consumption are severely affected.

Future Directions

Some possible directions of the future work are following.

e Investigation of some other iterative heuristics for the present problem.

97

e Some other hybrid techniques can be proposed and experimented for further

improvement of the results.

¢ The presented standard-cell placement techniques can be extended to perform

the optimization of channel routing step of VLSI physical design.

Bibliography

[1]

[4]

[5]

Sadiq M. Sait and Habib Youssef. [terative Computer Algorithms with Appli-
cations in Engineering: Solving Combinatorial Optimization Problems. IEEE

Computer Society Press, California, December 1999.

Sadiq M. Sait and Habib Youssef. VLSI Physical Design Automation: Theory

and Practice. McGraw-Hill Book Company, Europe, 1995.

K. Shahookar and P. Mazumder. VLSI Cell Placement Techniques. ACM

Computing Surveys, 2(23):143-220, June 1991.

Eager. Advances in Rechargable Batteries Pace Portable Computer Growth.
Proceedings of Silicon Valley Personal Computer Conference, pages 693-697,

1991.

Massoud Pedram. CAD for Low Power: Status and Promising Directions. [EEE
International Symposium on VLSI Technology, Systems and Applications, pages

331-336, 1995.

938

6]

8]

[9]

[10]

1]

99

Unni Narayanan, G.I. Stamoulis, and Rabindra Roy. Characterizing Individual
Gate Power Sensitivity in Low Power Design. I12th International Conference

on VLSI Design, pages 625-628, January 1999.

J. P. Cohoon and W. D. Paris. Genetic Placement. IEEE Transactions on

Computer Aided Design, pages 956-964, 1987.

A. Chandrakasan, T. Sheng, and R. W. Brodereson. Low Power CMOS Digital

Design. Journal of Solid State Circuits, 27, April.

Srinivas Devadas and Sharad Malik. A Survey of Optimization Techniques
Targeting Low Power VLSI Circuits. 32nd ACM/IEEE Design Automation

Conference, 1995.

M.S. Bright and T. Arslan. A Genetic Algorithm For The High-Level Synthesis
of DSP Systems For Low Power. Genetic Algorithms in Engineering Systems:

Innovations and Applications, (446):174-179, September 1997.

Chetana Nagendra, Mary Jane Irwin and Robert Michael Owens. Area-
Time-Power Tradeoffs in Parallel Adders. IEEE Transactions on Circuits and

Systems-II Analog and Digital Signal Processing, 43(10):689-702, October 1996.

A. Chandrakasan et al. Optimizigg Power using Transformations. [EEE Trans-

actions on Computer Aided Design, 1(14), January 1995.

[13]

[14]

[16]

[17]

(18]

100

A. Chatterjee and R. Roy. Sythesis of Low Power Linear DSP Circuits using
Activity Metrics . In International Conference on VLSI Design, India, January

1994.

L. Goodby, A Orailoglu, and P. Chau. Microarchitectural Sythesis of
Performance-Constrained, Low-Power VLSI Design . In Proceedings of the In-
ternational Conference on Computer Design, Boston,MA, pages 323-326, Oc-

tober 1994.

A. Raghunathan and N. Jha. Behavioral Synthesis for Low Power. In Proceed-
ings of the Int’l Conference on Computer Design, Boston, MA, pages 318-322,

October 1994.

A. Raghunathan and N. Jha. ILP Formulation for Low Power Based on Mini-
mizing Switched Capacitances During Data Path Allocation. In Proceedings of

the Int’l Symposium on Circuits & Systems, 1995.

H. Savoj, R. Brayton, and H. Touati. Extracting Local Don't Cares for Net-
work Optimization. In Proceedings of the Int’l Conference on Computer-Aided

Design, pages 514-517, November 1991.

A. Shen et al. On Average Power Dissipation and Random Pattern Testability
of Combinational Logic Circuits. In Proceedings of the Int’l Conference on

Computer-Aided Design, pages 402-407, November 1992.

[19]

[20]

[21]

[23]

[25]

101

A. Ghosh et al. Estimation of Average Switching Activity in Combinational and
Sequential Circuits. In Proceedings of the 29th Design Automation Conference,

pages 253-259, June 1992.

C. Lemonds and S. S. Mahant Shetti. A Low Power 16 by 16 Multiplier using
Transition Reduction Circuitry. In Proceedings of the Int'l Conference on Low

Power Design, pages 139-142, April 1994.

K. Roy and S. Prasad. SYCLOP: Synthesis of CMOS Logic for Low Power
Applications. In Proceedings of the Int’l Conference on Computer Design: VLSI

in Computer and Processors, pages 464-467, October 1992.

K. Keutzer. DAGON: Technology Mapping and Local Optimization. In Pro-

ceedings of the 24th Design Automation Conference, pages 341-347, June 1987.

B. Lin. Technology Mapping for Low Power Dissipation. In Proceedings of the

Int’l Conference on Computer Design:VLSI, October 1993.

V. Tiwari, P. Ashar, and S. Malik. Technology Maf)ping for Low Power. In

Proceedings of the 30th Design Automation Conference, pages 74-79, June 1993.

C. Y. Tsui, M. Pedram, and A. M. Despain. Low Power State Assignment
Targeting Two and Multi Level Logic. In Proceedings of the Int’l Conference

on Computer Aided Design, pages 82-87, November 1994.

[26]

[28]

(30]

[31]

102

C. E. Leiserson, F. M. Rose, and J. B. Saxe. Optimizing Synchronous Circuitry
by Retiming. In Proceedings of the 3rd CalTech Conference on VLSI, pages

23-36, March 1983.

J. Monteiro, S. Devadas, and A. Ghosh. Retiming Sequential Circuits for Low
Power. In Proceedings of the Int'l Conference on Computer-Aided Design, pages

398-402, November.

Anantha P. Chandrakasan. Low Power Digital CMOS Design. Ph.D. Thesis,

Unwersity of California at Berkeley, August 1994.

Alidina et al. Precomputation-Based Sequential Logic Optimization for Low

Power. [EEE Transactions on VLSI Systems, pages 426-436, April.

L. S. Choi and S. Y. Hwang. Circuit Partitioning algorithm for Low-Power
Design Under Area Constraints Using Simulated Annealing. [EE Proceedings

Circuits Devices Systems, 146(1):8-15, February 1999.

Kai-Yuan Chao and D.F. Wong. Floorplanning for Low Power Design. IEEE

International Symposium on Circuits and Systems, 1:45-48, 1995.

Kaushik Roy. Power-Dissipation Driven FPGA Place and Route under Tim-
ing Constraints. IEEE Transactions on Circuits and Systems-I: Fundamental

Theory and Application, 46(5):634-637, May 1999.

103

[33] Glenn Holt and Akhilesh Tyagi. EPNR: An Energy-Efficient Automated Layout

[34]

[36]

[38]

Synthesis Package. [EEE International Conference on VLSI in Computers and

Processors, pages 224-229, October 1995.

Hirendu Vaishnav and Massoud Pedram. PCUBE: A Performance Driven Place-
ment Algorithm for Low Power Design. [EEE Design Automation Conference,

with Euro-VHDL, pages 72-77, 1993.

A. Srinivasan, K. Chaudhary, and E. S. Kuh. Ritual: A Performance-
driven Placement Algorithm. [EEE Transactions on Circuits and Systems -II,

11(39):825-840, November 1992.

Glenn Holt and Akhilesh Tyagi. GEEP: A Low Power Genetic Algorithm Lay-
out System. [EEE 39th Midwest Symposium on Circuits and Systems, 3:1337-

1340, August 1996.

K. Shahookar and P. Mazumder. A Genetic Approach to Standard Cell Place-
ment using Meta-Genetic Parameter Optimization. [EEE Transactions on

Computer Aided Design, 5(9):500-511, May 1990.

Thomas Lengauer. Combinational Algorithms for Integrated Circuit Layout.

John Wiley and Sons, New York, 1990.

M. Burstein and M. N. Youssef. Timing influenced layout design. Proceedings

of 22nd Design Automation Conference, pages 124-130, 1985.

40l

[41]

[42]

44

(4]

[46]

[47]

104

R. Nair et al. Generation of Performance Constraints for Layout. IEEE Trans-

action on Computer Aided Design, CAD, 8(8):360-874, August 1989.

H. Youssef, Rung-Bin Lin, and E. Shragowitz. Bounds on Net Delays for VLSI
Circuits . [EEE Transactions on Circuits and Systems -II, 11(39):815-824.

October 1992.

S. Sutanthavibul, E. Shragowitz, and Rung-Bin Lin. An Adaptive Timing-
driven Placement for High Performance VLSI's. [EEE Transactions on Com-

puter Aided Design, 10(12):1488-1489, October 1993.

M. Marek-Sadowska and S. Lin. Timing-driven placement. Proc. of [CCAD’89,

pages 94-97, 1989.

Sadiq M. Sait, H. Youssef, K. W. Nassar, and M. S. T. Benten. Timing Driven
Genetic Placement. International Journal of Computer Systems: Science and

Engineering, February 1997.
MCNC Group. OASIS 2.0 Reference Manual. Technical report, 1990.

Tanner Consulting and Engineering Services. Digital Low Power Standard Cell
Library for MOSIS TSMC CMOS 0.25 Process Deep Sub-Micron Technology.

Tener Research, Inc.

A. Chandrakasan, T. Sheng, and R. W. Brodersen. Low Power CMOS Digital

Design. Journal of Solid State Circuits, 4(27):473-484, April 1992.

105

[48] Sadiq M. Sait, Habib Youssef and Ali Hussain. Fuzzy Simulated Algorithm for
Multiobjective Optimization of VLSI Placement. /EEE Congress on Evolution-

ary Computation, pages 91-97, July 1999.

(49] H.J. Zimmerman. Fuzzy Set Theory and Its Applications. Kluwer Academic

Publishers, 3rd edition, 1996.

[50] L. A. Zadeh. Outline of a New Approach to the Analysis of Complex Sys-
tems and Decision Processes. IEEE Transaction Systems Man. Cybern, SMC-

3(1):28-44, 1973.

[51] L. A. Zadeh. The Concept of Linguistic Variable and its Application to Ap-

proximate Reasoning. Information Science, 8:199-249, 1975.

[52] R. Yager. Multiple Objective Decision-Making using Fuzzy Sets. International

Journal of Man-Machine Studies, pages 9:375-382, 1977.

[53] R. Yager. Second Order Structures in Multicriteria Decision Making. Interna-

tional Journal of Man-Machine Studies, pages 36:553-570, 1992.

[54] J. H. Holland. Adaptation in Natural and Artificial Systems. Univ. of Michigan

Press, Ann Harbor, Michigan, 1975.

[55] F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers, MA,

1997.

106

[56] J. P. Kelly, M. Laguna, and F. Glover. A Study of Diversification Strate-
gies for the Quadratic Assignment Problem. Computers Operations Research.

21(8):885-893.

Vitae

e Mahmood-ur-Rehman Minhas

e Born in Rawalpindi, Pakistan.

e Received Masters Degree in Computer Science from
International Islamic University, Islamabad, Pakistan.

o Joined Computer Engineering Department, KFUPM, as a
Research Assistant in January 1999.

o Received Master of Science Degree in Computer Engineering from

KFUPM, Dhahran, Saudi Arabia in June 2001.

