INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UM films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and continuing
from left to right in equal sections with small overlaps.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

R e o g o g g 0 0 00 S0 o S0 o S0 g g o0 3 7
) Kerm
X

I

Evolutionary Techniques for Multi-Objective
VLSI Netlist Partitioning

BY

RASLAN HASHIM AL-ABAJI

KRR S TS s

]
!

A Thesis Presented to the
DEANSHIP OF GRADUATE STUDIES

KING FAHD UNIVERSITY OF PETROLEUM & MINERALS
DHAHRAN, SAUD! ARABIA

In Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE

In

COMPUTER ENGINEERING

X SR SR S S S

]

PPN

August 2002

A3 e 9 e e S e e S e 3 9 o e e e e e e el e e e e e e e il

2

-

——

Y

UMI Number: 1411247

®

UMI

UMI Microform 1411247

Copyright 2003 by ProQuest Information and Learning Company.

All rights reserved. This microform edition is protected against
unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road
P.O. Box 1346
Ann Arbor, MI 48106-1346

KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
DHAHRAN 31261, SAUDI ARABIA

DEANSHIP OF GRADUATE STUDIES

This thesis, written by

Raslan Hashim Al-Abaji
under the direction of his Thesis Advisor and approved by his Thesis Committee,
has been presented to and accepted by the Dean of Graduate Studies, in partial
fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER ENGINEERING

Thesis Committee

7y

Dr. Sadiq M. Sait (Chairman)

o4

Dr. Aiman H. E+= Maleh(Co — Chairman)
 \
(}\/ Dr. Khan M. Farrukh (Member)

Dr. Sadiq M. Sait
(Department /Chaipman)

Dr. Osama A. Jannadi

(Dean of Graduate Studies)
2/ff

Date

Heartily dedicated to my family and
especially to my dear Father and Mother

Acknowledgements

All praise to Allah, the most Merciful, who enabled me to complete my thesis
work. [make a humble effort to thank Allah for his endless blessings on me, as
His infinite blessings cannot be thanked for. Then, I pray Allah to bestow peace on
his last prophet Muhammad (Sal-allah-'Alaihe-Wa-Sallam) and on all his righteous
followers till the day of judgement.

I pay a hearty tribute to all my family members, especially to my parents, who
guided me during all my life endeavors. Their love and support motivated me to
continue my education and achieve higher academic goals. Without their moral
support and sincere prayers, I would have been unable to accomplish this task.

Next, I am deeply grateful to my thesis advisor Dr. Sadiq M. Sait for his valuable
guidance throughout my thesis work. At the same time, gratitude is due to my thesis
co-chairman Dr. Aiman H. El-Maleh and committee member Dr. Khan M. Farrukh.
I express my thanks to all of them for their valuable time and support.

I acknowledge the academic and computing facilities provided by the Com-
puter Engineering Department of King Fahd University of Petroleum & Minerals
(KFUPM).

I also appreciate the friendly support from all my colleagues at KFUPM. In
particular, I want to thank (in alphabetical order) Ahmer, Ala’, Atif, Barnawi,
Faheemuddin, Junaid, Minhas, Osama, Saad, Salman, Sanaullah, Shazli, Wasiq,
Yassir, and Yusuf.

ii

Contents

1

Acknowledgements

List of Tables

List of Figures

Abstract (English)

Abstract (Arabic)

Introduction

1.1 Background oo

1.2 Motivation and Contribution
1.2.1 Optimizing Power Motivation
1.2.2 Motivation for Optimizing Delay
1.2.3 Objective of Thesis,

1.3 VLSI Netlist Partitioning.

111

i

vii

ix

xi

xii

1.4 FM Partitioning Heuristic 8

1.5 Organizationof Thesis 13
Literature Review 14
2.1 Introduction 14
2.2 Approaches to Partitioning 0. 16
2.2.1 Move-based Approaches, 16
2.2.2 Geometric Representations Approaches 19
2.2.3 Combinatorial Formulations 19
2.2.4 Clustering Approaches 21
2.3 Performance-Driven Partitioning in Physical Level 24
Problem Formulation and Solution Methodology 27
3.1 Introduction e e e 27
3.2 Partitioning Formulation and Modeling 28
3.3 Partitioning Objectives and Constraints 29
331 Cutsize. o e e e e 30
33.2 Delay e 31
333 Power e 33
3.3.4 Area or Balance Constraint 34
3.4 Multi-objective Optimization 35
3.4.1 Goal Programming 37

v

3.5

342 FuzzyLogic, 38

Fuzzy Goal Based Aggregation for VLSI Partitioning Problem 43

4 Iterative Algorithms for Multiobjective VLSI Netlist Partitioning 48

4.1

4.2

4.3

4.4

Introduction e e e e e e e 48

Genetic Algorithm (GA) For Timing and Low Power Driven Parti-

tioning e 49
4.2.1 Chromosome Encoding and Initial Solution. 49
422 Fitness Evaluation 52
423 Crossover and Mutation, 52
424 Selection 4
Tabu Search (TS) for VLSI Netlist Partitioning 35
4.3.1 Tabu List and Aspiration Criteria 57
4.3.2 Intermediate and Long Term Memory 39
4.3.3 Data Structure and Stopping Criterion 60
Simulated Evolution Algorithm (SimE) 61
Simulated Evolution (SimE) for Performance Driven, Low Power
VLSI Netlist Partitioning. 65
4.5.1 Proposed Scheme and Implementation Details 66
4.5.2 Proposed Fuzzy Goodness Evaluation Scheme 67
4.5.3 Proposed Fuzzy Evaluation Scheme 71

4.6

454 Selection
4.5.5 BiaslessSelectiono
Power FM Algorithm
4.6.1 Power Gain Calculation

4.6.2 General Descriptiono

Experiments and Results

3.1

3.2

3.3

Introductiono
Circuits Details oo
Single Objective Versus Multiobjective Optimization
5.3.1 Power-only Optimization Versus MOP
5.3.2 Delay-only Optimization Versus MOP
5.3.3 Cut-only Optimization Versus MOP.
GA Versus TS o e
Simulated Evolution and PowerFM

Starting from PowerFM as Initial Solutionto GAand TS

Conclusions and Future Directions

BIBLIOGRAPHY

82

82

83

84

84

87

89

90

94

99

105

108

List of Tables

Overall technology roadmap [1].

Circuits details.« o o o e

A Comparison between the quality of the best solutions obtained from
GA by performing SOP for power consumption and MOP.
A Comparison between the quality of the best solutions obtained from
TS by performing SOP for power-only and MOP.
A Comparison between the quality of the best solutions obtained from
GA by performing SOP for delay-only and MOP.
A Comparison between the quality of the best solutions obtained from
TS by performing SOP for delay-only and MOP.
A Comparison between the quality of the best solutions obtained from
GA by performing SOP for cut-only and MOP.
A Comparison between the quality of the best solutions obtained from

TS by performing SOP for cut-only and MOP.

vii

83

5.8 Comparison between costs of the best solutions generated by GA and

5.9 Performance of the Multiobjective SimE. 95

5.10 Comparison between SimE and PowerF'M for power-only optimization. 96

5.11 Comparison between Multiobjective SImE and PowerFM. 96
5.12 Start from PowerFM versus random start GA and SimE. 100
5.13 Start from PowerFM versus random start TS and SimE. 100

viii

List of Figures

1.1

1.2

1.3

1.4

2.1

3.1

3.2

3.3

3.4

4.1

4.2

4.3

Various steps in VLSI design process.
Bucket array structure (pmax is the max gain).
Gain calculation associated with acell move.

Fiduccia-Mattheyeses bipartitioning algorithm [2].

An 8-module example, (a) an agglomerative and (b) a hierarchical

CONSEIUCLION. .+ o o o e

Path SE1 to SE2. e e
Membership function of a fuzzy set A.
Range of acceptable solutionset.

Membership functions within acceptable range.

A typical Genetic Algorithm {3].
Representation schemes.

Standard one point crossover operator (for group number encoding).

ix

44

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

Outline of Tabu Search algorithm [3]. 56

Structure of the Simulated Evolution algorithm. 62
Evaluation. 63
Selection. e e e e e e 64
Allocation. e e e e 64
Cut goodness calculation. 68
Power goodness calculation. 69
Delay goodness calculation. 70
Membership function for Tinez () much smaller than Tz, 73
Power gain calculation. 79
Procedure to compute gains of freecells. 80

Comparison between GA and TS forcircuit S13207 with respect to

execution timeinseconds.o 92
Performance of GA for circuit S13207. 93
Performance of TS for circuit S13207. 93
Multiobjective SimE performance for the circuit S13207. 97

Multiobjective SimE versus GA versus TS performance for the circuit

S13207 against time. e 98
Genetic Algorithm starting from PowerFM for circuit S1488. 101
Tabu Search algorithm starting from PowerFM for circuit S1488. . . . 102

THESIS ABSTRACT

Name: Raslan Hashim Al-Abaji

Title: Evolutionary Techniques for Multi-objective
VLSI Netlist Partitioning

Major Field: COMPUTER ENGINEERING

Date of Degree: August, 2002

The problem of partitioning appears in several areas ranging from VLSI, parallel
programming, to molecular biology. The interest in achieving better partitioning of
any system is growing rapidly especially in VLSI, and has been a hot issue in recent
years. In VLSI circuit partitioning, the problem of obtaining a minimum cut has
been of prime importance and most literature available is for this single objective
optimization. However, with current technology trends partitioning has become a
maulti-objective problem (MOP), where power and delay, in addition to minimum cut,
need to be optimized. In this thesis, the multi-objective optimization problem at the
partitioning phase in VLSI physical design step is addressed. This problem involves
multiple, possibly conflicting objectives; hence fuzzy rules have been incorporated in
designing the overall cost function. Iterative algorithms, namely Genetic Algorithm
(GA), Tabu Search (TS), and Simulated Evolution (SimE) are tailored for finding
good quality solutions for the above mentioned MOP problem. Another deterministic
algorithm PowerFm which is an eztension to Fidducia Mattheyeses (FM) heuristic
is proposed and results compared and analyzed.

MASTER OF SCIENCE DEGREE
King Fahd University of Petroleurn & Minerals, Dhahran, Saudi Arabia.
August, 2002

UL) 2o

9“!‘” f—.‘u QLJ :‘.—-7‘
AMS 21§ i UKL SaYH G3kaza 3 ghazs s o pe
r)h.!\ 3 poseaiy e)

PN R WNE P gt]
Yoov " eat” OF iz A F

W ol oy jlpll 2ty (VLST) WiSdl 117 Lalalt SV il 3 gl el AU
Ut AWKl e (3 s Y) 2 g ge NS A U (3 Boles el Al 0l L B
ool bt ol ghadl g e 5 00l SASYY daany 5 geadl) 2AY) o s U aladl) 5l
a3 . haill SNy Jli5 B BTG lally gl Blel) UK Flay SaY! sdaze gyl A5 Zaadll
Ul ade . Jy it s pedl e (VLST) bt 2ty ¢ Slaalh iodad) daill S flas U
LS Gl SaY! pad Jig3 wranad ogeld Gladh st b plasizd @ UL oo jliacl] Als Botaze Olal ez
S ity (TS) g sall ndly (GA) o1 05,053 2ot y) S e) Lotiny plisiast ¢
J5 el @ gy Jy 3 b Gl il (FM) gl 1A ¢y Sl - (SImE) el

oMl g Lehald g 2 oty 6oV o g0 L)Ny i

AR S)

xii

Chapter 1

Introduction

1.1 Background

The driving force behind the spectacular advancement of the integrated circuit tech-
nology in the past thirty years has been the ezponential scaling of the feature size,
i.e., the minimum dimension of a transistor [4]. It is expected that such exponential
scaling will continue for at least another 3-7 years as projected in the 1997 National
Technology Roadmap for Semiconductors {1] as shown in Table 1.1. This will lead
to a half a billion transistors integrated on a single chip with an operating frequency
of 2-3 Ghz in the 0.07 um technology by year 2009. However the challenges to
sustain such an exponential growth to achieve gigascale integration have shifted in
a large degree, from the process and manufacturing technologies to the design tech-

nology. A great deal of design innovation, in terms of both significant extension of

[Technology (um)] 0.25 [0.18 [0.15 [0.13 [0.10 | 0.07 |

Year 1997 | 1999 | 2001 | 2003 | 2006 | 2009

transistors 11M | 21M | 40M | 76M | 200M | 520M
Across chip clock (Mhz) | 750 | 1200 | 1400 | 1600 | 2000 | 2500
Area (mm?) 300 | 340 | 385 | 430 | 520 | 620
Wiring Levels 6 6-7 7 7 7-8 89

Table 1.1: Overall technology roadmap [1].

the existing design capability and the development of new design paradigms and
methodology, is needed to achieve the projected targets in [1]. This thesis discusses
the challenges and proposes some solutions for future IC designs, especially in the

area of multiobjective circuit partitioning.

1.2 Motivation and Contribution

Due to substantial advances in VLSI process technology, designers are facing rapid
increase in system complexity. One natural approach to designing highly complex
systems is to apply the divide-and-conquer methodology to decompose a large system
into a set of smaller subsystems recursively and carry out the design hierarchically.
Nowadays, it is common to decompose a complex IC into a number of functional
blocks, each of them designed by one or a team of engineers with manageable com-
plexity, and then go through a “full-chip assembly” - phase to interconnect these
blocks together.

Circuit partitioning divides a given circuit into a collection of smaller subcircuits

to achieve certain objectives while satisfying some constraints. In order to keep up

with the rapid increase of system complexity due to substantial advances of VLSI
process technology, partitioning is performed at various level of design hierarchy
until subproblems become more manageable. During the last decade, the main
VLSI circuit design objectives were the minimization of interconnect wire length
and the improvement of timing performance. A lot of work targeting either one or

both of the above objectives is reported in the literature 2, 5].

1.2.1 Optimizing Power Motivation

In recent years, the focus of portable devices has shifted from low throughput devices
(e.g., watches, calculators) to high performance devices like notebook computers,
cellular phones, etc. Minimizing power is the primary concern for these battery-
powered products as for such products longer battery life translates to extended
use and better marketability. Exploring the tradeoffs between power, performance,
and other objectives during synthesis and physical design is thus demanding more
attention.

Some power optimization techniques that have been proposed in the literature are
reviewed in Chapter 2. The optimization for power consumption can be performed
at various levels of VLSI design including behavioral level, architectural level, logic
level, and physical level. The optimization at each level can be performed subject to
degree of actual realization of the circuit. For example, it is not possible to optimize

power consumption due to the interconnect capacitance at logic level, because a wire

length estimation cannot be accurately done at this stage. This fact enhances the
need to perform the interconnect capacitance optimization at physical level. Another
compelling reason for achieving power consumption is the increasing density of VLSI
circuits. With the rapid advancement in technology, VLSI circuits are decreasing in
size resulting in higher transistor density on a chip. The present technology allows
integration of tens of millions of transistors on a single chip and the still advancing
technology is allowing further high integration. The excessive power consumption of
the circuit results in heating and thus becoming a hindrance towards high integration
and hence the feasible packaging of circuits [6, 7]. Also the circuits are operating at
much higher clock frequency than before. Therefore, the power dissipation which is
a function of clock frequency, is getting significantly prominent. This phenomenon
presents an obstacle in further increase of clock frequency. Due to these reasons,

there is an emerging need for minimizing the power requirement of VLSI circuits.

1.2.2 Motivation for Optimizing Delay

In current submicron designs, wire delays tend to dominate over gate delays [8], the
differences between on-chip and off-chip signal delays and the increasing limited-pin
nature of large chips make it desirable to minimize the number of signals traveling off
a given chip. Larger die sizes imply that long on-chip global routes between function
blocks will more noticeably affect system performance. Other considerations (e.g.,

design for testability, low power design, etc.,) also require partitioning algorithms

to identify interconnect structure, albeit at more of a functional or communication-
based level.

The conventional objective of partitioning is to minimize the interconnect among
the partitioned circuits. On the other hand, under the new design paradigms, parti-
tioning is seen as the crucial step that defines local and global interconnects [9]. To
meet the performance requirement of today’s complex design, performance driven
partitioning must consider the amount of interconnect induced by partitioning (mea-
sured by its cutset) as well as its impact on performance (measured by its delay).
Many proposed cutset partitioning techniques do not consider delay, while many
proposed delay driven partitioning techniques do not consider power. Furthermore,
many proposed power driven partitioning techniques do not consider delay. As a
result, there is a strong need for a performance driven partitioning technique that
considers cutset, delay, and power and provide a choice to emphasize on one objec-

tive more than the other relatively.

1.2.3 Objective of Thesis

The main goal of this thesis is to design a class of iterative algorithms for VLSI mul-
tiobjective partitioning such that circuit delay, power dissipation and interconnect
(cutset) are minimized under the balance constraint. The main search algorithms
used are Genetic Algorithms (GA), Tabu Search (TS), and Simulated Evolution

(SimE). These algorithms are used to find a solution that minimizes all these costs

while satisfying balance constraint. Iterative algorithms are used due to their ca-
pability to find optimal or near optimal solutions, and their ability to escape local
optima.

Due to the multiobjective nature of the problem, a single aggregating function
that represents the properties of all the cost functions is needed. Some techniques
to design such an aggregating function are given in [10]. Among these techniques,
weighted sum scheme is the most widely used. However, balancing different ob-
jectives by weight functions is difficult, or at best controversial. Fuzzy logic is a
convenient vehicle for solving this problem. It allows mapping values of different
criteria into linguistic values, which characterize the level of satisfaction of the de-
signer with the numerical value of the objectives. All these numerical values operate
over values from the interval [0,1] defined by membership functions for each objec-

tive.

In this thesis we also propose a new power driven algorithm PowerF'M, which
is an extension to the well known Fidducia Mattheyeses (FM) heuristic for circuit

partitioning.

1.3 VLSI Netlist Partitioning

In this section, VLSI natlist partitioning problem is briefly described. VLSI design

is a complex process and is therefore broken down into a number of intermediate

steps [2]. The design cycle starts from an abstract idea, and then each intermediate
step continues evolving the design and the process ends with the fabrication of a

new chip as illustrated in Fig 1.1.

CAD subprobiem ievel Generic CAD tools

Behavioral modeling and
Simulation too!

Behavioral/Architectural F\rchitecmra! design I

1
; . Logical design Functional and logic minimization,
Register transterfiogic l g g J logic fitting and simulation tools
Calirmask r Physical design Taals far partitioning,

’ placement, routing, etc.
r Fabrication J

Figure 1.1: Various steps in VLSI design process.

Partitioning is a phase in physical design responsible for the arrangement of cells
into a set of partitions while optimizing the costs of certain objectives such as the
external wiring of each set (cutset) or power consumption. Generally it is a k-way
partitioning problem, we refer to k = 2 as a bipartitioning in our case. The circuit
may be represented as a graph or hypergraph (defined in Chapter 3), whose vertices
represent circuit elements, and edges represent the interconnects [2].

Moreover partitioning is considered to be an NP-complete problem [11], which
means it is unlikely that a polynomial-time algorithm exists for solving it. Therefore
one must use heuristic techniques for generating near optimal solutions. One such
heuristic is the widely used Kernighan-Lin (KL) algorithm [12]. Another algorithm
that is a variation of the Kernighan-lin heuristic is the Fiduccia-Mattheyeses (FM)

approach [13]. Details of FM are discussed in the following section.

1.4 FM Partitioning Heuristic

The FM heuristic is a modification of the Kernighan-Lin group migration method
for circuit partitioning. The original Kernighan-Lin heuristic is an improvement
procedure, where the current partition is improved by swapping pairs of nodes be-
longing to the two subsets of the current partition. Selection of the best pair to
swap requires searching the space of O(n?) items (where n is the number of nodes);
this search might need to be performed in O(n) times.

Instead, Fiduccia and Mattheyses suggested the following modifications:

1. Only one node to be moved at a time.
2. The FM aims at reducing the cost of nets cut by the partition.

3. The modification can cause imbalance arising from all cells wanting to migrate
to a single partitiong. Therefore FM heuristic is designed to handle imbalance,

and it produces partitions balanced with respect to size.

4. The algorithm maintains a sorted list of candidate interior nodes (Bucket ar-

rays) for moving to the other subcircuit, and updates it after each move.

The Bucket arrays mentioned is an elegant data structure developed by Fiduccia
and Mattheyses to maintain the sorted candidate node lists and to identify the best
candidate node in constant time. A Bucket array, shown in Fig 1.2, basically is
a hash table of linked lists, where the index is the gain of the cell (or vertex). A

cell is pushed into the linked list according to its gain; all cells in one list have

+pmax

max gain i !, verer /—“l, verer f/_“ ; seass

-pmax

vertex- 1 2 i n

Figure 1.2: Bucket array structure (pmax is the max gain).

the same gain. Two Bucket arrays, one for each partition, are maintained. Each
array is maintained by moving a vertex to the appropriate bucket whenever its gain
changes due to movement of one of its neighbors. This move can be done in constant
time. To ensure that the algorithm terminates, each node is assigned to one of two
sets: those not yet moved belong to the freeset, and the others are assigned to
the lockedset. Only the nodes in the free set can be moved from one subset to
another, and a moved node becomes locked. Initially, all nodes belong to the free
set; therefore, each node can be moved exactly once. In one single pass, all nodes
in the free set are moved once between the partition’s subsets. A single pass of the
FM heuristic has a linear time complexity with respect to the number of pins in a

circuit.

10

The best candidate node is defined according to the highest cut-gain associated
with moving a node from one subcircuit to another. The cut-gain is measured using
the net-cut model [13]. A net is called a cut net if it belongs to the current cutset;
otherwise, the net is referred to as a nocut net. A net is called critical if it is a cut
net that, as a result of moving a single node, can become a nocut net, or vice versa.

The basic concept of min-cut gain calculation provided with the net-cut model
can be explained as follows. Let node iy be connected to n cut and critical nets and
to m nocut critical nets. The gain associated with the reassignment of a node i is

defined as the difference:

Gi, 2n-m (1.1)

The gain can be either positive if moving the node to the other subset of the
current partition would reduce the cut value, negative if the cut value would increase,
or zero if the cut value would not change after the node move. Fig. 1.3 shows a
sample calculation of gains associated with nodes, for example node A movement
gain is +2 since 2 edges will be removed from the cutset.

In the FM algorithm, all nodes in the free set are arranged into a bucket array
data structure, in which each bucket contains nodes with the same gain. All buckets
are sorted according to the decreasing values of gains. For each move, the node with

the highest gain is considered as the primary candidate. The candidate node must

11

lg +1
|: S
i _ 8
— 1

+2 .

A D
\\i\ 0 ~
| c /
Figure 1.3: Gain calculation associated with a cell move.

satisfy the balance criterion, used to control the size of subcircuits, e.g., a balance
criterion may require that moves causing the size of the subset with the candidate
node to fall below a certain minimum must be rejected. If the candidate node does
not meet the balance criterion, the node with the highest gain is selected from the
free nodes subset and moved. The moved node is locked and eliminated from the
bucket array. The move is completed by modifying the gains of all nodes connected
to the critical nets. The complexity of the algorithm is O(P), where P is the total
number of pins in the hypergraph, i.e., the sum of nets each vertex belongs to. A

general description of the heuristic is given in Fig. 1.4.

ALGORITHM FM

Begin

Stepl:
Step2:

Step3:

Step4:

Steps:

Step6:

End.

Compute gains of cells;

t=1;

Select 'base cell’ and call it ¢;;

If no base cell Then Exit EndlIf;

A base cell is the one which
() has maximum gain;

(i1) Satisfies balance criterion;
IF tie Then use size criterion or
Internal connections;
EndlIf;

Lock cell ¢;;

update gains of cells of those affected critical nets;

IF freecells # ¢
Then 1 =+ 1;
select next base cell ¢;;

IF c; # ¢ then Goto step 3;

Select best sequence of moves ¢y,cs,...,ck (1 < k <i)
such that G = 2;9:1 gi is maximum;(g; is the gain for cell c;)
IF tie Then choose subset that achieve a superior balance;
IF G < 0 Then Exit;

Make all £ moves permanent;

Free all cells;
Goto Step 1

Figure 1.4: Fiduccia-Mattheyeses bipartitioning algorithm [2].

12

13

1.5 Organization of Thesis

The rest of this thesis is organized as follows. Chapter 2 presents a survey of
techniques reported in literature for VLSI partitioning. Also, a brief review of
performance driven partitioning techniques is given.

In Chapter 3, the multiobjective partitioning problem is formulated. The cost
functions for objectives, i.e., cutset, timing performance, power consumption as well
as for balance constraint are designed. An overview of fuzzy logic is also presented.
Finally, the overall cost function used in multiobjective optimization is designed
using fuzzy operators. An overview of iterative algorithms used in this thesis is also
presented.

Chapter 4 discusses the implementation details of the proposed GA, TS and
SimE for multiobjective VLSI partitioning. The settings of various GA and TS
parameters are discussed as well as the selection and allocation schemes in SimE.
Moreover, the PowerFM is also discussed in detail. Finally, experimental results for

application of the proposed techniques to ISCAS-85/89 benchmarks are discussed

and compared in Chapter 5.

Chapter 2

Literature Review

2.1 Introduction

The essence of netlist partitioning is to divide a system into clusters such
that the number of inter-cluster connections is minimized. The partitioning task is
ubiquitous to many subfields of VLSI CAD. Most top-down hierarchical (i.e., divide
and conquer) approach in system design must rely on some underlying partitioning
technique. There are several reasons why partitioning has recently emerged as a
critical step in many phases of VLSI system synthesis, and why the past severai
years have seen so much research activities on this subject [6, 14].

Partitioning heuristics are used to address the increasing complexity of VLSI
design, systems with several million transistors are now common, presenting in-

stance complexities that are unmanageable for existing logic level and physical level

14

15

design tools. Partitioning divides a system into smaller, more manageable compo-
nents; the number of signals which pass between the components corresponds to
the interactions between the design sub-problems. In a top-down hierarchical de-
sign methodology, decisions made early in the system synthesis process (e.g., at the
system and chip levels) will constrain succeeding decisions. Thus, the feasibility -
not to mention the quality - of automatic placement, global routing, and detailed
routing will somewhat depend on the quality of the partitioning solution.

A bottom-up clustering approach may also be applied to reduce design com-
plexity, typically in cell-level or gate-level layout. The current emphasis on a quick
turn-around design cycle reinforces the need for reliable and effective algorithms.
Partitioning heuristics also have a great impact on system performance as designs
become dominated by interconnects.

Finally, partitioning heuristics affect the layout area; wires between clusters at
higher levels of the hierarchy will tend to be longer than wires between clusters
at lower levels, and total wirelength is directly proportional to layout area due to
minimum wire spacing design rules. The traditional minimum-cut objective is nat-
ural for this application, if the layout area is divided into a dense uniform grid.
Total wirelength can be expressed in “grid” units or equivalently as the sum over
all gridlines of the number of wires crossing each gridline. This view can also im-
prove auto-routability since it suggests reducing the wire congestion in any given

layout region. All of these considerations motivate the development of netlist par-

16

titioning algorithms that identify interconnection and communication structure in
a given system design. In the following section, we discuss different approaches to
partitioning which considered only cutset as an objective. In Section 2.3 we discuss

approaches which explore performance (delay and power).

2.2 Approaches to Partitioning

As the partitioning problem is NP-complete 13, 11], an exact (globally optimal)
solution cannot be found in a feasible amount of time. Therefore, heuristics must
be used to reach a good solution within reasonable time limits. Major research

directions in netlist partitioning can be categorized into four types of approaches:

e Move-based Approaches [16, 17, 18, 19].
e Geometric Representation Approaches (20, 21, 22].
e Combinatorial Approaches [23].

e Cluster-based Approaches [24].

2.2.1 Move-based Approaches

This category explores the solution space by moving from one solution to an-
other. Greedy and iterative exchange [12] approaches are most common. These
always try to make the best move, but can easily be trapped in local minima. To
avoid this behavior, many other strategies have been proposed including Stochastic

Hill-Climbing (Simulated Annealing), Evolutionary Algorithms, and the Multi-start

17

strategy [25]. A partitioning approach is move-based if it iteratively constructs a

new candidate solution based on two considerations:

¢ A neighborhood structure is defined over the set of feasible solutions.

e the previous history of optimization is maintained.

The first consideration requires the notion of a local perturbation of the current so-
lution; this is the heart of the move-based paradigm. The type of perturbation used
determines the topology over the solution space, known as the neighborhood struc-
ture. For the objective function to be smnooth over the neighborhood structure, the
perturbation (also known as a neighborhood operator) should be small and local.
Typical neighborhood operators for partitioning include swapping a pair of modules
or shifting a single module across a cluster boundary. For example, two partitioning
solutions are neighbors under the pair-swap neighborhood structure if one solution
can be derived from the other by swapping two modules between clusters. In gen-
eral, the solution space is explored by repeatedly moving from the current solution
to a neighboring solution. With respect to previous history, some approaches are
memoryless, e.g., a simple greedy method might rely only on the current solution to
generate the next solution. On the other hand, methods such as Kernighan-Lin [12]
or Fiduccia-Mattheyses [13] implicitly remember the entire history of the pass. Hy-
brid genetic-local search or Tabu Search approaches must also remember the lists of

previously seen solutions. Move-based approaches dominate in both the literature

18

and industry practices for several reasons. First, they are generally very intuitive,
the logical way of improving a given solution is to repeatedly make it better via
small changes, such as moving individual modules. Second, iterative algorithms are
simple to describe and implement. For this reason, the bipartitioning method of
Fiduccia-Mattheyses [13] and the Multi-way partitioning method of Sanchis [26]
are standards against which nearly all other heuristics are measured. Third, the
move-based approach encompasses more sophisticated strategies for exploring the
solution space e.g., Simulated Annealing, Tabu Search, and Genetic Algorithms
which yield performance improvements over greedy iterative methods while retain-
ing the intuitiveness associated with local search. Finally, the move-based approach
is independent of the nature of the objective function that is used to measure the
solution quality. While other approaches might require the objective to be of a par-
ticular form, or a relatively simple function of solution parameters, the move-based
approach can flexibly incorporate arbitrary constraints (e.g., on critical path delays
or I/O utilization). Thus, the move-based approach has been applied successfully
to virtually every known partitioning formulation.

The main algorithms, included in this approach are:

e Fiduccia-Mattheyses Algorithm [13].
e Kernighan-Lin Algorithm [24] .
e Sanchis’ Multi-Way Partitioning Algorithm [26].

e Simulated Annealing Algorithm [27] .

19

e Tabu Search [28].
o Genetic Algorithms [29].

2.2.2 Geometric Representations Approaches

A geometric representation of the circuit netlist can provide a useful basis for a
partitioning heuristic. These approaches discuss finding a geometric representation
of a graph or hypergraph and applying geometric algorithms to find a partitioning
solution. This means that the circuit netlist is embedded in some type of geometry,
e.g, a 1-dimensional linear ordering or a multi-dimensional vector space; the embed-
dings are commonly constructed using Spectral methods [21]. Spectral methods are

of primary importance in constructing geometric representations.

2.2.3 Combinatorial Formulations

An approach is classified under this category if the partitioning problem can
be transformed into some other “classic” type of optimization problem (e.g., maxi-
mum flow, mathematical programming, graph labeling etc.). These approaches are
promising since complex formulations that include timing, module pre-assignment,
replication, and other hard constraints can often readily be expressed in terms of
a mathematical program or flow networks. In addition, the constantly changing
user requirements for solution quality and runtime, and the improved computing

platforius, have made such approaches more practical.

20

It is possible, that the next frontier of optimization strategies for CAD applica-
tions will involve large-scale mathematical programming instances, including mixed
integer-linear programs that require branch-and-bound search. Following are some

of the methods employed under this category:

e Min-Delay Clustering by Graph Labeling, first considered by Lawler et al .{30],
assumes that the module and intra-cluster delays (i.e., delays between modules

in the same cluster) are negligible compared to inter-cluster delay that results

from placing clusters onto different chips.

e Mathematical Programming optimizes an objective function subject to in-
equality constraints on the variables (an equality constraint can be captured
by two inequality constraints). A linear program (LP) requires every equation
to be linear in terms of each variable. An LP can be solved in an average case
polynomial time using the simplex method. An integer linear program (ILP)
is an LP with the additional constraint that the variables must take on inte-
ger values; solving general ILP instances is NP-Hard. A quadratic program
(QP) [23] is an LP with an objective that is quadratic in the variables, and a

quadratic boolean program (QBP) additionally restricts the variables to 0-1

values.

e Fuzzy partitioning or the Fuzzy k-means (FKM) (31] algorithm is a well-known

optimization technique for clustering problems that arise in such fields as

21

geological shape analysis, medical diagnosis, etc. The problem formulation
generally involves clustering data points in multi-dimensional space. A fuzzy
partitioning [32] can partially assign a module to several clusters. FKM begins
with an initial fuzzy partitioning X, then iteratively modifies X to optimize

the objective function.

2.2.4 Clustering Approaches

A clustering solution is typically used to induce a smaller and more tractable
problem instance. Many clustering algorithms utilize a bottom-up approach where
each module initially belongs to its own cluster. Clusters are gradually merged
or grown into larger clusters until the desired decomposition is found. Bottom-
up approaches are agglomerative, if new clusters are formed one at a time and
hierarchical, if several new clusters may be formed simultaneously. The agglomer-
ative approach [33] begins with n-way clustering (where each module is a cluster)
and iteratively constructs the new clusters by choosing a pair of clusters, and merg-
ing them into a new cluster. The criterion for choosing the two clusters is what
distinguishes among agglomerative variants, e.g., [33] merges the two clusters that
minimize the diameter of the newly formed cluster. This approach is applied to hy-
pergraphs by picking a random net (perhaps with size-dependent probability) and
contracting two random incident clusters (or all incident clusters). An alternative

greedy approach would be to simply merge the two clusters with high connectivity.

22

' I

T Ll

(v)

Figure 2.1: An 8-module example, (a) an agglomerative and (b) a hierarchical con-
struction.

Generally, agglomerative methods will not be very efficient: finding the best pair of
clusters to merge require O(k?) time, unless a list of cluster merging costs is stored
and updated (which will likely require O(n?) space). An alternative strategy is to
find many good clusters to merge, then perform all merges simultaneously; this is
called hierarchical strategy. The difference between agglomerative and hierarchical
strategies is illustrated for the 8-module example in Fig. 2.1. In (a), the diagram
reveals the order in which clusters are merged; each dotted horizontal line is a level
in the hierarchy, and an agglomerative algorithm will have n-1 levels. Fig. 2.1(b)
shows a hierarchical algorithm that simultaneously merges as many cluster pairs as
possible, yielding a hierarchy with [log n] levels.

Other intuitive approaches involve random walks, iterative peeling of clusters,

vertex orderings, and simulated annealing. Another set of approaches are specific

23

to (acyclic) combinational Boolean networks {34, 35]. However, move-based ap-
proaches, and iterative improvement in particular, are the most common partition-
ing algorithms in current CAD tools. Clustering techniques are motivated by the
fact that a common weakness of move-based approaches is that the solution quality
is not stable, i.e., unpredictable. It is highly dependent on the starting solution and
the choices taken during the optimization process. Hagen et al. [16] used a random
multi-start approach to FM, where the algorithm is executed many times from ran-
dom starting points and returning the best solution found. However, it may need
hundreds of runs to achieve stable performance.

The hierarchical clustering algorithm groups a set of objects according to some
measure of closeness. Two closest objects are clustered first and considered to be a
single object for future clustering. Clustering continues by grouping two individual
objects, or an object or cluster with another cluster on each iteration. The process
stops when a single cluster is generated and a hierarchical cluster tree is formed. A
cut-line through the tree indicates a set of segments in a partition. Clustering can
be integrated into other move-based algorithms. The simplest way to incorporate
a clustering solution into a bi-partitioning heuristic is via the two-phase approach,
i.e., to run FM on the contracted netlist, and then use the result as the starting
solution of a second run on the flattened netlist [36]. However, more sophisticated

techniques may be preferable.

24

2.3 Performance-Driven Partitioning in Physical

Level

This section reviews some recent approaches for performance driven partitioning
(power, delay) in CMOS VLSI circuits. Different techniques are applicable and
have been reported at different steps of the VLSI design process [6].

In standard CMOS VLSI circuits, switching activity of circuit nodes is respon-
sible for most of the power dissipation. It is reported in {37] that this switching
activity contributes up to 90% of the total power dissipation in the circuit. There-
fore, most of the reported techniques focus on this aspect [38]. Quite a reasonable
number of techniques aiming at low power objective are proposed for all phases
in physical design including partitioning of circuit, floorplanning, placement and
routing [2].

For the partitioning phase, two low-power oriented techniques based on Simu-
lated Annealing (SA) algorithm have recently been presented in [39]. One of the
algorithms uses the Shannon expansion-based scheme and the other uses the Kernel-
based scheme. These algorithms partition the circuit into a number of sub-circuits
and a single sub-circuit needs to be active at a particular time. In this way, the un-
necessary signal transitions are prevented. Circuit partitioning is performed by using
an adaptive SA algorithm. The cost function is modeled for low-power consump-

tion under given area constraint. A partitioning solution is obtained by recursive

25

bi-partitioning of the circuit and the solution space is represented as a binary tree.
The stopping criteria used is non-improvement in the solution for a constant num-
ber of moves. The performance of the algorithm is evaluated by its application to
MCNC benchmark circuits and its comparison with the results of Synopsis design
analyzer show an 8.7% power reduction over the latter without allowing any increase
in the layout area.

An optimal delay partitioning algorithm targeting low power is proposed in [14]
which provides a formal mechanism to implicitly enumerate the alternate partitions
and selects a partition that has the same delay but less power dissipation. One
disadvantage of this algorithm is that the runtime is one to two orders of magnitude
higher than that of Lawler’s clustering algorithm [30]. Another disadvantage of this
enumeration technique is that as the size of the circuits grows, the algorithm runtime
will increase sharply hence this technique is not suitable for industries seeking a
faster time to design and market the chips.

A circuit partitioning algorithm under path delay constraint is proposed in [40].
The proposed algorithm consists of the clustering and iterative improvement phases.
In the first phase, the problem size is reduced using a new clustering algorithm to
obtain a partition in a short computation time. The first phase consist of the

following steps:

1. Clustering considering timing constraints

26

2. Clustering considering timing and area constraints

In step 1, the path which violates the timing constraint (i.e., if the path is cut)
is clustered. which means assigning all nodes in the path to the same cluster. In
Step 2, clustering is performed again considering the timing and area constraints
so as to obtain a better partition in reasonable computation time. This is done by
clustering nodes based on a cost function in which the timing and area constraints
are considered. Phase 2 is an iterative improvement phase with an extended FM
method in which a term to handle the timing constraints was introduced into the

gain of the original FM. Phase 2 consists of the following three steps:
1. Initial partitioning
2. Iterative improvement with the extended FM method
3. Removal of timing violations

A detailed description of the timing model that was used is given in section 3.3.2.

Chapter 3

Problem Formulation and Solution

Methodology

3.1 Introduction

A typical VLSI design process is divided into several levels of design abstraction
as shown in Fig. 1.1. More design complexity is added as we move towards lower
abstraction levels. Each level of abstraction has its own importance in the design
process i.e., accurate delay calculations are hard or impossible when calculated only
in terms of logic gates. Furthermore, other design tasks, such as logic optimization
are too cumbersome to be done at physical level (2, 41]. Due to this, efforts have
been made to reduce power, delay and area at nearly every level of the design

abstraction. In this thesis, the problem of reducing overall power dissipation of the

27

28

circuit with improved timing performance, reduced cutset and within acceptable
balance at physical design level, or more precisely at partitioning stage is addressed.
For this purpose, it is assumed that the circuits are available along with the critical
paths and the switching probabilities of the nets. In this chapter, the partitioning
problem will be formulated with power, circuit delay and cutset as objectives to be

minimized and balance as a constraint.

3.2 Partitioning Formulation and Modeling

Given a set of modules V = {v,, o, +-, vs}, the purpose of partitioning is to
assign the modules to a specified number of clusters k satisfying prescribed prop-
erties. Definition: A k-way partitioning P* = {C,, C,,---, Ci} consists of k
clusters (subset of V), Ci, C,,---, C¢ such that C,UC, --- U Cg = V and
CinC;=0fori={l,---k}and j = {1,---,k} and j # i. If £ = 2, we refer to
P? as bipartitioning.

The objective to be optimized is denoted by F(P*) i.e., it is a function of the
partitioning solution. We generally make the traditional assumption that the clus-
ters are mutually disjoint; note, however, that replication formulations permit a
module to be a member of more than one cluster [42]. In general, a circuit can have
multi-pin connections (nets) apart from two-pin and therefore it is better to describe

it as a hypergraph especially when the net cut is to be minimized. A hypergraph is

29

defined as H(V, E) where V is a set of nodes and E is a set of hyperedges. Node
v; € V corresponds to an element (e.g., a gate) in the circuit, and hyperedge e; € E
corresponds to a net in the circuit. A node corresponding to a register in the cir-
cuit is called a register node and denoted by r; € R, where R C V. Hyperedge e;
consists of the signal source node S(e;) and a set of destination nodes D(e;) and
e; = (S(e;), {D(e;)}). The signal source node S(e;) of the net e; corresponds to the
output of a gate and the set of destination nodes D(e;) corresponds to the inputs of
the gates. Given a hypergraph H(V, E) with E = {e|, €, --+, en} being the set of
signal nets, each net is a subset of V' containing the modules that net connects. It
is assumed that for each hyperedge e € E, |e| > 2 (it connects at least two nodes).
The equivalence between netlists and hypergraphs is exact if each net has at most
one pin on any module. The modules in e may also be called the pins of e. Two-
way partitioning of the set of nodes V' determines two subsets V4 and Vj such that

VAUVB=Va.ndVAﬁVB=®.

3.3 Partitioning Objectives and Constraints
Before listing the objectives and constraints, we state some assumptions:

1. The logic level design (or netlist) of the circuit is available.
2. The set of critical paths and switching probabilities of gates is available.

3. The circuit is represented in form of a hypergraph.

30

Our task is to divide V into 2 subsets (blocks) V5 and V; in such a way that the
objectives are optimized, subject to some constraints. We aim at minimizing the

following objectives:

e Cutsize.
e Delay.

e Power dissipation.

3.3.1 Cutsize

The set of hyperedges, cut by a cluster C, is given by E(C) = {e € E s.t. 0 <
leNC| < |e|} i.e., e € E(C) if at least one, but not all, of the pins of e are in C. The
set of nets cut by a partitioning solution p* can be expressed as E(p¥) = UL, E(c:)
or equivalently E(p*) = {e € E s.t. Ju,v € e,h # [, u € Cy Av € Ci}. We say that
|E(p*)| is the cutsize of p*.

The cost function can also be written as follows :

f=Y w(e) (3.1)

ecy

where 1 C E denotes the set of off-chip wires. The weight w(e) on the edge e rep-
resents the cost of wiring the corresponding connection as an external wire (outside

of its cluster). If all weights equal one, the cost function becomes simpler:

f=W (3.2)

31

where || denotes the cardinality of the set .

3.3.2 Delay

In order to deal with a signal path, a hypergraph is decomposed into directed edges
er = (S(ex),w) for ex € E and w € D(ex). Let the graph which consists of a
set of nodes V and a set of decomposed directed edges E be the directed graph
G' = (V,E). A signal path is represented by an alternating sequence of nodes and
directed edges v\, ey, U, €2, -, Ug—1, €1, Uk, Where ey = (v, vy41)(1 £ < k—1) and
{vi#v;,i>1,j<k,i#j}. The path from node v; to node v; is denoted by
pi;- Nodes which are included in the path p;; are defined as V'(p;;). The number of
nets cut which are included in the path p;; is denoted by ncut(p;;). In the general
delay model where gate delay d(v) and constant inter-chip wire delay d. > d(v) are
considered, the d, is actually due to the off-chip capacitance denoted by C,sy. Let
the delay of node v; € V be d(v;) and the delay of the cut net ex € E be d.. Given
a partition ®:(V,y; V), the path delay d(p;;) between nodes v; and v; is the sum of

the node delays d(v;) € V(p;;) and the delay of the cut nets, that is:

d(p,-j) = (Z d(‘l},)) +d. x ncut(p,-j) (33)

vi€V{pi;)

The delay calculation in this work adopt the linear delay model. It is assumed

32

Metal 1
e~ Metal 2

SE1 Cct — o3 cs SE2

CottChip ==

Figure 3.1: Path SE1 to SE2.

that for a given net, when a signal starts from its source, the sinks will be equally
charged at the same time. So, the time needed for the signal to reach any of the
sinks is equal. An example of a delay path 7 is shown in Fig. 3.1, where the delay
patht=SE, -C, - Cy = Cs - SE,.
To carry out the calculation of the delay the following parameters are considered:

CD; = Overall cell delay for cell i. (in PicoSec)

BD; = Base delay of cell i.

LF; = Load factor of cell ¢ (in Ohms).

CINP; = Total load capacitance on the input pins of cell ¢ (in femtoFarads).

Overall cell delay, CD; for cell is calculated as follows:

CD; = BD; + LF;-CINP;-107° (3.4)

33

Then, the total delay of the path shown in Fig. 3.1 can be calculated as follows:

Delay(7r) = CDgsg, + CD¢, +CD¢, +CDc¢, + CDgsg, (3.3)

Notice that the delay for the cell C; which has a cutline across its output is calculated

as follows :

CDC| = BDc, + LFCl . (Coff +CINPgy +CINPc;3 + CINPC4) (3.6)

3.3.3 Power

The average dynamic power consumed by a CMOS logic gate in a synchronous

circuit is given by:
Vid

Closd N; 3.7
Toyue 3.7)

Pia.verage — 0'5

where Cl is the load capacitance, Vyq is the supply voltage, Toyce is the global
clock period, and N; is the number of gate output transitions per clock cycle. N is
calculated using the symbolic simulation technique of [43] under a zero delay model.
Clowd in Eq. 3.7 consists of two components: C**** which accounts for the load
capacitances driven by a gate before circuit partitioning, and the extra load Ceetre
which accounts for the additional load capacitance due to the external connections

of the net after circuit partitioning. Then, the total power dissipation of any circuit

34

% -
dd Z(C,{msxc + Cie.ttra)jvi (38)
Teye i€

Pc=p
where § is a constant that depends on technology. When a circuit partitioning
corresponds to a physical partitioning, Cf=*™ of a gate that is driving an external
net is much larger than C?**. The power model given in Eq. 3.8 can be further
simplified if it is assumed that the power dissipation contribution due to variations of
Ctesic under different partitioning solutions is negligible. Furthermore, considering
that the fixed overhead capacitance for an external net is dominant within Cf¥",

it can be assumed that Ct**™® is identical for each net. This leads to the following

objective function [14].

O¢=)Y_ N (3.9)

1€y
where ¢, corresponds to the set of visible gates i.e., the set of gates that drive a load

external to the partition.

3.3.4 Area or Balance Constraint

The area/balance constraint is defined as follows: let A(v;), denote the area of
v; € V which corresponds to the area of a gate 7 and A(S) = ¥ ,,¢, A(vi), denote
the area of a subset S C V. The area constraint is that given a balance factor a
(0.5 < @ < 1.0), we have to partition V into V4 and Vp so that both A(Vy4) and

A(Vg) should be smaller than a x A(V), that is A(Va), A(Va) < a x A(V). If we

35

assume that the area of all cells is identical then the problem reduces to balancing
the two partitions in terms of the number of cells; the balance constraint is given as
follows:

1B = Bo| <a (3.10)

¢

where 5; is the number of cells in partition 7 and ¢ is the total number of cells in

the circuit.

3.4 Multi-objective Optimization

Many real-world optimization problems involve two types of difficulties: a) multiple
possibly conflicting objectives, and b) a highly complex search space. On one hand,
instead of a single optimal solution, competing goals give rise to a set of compromise
solutions, generally denoted as pareto-optimal (explained later in this section). In
the absence of preference information, none of the corresponding trade-offs can be
said to be better than the others. On the other hand, the search space can be too
large and too complex to be solved by exact methods. Thus, efficient optimization
strategies are required that are able to deal with both difficulties. VLSI netlist
partitioning problem is not far from these real-world problems as it also involves
multiple possibly conflicting objectives and a highly complez search space.

A general multiobjective optimization problem (MOP) includes a set of n param-

36

eters (decision variables), a set of k objectives, and a set of m constraints. Objective
functions and constraints are functions of the decision variables. The optimization

goal is defined as,

minimize y = f(z) = (fi(z), fo(3), .., f(2)) (3.11)
subject to e(z) = (ei(x),e2(x),...,em(z)) <0 (3.12)
Where = = (z1,22,...,Tn) € X (3.13)
and y = (y1,¥2,--+Yk) EY (3.14)

then z is the decision vector, y is the objective vector, X is denoted as the decision
space, and Y is called the objective space. The constraints e(z) < 0 determine the
set of feasible solutions. The feasible set X is defined as the set of decision vectors
z that satisfy the constraints e(z) [10].

In the partitioning problem the three objectives, cutset (f; = Costcytset) as in
Eq. 3.2, power (fy = CoStpouer) as in Eq. 3.9 and delay (f; = Costgelay) as in
Eq. 3.3, are to be minimized under balance constraint (ey = Balancemaz) as given
in Eq. 3.10. Then an optimal solution might be a partition which achieves minimal
cutset, minimal power dissipation, with minimal delay and does not violate the
balance criterion. If such a solution exists, we actually have to solve only a single
objective optimization (SOP) because the optimal solution for any objective is also

the optimum the others [10] (this is in case the objectives are not conflicting).

37

However, what makes MOP difficult is the common situation when the individual
optima corresponding to the distinct objective functions are sufficiently different.
Then the problem has usually no unique, perfect solution, but a set of equally
efficient, or non-inferior, alternative solutions, known as the pareto-optimal set {44].
It is possible that for a certain change in the partitioning solution there would
be a decrease in one cost while producing an increase in other costs for e.g., it is
possible that a certain change decreases the overall cutset, while increasing the power
dissipation, or the overall delay. Therefore, it is needed to solve the partitioning

problem as an MOP.

3.4.1 Goal Programming

In this aggregation method, the decision maker has to assign targets or goals that
one wishes to achieve for each objective. These values are incorporated into the
problem as additional constraints. The objective function will then try to minimize
the absolute deviation from the targets to the objectives. The simplest form of this

method may be formulated as,
k

minimize f(z) =Y wilfi(z) —Ti|, subject toz € Xy (3.15)
i=1

where T: denotes the target or goal set by the decision maker for the i** objective

function fi(z), w; is the weight of fi(z), and X is the set of feasible solutions as

38

mentioned before. A more general formulation of the goal programming objective
function is to consider the weighted sum of the p*® power of the deviation |fi(z) — T;|.
Such a formulation called generalized goal programming [43].

The main strength of this technique is its computational efficiency in case we
know the desired goals that we wish to achieve, and if they are in feasible region.
However, its main weakness is that it needs appropriate weights or priorities for the
objectives, which in most cases is difficult unless there is prior knowledge about the
shape of the search space. Also, if the feasible region is difficult to approach, this
method becomes very inefficient. This technique is useful if a linear or piecewise-

linear approximation of the objective functions can be made.

3.4.2 Fuzzy Logic

Fuzzy logic is a mathematical tool invented to express human reasoning. In clas-
sical crisp reasoning a proposition is either true or false whereas in fuzzy system a

proposition can be both true or false with some degree.

Fuzzy Sets

A classical crisp set is normally defined as a collection of elements or objects z € X.
Each single element z either belongs to the set X (true statement), or does not

belong to the set (false statement). Unlike this a fuzzy set can be defined as,

A= {(z,pa(z))lz € X}

39

where pi4(z) is called the membership function or grade of membership (or degree
of truth) of z in A that maps X to the membership space M. The range of the
membership function is a subset of the non-negative real numbers whose supremum
is finite [46]. Elements with zero degree of membership are normally not listed.
Like crisp sets, operations such as union, intersection, and complementation
etc., are also defined on fuzzy sets. There are many operators for fuzzy union and
intersection. For fuzzy union, the operators are known as s-norm operators (denoted

as @) while fuzzy intersection operators are known as t-norm (denoted as *).

Fuzzy Reasoning

Fuzzy reasoning is a mathematical discipline to express human reasoning in vigorous
mathematical notation. Unlike classical reasoning in which propositions are either
true or false, fuzzy logic establishes approximate truth value of propositions based
on linguistic variables and inference rules (47]. By linguistic variable we mean a
variable whose values are words or sentences in natural or artificial language [48].
The linguistic variables can be composed to form propositions using connectors like

AND, OR and NOT. Formally, a linguistic variable comprises five elements [49].

1. The variable name.
2. The primary term set.
3. The universe of discourse U.

4. A set of syntactical rules that allows composition of the primary terms and
hedges to generate the term set.

40

1.0

(.1, (x5
oyl R

XA
Figure 3.2: Membership function of a fuzzy set A.

3. A set.of semantic rules that assign each element in the term set a linguistic

meaning.

For example wire-length can be used as linguistic variable for VLSI placement
problem. According to the syntactical rule, the set of linguistic values of wire-length
may be defined as very short, short, medium, long, very long and very very long.
The universe of discourse for linguistic variable is positive range of wire-length of
a design, e.g., [25um, 80um]|. The set of semantic rules define fuzzy sets for each
linguistic value. A linguistic value is characterized by its corresponding fuzzy set.
The membership in fuzzy set is controlled by membership functions like Fig. 3.2. It

shows the designer’s knowledge of the problem [47].

41

Fuzzy Operators

There are two basic types of fuzzy operators: operators for intersection, interpreted
as the logical “AND,” and union, interpreted as the logical “OR”. The intersection
operators are known as triangular norms (t-norms), and union operator as triangular
conorms (t-conorms or s-norms) [46]. Normally “OR” logic is implemented using

maximum operator defined as

u(z) = maz{ua(z), pp(z)} (3.16)

whereas, “AND” logic is normally implemented using minimum operator defined as

u(z) = min{pa(z), ps(z)} (3.17)

Also the fuzzy complementation operator is defined as

fip(z) = 1—pp(z) (3.18)

Ordered Weighted Averaging Operator

Generally, formulation of multi criteria decision functions do not desire pure “AND-
ing” of t-norm nor the pure “ORing” of s-norm. The reason for this is the complete

lack of compensation of t-norm for any partial fulfillment and complete submis-

42

sion of s-norm to fulfillment of any criteria. Also the indifference to the individual
criteria of each of these two forms of operators led to the development of ordered
weighted averaging (OWA) operators [30, 51]. This operator allows easy adjustment
of the degree of “ANDing” and “ORing” embedded in the aggregation. According
to Yager [30, 51}, “ORlike” and “ANDlike” OWA for two fuzzy sets A and B are

implemented as given in Eq. 3.19 and Eq. 3.20 respectively,

paus(z) = B x max(ug, pup) + (1 — B) x %(l‘A + 1s) (3.19)
pang(z) = 8 x min(ua, up) + (1 — B) x %(lm + 1B) (3.20)

B is a constant parameter in the range [0,1]. It represents the degree to which OWA
operator resembles a pure “OR” or pure “AND” respectively.

To solve MOP using fuzzy logic, first all the objectives are defined in terms of
linguistic variable, and then these combined into linguistic rules using (“and” and
“or” logic). Each linguistic variable is also mapped to a fuzzy membership value
in the fuzzy set of good in terms of that objective. This membership value is the
function of some base value based on the numerical value of the actual cost. All
the membership values are combined into one, using t-norm or s-norm operators.
The selection of these operators depends upon the predefined linguistic rule. The
combined membership value is now used as an aggregating function. The best

solution is that, which results in the highest such combined value.

43

3.5 Fuzzy Goal Based Aggregation for VLSI Par-

titioning Problem

In this method it is assumed that there are I' pareto-optimal solutions. A so-
lution is called pareto-optimal (or efficient) solution, if there exist no other solu-
tion for which at least one criterion has a better value without adversely affect-
ing other criteria. In other words, one can not improve any criterion without
deteriorating a value of at least one other criterion. Also a p-valued cost vec-
tor C(z) = (Ci(z),Ci(z),...,Cp(z)), where z € [is given. There is a vector
O = (0,,0,...,0,) that gives the lower bounds on the cost for each objective
such that O; < Cj(z) Vj, and Vz € I'. These lower bounds are normally not reach-
able in practice. There is another user defined goal vector G = (g, 92, -, gp) that
represents the relative acceptance limits for each objective. It means that z is an
acceptable solution if C;(z) < g; x Oj, Vj where g; > 1.0. For a two dimension
problem, Fig. 3.3 shows the region of acceptable solution.

In order to solve the multiobjective partitioning problem, the linguistic variables
are defined as cutset, power dissipation, delay and balance. The following fuzzy rule

is used to combine the conflicting objectives.

44

C,{(x)

0 - - - B
9.7 Acceptable

Solutions

Lower
Bound

—® C.(x)
O‘ 9101

Figure 3.3: Range of acceptable solution set.

Rule R1:

IF a solution is within
acceptable cutset
AND
acceptable power dissipation
AND
acceptable delay
AND
good balance

THEN it is an acceptable solution.

The above mentioned linguistic variables are mapped to the membership values
in fuzzy sets within acceptable cutset, within acceptable power dissipation and within
acceptable delay . These membership values are computed using the fuzzy member-
ship functions as shown in Fig. 3.4(a). Partitioning aim to produce a balanced
solution. where the balance cost refers to the absolute difference in number of cells
between the two partitions. Balance can be considered as a constraint in this case;
its membership function is shown in Fig. 3.4(b). If the balance is within acceptable

range (tolerance), defined by gsatance then its membership is 1 otherwise 0. However,

ﬂ ¢ bulunce

1.0

1.0

gl.
(a)

9 8 stunce
(b)

Figure 3.4: Membership functions within acceptable range.

Ch: e
& C/ol AMA balance

the balance can also be regarded as an objective and its membership function will

be as shown in Fig. 3.4(a). For maximizing the performance, it was experimentally

found that for Genetic Algorithm and Tabu Search, balance was better considered

an objective thus allowing more flexibility in the search process, while for SimE and

PowerFM algorithms it was taken as a constraint. For each objective the goal is to

have membership value equal to 1. The lower bounds O; (shown in Fig. 3.4) for

different objectives are computed as follows:

Os

Op

Oy

1, (to avoid divide by zero)
Y (C)N; Yv; € {v1,v2, - Un}
ieC

k
Y .CD;, Yv; € {v, vy ...,v} in path 7
Jj=1

1.

(3.21)

(3.22)

(3.23)

(3.24)

46

where O, for j € {b,p,d,c} are the lower bounds on the costs for balance, power
dissipation, delay and cutset respectively while n is the number of nets in the circuit.
CD; is the switching delay of the cell j driving net vj, N; is the switching probability
of net v;, 7. is the most critical path with respect to optimal interconnect delays
(assuming that no net on this path is cut), k is the number of nets in m.. The
minimum power is obtained if no net is cut, which means substituting 0 for Certra

in Eq. 3.8. The components of the goal vector G are calculated as follows:

Gbalance =]C' (325)
n
ut = — 26
Gcut 0. (3)
Initial dela
Gdelay = ’_'Bd_—:z (327)
Initial power
Gpower = _O_p— (3.28)
P

Where |¢| is the number of cells in the circuit. Interpreting rule R1 as per Eq. 3.20:

S (z) (329)

J=pdicib

|

BEaes(T) = B° x min(pg(z), ug(x), He(z), pp(z)) + (1 = B°) x

where pc(z) is the membership of solution z in fuzzy set of acceptable solutions,
HS4(2) is the membership in fuzzy set of “acceptable power AND acceptable delay

AND acceptable cutet”, whereas p$(z) for j = {p, d, c, b}, are the membership values

47

in the fuzzy sets within acceptable power, within acceptable delay, within acceptable
cutset and within acceptable balance respectively. (¢ is the constant in the range
[0,1]. In general, p(z) is used as the aggregating function. The solution that

results in maximum value of u°(z) is reported as the best solution found by the

search heuristic.

Chapter 4

Iterative Algorithms for
Multiobjective VLSI Netlist

Partitioning

4.1 Introduction

Once the aggregating function for MOP is obtained, it is then possible to use search
techniques to find optimal solutions. Several search techniques have been proposed
in literature, like Genetic Algorithms (GA), Simulated Annealing (SA), Tabu Search
(TS), and Simulated Evolution (SimE). In this thesis GA, TS, and SimE are used as
main search heuristic approaches. A new heuristic called PowerFM which is a mod-

ification of the well known Fiduccia Mattheyses algorithm is presented. PowerFm

48

49

considers minimization of power consumption due to the cut nets. This chapter
discusses the implementation details of Genetic Algorithm, Tabu Search, SimE for

multiobjective VLSI netlist partitioning as well as PowerFM for power optimization.

4.2 Genetic Algorithm (GA) For Timing and Low

Power Driven Partitioning

Genetic Algorithm (GA) is an elegant search technique that emulates the process of
natural evolution as a means of progressing towards the optimal solution. A high
level algorithmic description of GA is given in Fig. 4.1.

There have been many efforts involving application of GA to the VLSI parti-
tioning problem. Earliest application of GA for the min-cut bisection was proposed
by Akley [52]. Later, Bui and Moon utilized GAs for graph bisection [33]. Re-
cently, use of GA has gained popularity, especially for multiobjective optimization
problems (MOP). However, no previous effort was done to use the GA in a MOP

partitioning, involving power, delay, and cutset together.

4.2.1 Chromosome Encoding and Initial Solution

GA uses an encoded representation of the solution in the form of a string made up
of symbols called genes. The string of genes is called chromosome. One way to

represent the partitioning problem (as seen in Fig. 4.2(a)) is to use group-number

Algorithm (Genetic_Algorithm)
(N, = Population Size)
(Ng = Number of Generations)
(N, = Number of Offsprings)
(P; = Inversion Probability)
(P, = Mutation Probabilty)
Begin
(Construct initial population)
Construct_Population(Ny);
Forj=1wN,
Evaluate_Fitness (Population[j])
EndFor;
Fori=1tN,
Forj=1toN,
(Choose parents with probability proportional to fitness value)
(x,y) € Choose_parents;
(Perform crossover tc generate offsprings)
offspring[j] € Crossover(x,y)
Fork=1toN,
With probability P, apply Muration (Population[k])
With probability P; apply Inversion (Population[K])
EndFor;
Evaluate Fitness(offspring(j])
EndFor;
Population € Select(Population, offspring, N)
EndFor;
Return highest scoring configuration in population
End. (Genetic Algorithm)

Figure 4.1: A typical Genetic Algorithm (3].

a1

encoding where the j** integer i; € {1,---, k} indicates the group number assigned
to object j. This representation scheme creates a possibility of applying standard
operators. The second representation scheme is shown in Fig. 4.2(b). Here, the
solution of the partitioning problem is encoded as n + k — 1 strings of distinct
integer numbers (in case of bipartitioning the string will be seperated into two
parts). This representation scheme leads to 100% feasible solutions but requires
more computation time due to the complexity of the crossover operators involved

[54]. In this implementation the first representation was used.

(a) Group Number Encoding

< Block 0 >e Block 1 >

MIE M4 M7 . M8 [M2 M3 MS Mé

(b) Permutation with Seperator Encoding.

Figure 4.2: Representation schemes.

The algorithm starts with a set of initial solutions called population that is gen-
erated randomly or taken from the results of a constructive algorithm (e.g., FM).

Random initial solutions are usually generated within the limit of the balance con-

straint.

4.2.2 Fitness Evaluation

For addressing a MOP to minimize many mutually conflicting objectives, a measure
is needed which can quantify the overall quality of a solution with respect to all the
objectives collectively.

Fuzzy membership functions and fuzzy rules are used for evaluating the fitness of
a solution. A fitness value between 0 and 1 is assigned to each solution. The fitness
value of a chromosome is its membership value u(z) in the fuzzy set of acceptable
solution. This membership is computed using Eq. 3.29.

The fitness of a solution is a measure of its proximity to the optimal solution.
The higher the fitness value of a solution, the closer it is to the optimal solution. In
this thesis experiments, initial random solutions are assigned a membership value
of 0 and the optimal solution is assigned a fitness value of 1. This implies that any

solution may have a fitness value in the range [0.0-1.0].

4.2.3 Crossover and Mutation

In each iteration (known as generation), all the individual chromosomes in the pop-
ulation are evaluated using a fitness function. Then, in the selection step, two of the
above chromosomes are selected from the population. Individuals with higher fitness
values are more likely to be selected. After the selection step, different operators,

namely, crossover and mutation act on the selected individuals for producing new

individuals called offsprings. These genetic operators are described below.

Parentl: 0111 00 Childi: 1000 00
—

Parent2: 1000 11 Child22 0111 11

Figure 4.3: Standard one point crossover operator (for group number encoding).

One important genetic operator is crossover. It is applied on two individuals
that are selected in the selection step earlier to generate an offspring. The gener-
ated offspring inherits some characteristics from both its parents in a way similar to
natural evolution. There are different crossover operators, namely, simple (single
point), order, partially mapped, and cycle. The simple crossover Fig. 4.3 for in-
stance, works by choosing a random cut point in both parent chromosomes (the cut
point should be the same in both parents) and generating the offspring by combining
the segment of one parent to the left of the cut point with the segment of the other
parent to the right of the cut [3]. For description of other crossover operators see
[3, 3, 53]. Increasing the number of crossover points is known to be multi-point
crossover. For the group number encoding two-point and three-point crossovers
are favored. The crossover operator however may produce children that violate the
balance constraint. These can be treated in two ways, either discarding them by
giving them a fitness value of zero, or fixing them using some constructive heuristic.

This requires too much time overhead. In this implementation the simple single

point crossover is used.

The mutation operator is used to introduce new random information in the pop-
ulation. It is usually applied after the crossover operator. It helps in producing
some variations in the solutions so that the search does not get trapped in local min-
ima. An example of mutation operation is the swapping of two randomly selected
genes of a chromosome. The importance of this operation is that it can introduce
a desired characteristic in the solution that could not be introduced by the appli-
cation of the crossover operator alone. However, mutation is applied with a low

rate so that GA does not turn into a memoryless search process [5]. Two mutation

variations are used:
1. Random selection of a cell and swapping its partition.

2. Randomly choosing two cells, one from each partition, and swapping them.

4.2.4 Selection

Individuals for the next population are selected based on the elitist-random selec-
tion (ernd). %ﬂ best chromosomes are selected and remaining 52-2 are selected ran-
domly. Based on experimental results, this scheme offers better choice than other
schemes, because it provides a balance between greediness and randomness.

The quality of the solution obtained from GA is dependent on the choice of
certain parameters such as the population size, crossover, mutation rates, and also

the type of crossover used. The selection of values for these parameters is problem

specific and there are no hard and fast rules for this purpose. The choice of these

parameters is left to the intuition of the person applying GA to a specific problem.

4.3 Tabu Search (TS) for VLSI Netlist Partition-
ing

Tabu Search has been applied for solving the problem of partitioning with single

objective (cutset) graph bisection by Tao et al. [36], Lim Chee [37}, and Areibi et

al. [58). However the multiobjective partitioning problem involving power, delay,

and cutset was not approached previously using this algorithm.

Tabu Search is an iterative heuristic that has been applied for solving a range of
combinatorial optimization problems in different fields (3]. Tabu Search starts from
an initial feasible solution and carries out its search by making a sequence of random
moves or perturbations. A Tabu list is maintained that stores the attributes of a
number of previous moves. This list prevents bringing the search process back to
already visited states. In each iteration, a subset of neighbor solutions is generated
by making a certain number of moves and the best move (the move that resulted
in the best solution) is accepted, provided it is not in the Tabu list. Otherwise, if
the said move is in the Tabu list, the best solution is checked against an aspiration

criterion and if satisfied, the move is accepted. Thus, the aspiration criterion can

override the Tabu list restrictions. It is desirable in certain conditions to accept a

Algorithm Tabu_Search

Q : Set of feasible solutions

S : Current solution

S* : Bestsolution

Cost: Objective function

N(S): Neighborhood of S € Q

V* : Sample of neighborhood solutions
T : Tabulist

AL : Agspiration level

Begin

Start with an initial feasible solution S € Q
Initialize tabu list and aspiration level
For fixed number of iterations Do
Generate neighbor solutions V* < N(S)
Find best S* € V*
If move Sto S*isnotin T Then
Accept move and update best solution
Update T and AL
Else
If Cost(S*) < AL Then
Accept move and update best solution
Update T and AL
End If
End If
End For

Figure 4.4: Outline of Tabu Search algorithm (3].

37

move even if it is in the Tabu list, because it may take the search into a new region
due to the effect of intermediate moves.

The behavior of TS heavily depends on the size of Tabu list as well as on the
chosen aspiration criterion. The aspiration criterion determines the extent to which
the Tabu list can restrict the possible moves. If a tabu move satisfies aspiration
criterion, then the move is accepted and tabu restriction is overridden. The structure

of TS is given in Fig. 4.4. The detailed description of Tabu Search can be found in

[3].

4.3.1 Tabu List and Aspiration Criteria

Tabu list introduces memory element in the search process. Its purpose is to avoid
revisiting a point (solution) in the search space. This is implemented by storing
some characteristic of a certain number of previously accepted moves.

Implementation of Tabu list requires two decisions to be made. First, what
characteristic of the move should be stored in the list. This decision has a signif-
icant effect on search quality as well as memory requirements of TS. The chosen
characteristic should identify the move, so that it can accurately be used to restrict
the corresponding move and to consequently fulfill the purpose of Tabu list. In the
present implementation, the characteristic of the move stored in Tabu list is the
index of any cell involved in the move from one block to another.

The second decision that needs to be made is regarding the size of Tabu list. This

38

decision affects time and space requirements of TS. Tabu list management concerns
updating the Tabu list i.e., deciding on how many and which moves have to be made
within any iteration of the search. The size of the Tabu list can noticeably affect
the final results; a long list may give a lower overall minimum cost, but is usually
obtained in a long time. Further, a shorter list may trap the routine in a cyclic
search pattern. It is deduced experimentally, that Tabu list sizes that provide good

results often grow with the size of the problem.

Aspiration Criteria is a rule based on cost values that can temporarily release
a solution from its tabu status. The purpose of aspiration criteria is to increase
the flexibility of the algorithm while preserving the basic features that allow the
algorithm to escape from the local optima and avoid cyclic behavior. There are
two types of aspiration criteria that were employed in experiments. The first one
is to give an aspiration for each cost reached. Throughout the search procedure,
each cost ¢ has an aspiration value that is the current lowest cost of all solutions
arrived at from solutions with value c. The actual aspiration rule is that, if the cost
associated with a tabu solution is less than the aspiration value associated with the
cost of the current solution, then the tabu status of the tabu solution is temporarily
ignored and the move is accepted. The second aspiration criterion used is simple,
which says that if the best neighbor solution of the current iteration is better than

the global best solution, then Tabu list restrictions are overridden and the solution

39

is accepted. Also the global best solution and the aspiration criterion is updated.
The short term memory functions in Tabu Search are fulfilled by the Tabu list and

aspiration level.

4.3.2 Intermediate and Long Term Memory

Intermediate term memory operates by recording and comparing features of a se-
lected number of best trial solutions generated during a particular period of search.
The method then seeks new solutions that exhibit these features. The long term
memory functions, whose goal is to diversify the search, employs principles that are
roughly the reverse of those for intermediate term memory. The implementation of

the long term memory (search diversification) is based on two different techniques:

e In the first technique, the frequency of moving a module is used as a means of
exploring new solutions that have not been visited before. Modules having high
frequency are discouraged for further movement. This allows less frequented
moves to be explored. This is done either by making the tabu status of module
proportional to its frequency, or by locking the module that has very high

frequency (simply by using a counter to count the number of times each cells

is moved).

e The second form of diversification that allows the meta-heuristic to come out

of local optima is to focus more specifically on producing initial solutions

60

as different as possible from the solutions generated throughout the previous
history of the search process. These solutions are then used as a restart to get

out of local minimum.

Diversification of the search is usually invoked when a number of consecutive
moves occur without an improvement over the best solution or in the case when all
the solutions in the current neighborhood are tabu and none of them satisfies an
aspiration criterion.

The intermediate term memory for search intensification uses a simple approach
that allows the meta-heuristic to come out of local optima. It basically records
solutions in a queue with a certain length. As the search proceeds the system
identifies a few best solutions and uses them in a restart phase to intensify the

search into promising regions not fully explored [58].

4.3.3 Data Structure and Stopping Criterion

For many applications, the choice of the proper data structure is really the only
major decision involved in the implementation. Once the choice has been made,
only very simple algorithms are needed. For the same data, some data structures
require more or less space than others; for the same operations on the data some
data structures lead to more or less efficient algorithms than others. The saving of

time or space by making a proper choice is of prime interest. In case of TS applied

61

for single objective cutset optimization a data structure of linked list is used, similar
to that shown in Fig. 1.2. This data structure provides higher speed than simple
string data structure. The latter is used in the case of MOP for both GA and TS
to avoid implementation complexities.

TS was run for different number of iterations, and depending on experimental
observations a fixed run-length was decided as done in the case of GA. This limit
on the number of iterations was placed because no significant improvement was

observed beyond this point.

4.4 Simulated Evolution Algorithm (SimE)

In this section, Simulated Evolution Algorithm [59] is summarized. The pseudo-
code of SimE is given in Fig. 4.5. SimE operates on a single solution, termed as
population. Each population consists of elements. In case of partitioning problem,
these elements are cells to be moved. In the Evaluation step goodness of each element
is measured. Goodness of an element is a single number between ‘0’ and ‘1’, which
is a measure of how near the element is from its optimal location. Higher value of

goodness means that the element is near its optimal location. The goodness can be

calculated as follows,

O;
gi = a (4'1)

ALGORITHM Simulated_Evolution(B, ®;, SC)
B = Bias Value.
® = Complete Solution.
®; = Initial Solution.
SC= Stopping Criterion.
e; = Individual link in &.
O; = Lower bound on cost of i** link.
C; = Current cost of i** link in .
g; = Goodness of i** link in ®.
S = Queue to store the selected links.
Allocate(e;, ®;) allocates e; in partial solution ®;.
Repeat

EVALUATION: ForEache;, € ® DO
Begin
Evaluate g;
End
SELECTION: ForEache; € ® DO
Begin
If random(1) > min(g; + B, 1)
Begin
S=85 U e;
d=0—¢;
End
End
sort(S)
ALLOCATION: ForEach e; € S DO
Begin
Allocate(e;, ®;)
End

Until SC is satisfied
Return (Best solution)
End Simulated_Evolution

Figure 4.5: Structure of the Simulated Evolution algorithm.

62

63

Evaiuation E

Figure 4.6: Evaluation.

where O; is the estimate of lower bound on the cost of individual ¢, and C; is the
actual cost of i. O; is independent of iterations and therefore it is estimated only
once in the beginning. Whereas, C; has to be calculated in every iteration for every
element. The evaluation step is shown in Fig. 4.6.

Selection is the process of selecting those individuals which are unfit (badly
placed) in the current solution. For this purpose, goodness of each individual is
compared with a random number (in the range [0,1]). If the goodness is less than
the random number, then it is selected, otherwise rejected, and it is assigned to
an empty location. A selection bias ‘B’ can also be used to restrict the number of
selected individuals to some limit. ‘B’ is also used to compensate for errors made in
the estimation of goodness. Typical range of ‘B’ is [-0.2, 0.2]. A variable bias scheme
is also suggested in [47]. Inputs to the selection process are elements of population P
and their respective goodness values, whereas outputs are a selection set P, and F;
the set of remaining elements of population P. The selection procedure is illustrated
in Fig. 4.7.

The Selection operator is non-deterministic in nature. An individual having high

goodness measure still has a non-zero probability of assignment to set P;. It is this

64

Selection ‘

oo

Figure 4.7: Selection.

element of non-determinism that gives SimE the capability of escaping local minima.

After the selection process, the allocation operator is used to place cells in P, to
new locations. It is mentioned in [3] that random allocation leads the algorithm into
random search. Therefore, it is necessary to adopt some greedy allocation strategy,
so as to improve the goodness of cells, which reduces the overall cost of the solution.
Inputs to the allocation operator are the sets P, (selection) and P, (remaining) and

the output is the new population P', as shown in Fig. 4.8.

Allocation

Figure 4.8: Allocation.

The choice of allocation function is problem specific. The decision of the alloca-
tion strategy usually requires more ingenuity on the part of the designer than the
selection scheme. The choice of proper allocation strategy affects the quality of final

solution considerably. Different constructive allocation schemes have been proposed

65

in literature such as sorted individual best fit, weighted bipartite matching allocation
and branch and bound search allocation [60]. In this work, sorted individual best fit
is adopted.

The whole algorithm is repeated until some stopping criteria is met. Stopping
criteria may be the number of iterations for which there is no further improvement
in the overall cost or total number of iterations are completed. At the end of Repeat

loop, the algorithm returns the best solution found.

4.5 Simulated Evolution (SimE) for Performance

Driven, Low Power VLSI Netlist Partitioning

The earliest implementation of the Simulated Evolution (SimE) algorithm for the
partitioning-class problems was done by Saab and Rao [61]. They applied SimE to a
graph bisection problem where given an bisection (V;, V3) of a hypergraph H(V, E),

for each cell i € V the following were defined:
Z]'Evl C‘l]’ if z € ‘/2
zjevz Cij, if 1 € V[

ZjEVl C‘], if 1€ Vl

Zjevz Cij, if 1€ ‘/'2

66

It is clear from the above definitions that I; measures how strongly cell i is
attached to its partition, and E; measures how strongly cell ¢ is attached to the
complement of its partition. One can think of /; and E; as the internal and external
attraction of cell i respectively. The “goodness” of 2 module v; is taken as %, if the
goodness of cell i is less than a given random number between 0 and 1, then cell
i is judged to be good; otherwise it is bad. Intuitively, a good cell should remain
in its current partition since it is likely to have many internal connections while, a
bad cell should be moved to the other partition. The mutation operator essentially
swaps large subsets of bad vertices. In this thesis, we employ SimE for Hypergraph

VLSI paritioning, in both single objective and MOP optimization.

4.5.1 Proposed Scheme and Implementation Details

In this section, we discuss several important implemetation details of SimE algo-
rithm. The description is combined with fuzzy logic implementation. In the pro-
posed algorithm interconnect power dissipation, overall circuit delay and cutset are
used as objectives and balance is taken as a constraint, which effectively makes it a
multiobjective optimization problem. In order to solve this MOP, fuzzy logic is used
providing a convenient method to combine possibly conflicting objectives. From the
pseudo code of SimE given in Fig. 4.5, it is clear that fuzzy logic can be applied at
two different stages of the algorithm. These are evaluation and allocation. In the

proposed algorithm, fuzzy logic is applied to the evaluation stage.

67

4.5.2 Proposed Fuzzy Goodness Evaluation Scheme

In this stage of the algorithm, goodness of individual cell is computed. Where gd,
gp and gc are defined as the delay, power and cut goodness of a cell respectively.
A fuzzy membership for each goodness function is then derived, in order to get the

overall goodness of the cell in its partition.

Cut Goodness Taking into account the hypergraph representation of the circuit,

the goodness function gc is defined and computed as follows,

d,‘ - Wy
g9 = T (4.3)

where gc; is the goodness of cell i, V; = {v1,v2,..., vt} is the set of nets connected
to cell i, U; is a subset of V; containing the connected nets to cell ¢ that are cut, the
cardinality of V; is expressed as d;. The net e is said to be cut if and only if cell
u € e and cell e € v and Block(u) # Block(v). The number of nets connected to
i and having the status as cut is expressed as w;. The cut goodness is simply the
number of uncut nets over the total nets connected. Since gc; is between 0 and 1, we
can take the fuzzy membership . as equal to the goodness y. = gc;. An example
of goodness calculation is shown in Fig. 4.9, the goodness of the cell 5 is calculated

as follows: gcs = 3—;2 =0.33.

68

Partition 1 Partition 2

Figure 4.9: Cut goodness calculation.
Power Goodness The power goodness gp; of a cell is defined as a measure of how
well placed is the cell in its present block according to power consumption and can
be computed as follows:

gpi = -

(4.4)

S; is the switching probability of the cell that drives the net. The goodness
is equal to the sum of the switching probabilities of the cells that are driving the
uncut nets over the sum of the switching probabilities of the cells that are driving
all nets connected. I[n this way a cell is placed in the partition where the sum
of the switching probability of the cut nets is optimized. Results show that this
goodness function gives high quality solutions with less power dissipation. Since

0 < gpi < 1 we can take the fuzzy membership y, = gpi. An example of power

69

goodness calculation is shown in Fig. 4.10, the goodness of cell 5 is calculated as

follows: gcs = 3224 = 0.428.

.7

Partition 1 Partition 2
0.1 — 3.
Zo1— —

_—;_9_.2
0.2 e

0.3 . — —

o 6.1

7 _ " s

0.4

Figure 4.10: Power goodness calculation.

The power and cutset objectives are possibly conflicting. Hence it is possible
to find alternative solutions for a specific circuit for e.g., there may exist one with
high number of cuts and low power consumption (because the nets cut have less

switching probability) as well as another lower cuts and higher power consumption.

Delay Goodness In our problem, we deal with multi-pin nets, which makes it
hard to design a suitable and simple delay goodness function. We propose the
following delay goodness.

_ K| = |Li]

gd; = K (4.5)

70

Partition 1 Partition 2
R — -3 -
> —;- 1‘ —_
.
—— ..__-

Figure 4.11: Delay goodness calculation.

Where gd; is the delay goodness of cell i. We consider the set of all critical paths
passing through 7 and define the set K; as the set of all cells connected to these paths.
We also define L; as a subset of K;, containing those cells which are connected to all
critical paths passing through ¢ and are not in the same block as i. This goodness
function will tend to drive the cells that are connected by the same path to the same
block, thus minimizing the delay along the path. A cell is considered good in its
block if the majority of cells connected to all paths passing through it are also placed
in the block. An example for delay computation is given in Fig. 4.11. To calculate
gdy we first compute |K4| = 5 for the critical path {1,4,5,7,6} which is the only one
connected to cell 4. |L4| = 3 which are cells {1,5,7}. This gives gdy = 33 = 04.

However, gds = 0.6 and hence is better placed according to the delay consideration.

71

4.5.3 Proposed Fuzzy Evaluation Scheme

With the classical goodness of cut only, it is possible that a cell having a high
goodness with respect to cut may not be selected even thought it is badly placed
with respect to circuit delay and power. In order to overcome this problem, it
is necessary to include power and delay in the goodness measure along with cut
goodness. Also, it is not desirable to select all the cells even if they all have a low
goodness value. In this case, it is desirable to select those cells which are far from
their lower bounds as compared to other cells in the design. For this purpose the

following fuzzy rule is proposed.

Rule R1:
IF cell i is

near its optimal cut-set goodness (as compared to other cells)

AND

near its optimal power goodness (as compared to other cells)

AND
near its optimal delay goodness (as compared to other cells)
OR

Trnaz (i) is much smaller than Trma: (as compared to other cells)
THEN it has a high goodness.

Where T, is the delay of most critical path in the current iteration and Tz (i) is
the delay of the longest path traversing cell i in the current iteration.
The above-mentioned fuzzy rule is interpreted. Using Eq. 3.19 and Eq. 3.20 as

follows:

i = pi(z) = B x min(u(@), w5 (@), Wa(2)) + (1=) x 3 & w5(@) (46)
j=c,p.d

72

where
Ei(z) = 85 X maz (15 (@), My (@) + (1~ B9) X 5(05p(2) + Hpan(s)) (47

The superscript e is used here to represent evaluation so that other fuzzy notations
in other steps of SimE can be distinguished. The term z represents the block of cell
i, u¢(z) is the membership in the fuzzy set of high goodness and g; is the goodness
of cell i. 3¢ and S35 are constants between 0 and 1 to control OWA operators.
pé,(z) and pg,(z) represent the membership in fuzzy sets of near optimum cutset
and near optimum power as compared to other cells. Moreover, uf(z) is the overall
delay goodness, and represents the membership in fuzzy set of near optimum timing
performance. It is obtained after applying “OR-like” OWA to p§i(z) and pfpanm (%),
which are the memberships in fuzzy sets of near optimum cell delay goodness as
compared to other cells and Tmaz(i) (most critical path passing trough cell 7) is
much smaller than T}, (current most critical path of the circuit).

1 aen (7) is included in the computation of ut,(z) because if a cell is not in the
critical path then it must have high goodness with respect to delay objective. After
considerable number of iterations, it is possible that a cell is in the critical path but
is also very near to its optimal delay goodness. In that case it is not possible to
optimize it further. At this stage, u§,(z) overrides pug,um(z)-

The base values for cutset and power are not needed since the membership is

73

T (i) is much smallerthan T

amx

1.0 20
X L4

path

Figure 4.12: Membership function for Tre.(i) much smaller than Trmaz-

directly computed as described in section 4.5.2. As for cell delay goodness it is
composed of net delay u§,(z) which is computed directly by using Eq. 4.5. For com-
puting pif,q, () we define base value Xiparn (z) for fuzzy set { T, (i) much smaller
than T, }, and is computed in Eq. 4.8, the membership function is illustrated in
Fig. 4.12. (experimentally we found that a base value of 2 is suitable to quantify

that T (i) is much smaller than Tpaz).

4.5.4 Selection

In this stage of the algorithm, some cells are selected probabilistically depending
upon their goodness values. As proposed by Kling et al [60], for each cell 7, a

random number in the range [0,1] is generated and compared with g; + B, where B

74

is the fixed selection bias. If this generated random number is greater than g; + B
then the cell is selected for allocation. However, determining the value of B is
a problem specific issue, varying also from circuit to circuit. For bigger circuits,
normally bigger bias values are needed. To overcome this problem, Hussain [47]
proposed the idea of a variable bias according to which the value of bias for Kkt

iteration is computed as follows,

Bi=1- G (4.9)

where B is the bias value for iteration & and G is the average goodness of all cells

at the end of the &t iteration. The advantages of using variable bias is following.

1. Bias value is not arbitrarily selected and no trial runs are required to find the
best value. The variable bias automatically adjusts according to the problem

state.

2. For bad quality solutions, the average goodness is low, resulting in a high bias
value. This ensures that the size of selection set is not excessively large and

thus save the algorithm from making large number of moves.

3. For good quality solutions, the average goodness is high. Therefore, a low bias

value is used. It will result in the selection of sufficient number of cells thus

protecting the algorithm from early convergence.

Along with these benefits, the following analysis points out some drawbacks of

using variable bias.

A cell ¢ will be selected if,

Random > g; + By
or
Random — By > g;
or
Random — 1 + Gi > g;

or

Rn.ew > gi

where Rpew is the new random number in the range [—(1 — Gi), Gi]. It is clear from
this range that probability of selection of cells having goodness g; > Gy is zero. This
may lead to some local optimal solution because statistically half of the cells have
zero probability of selection.

Also probability of no selection is 1 — G. It means that when Gy is low, the size
of selection set is small because 1 — G has a high value, and when Gy is high then
selection set is large as 1 — Gy, gives a low value. This behavior is against the basic

idea of SimE according to which size of the selection set has to be decreased with

76

increase in average goodness. It is also against the behavior of any other iterative
search algorithm where big perturbations are made when the solution is bad and
smaller perturbations are made with improvement in the quality of solution. Another
selection criteria where B = Gy, was also implemented but the experimental results
showed that the algorithm converges fast, and does not give better results when

compared to “Biasless Selection” discussed in the next section.

4.5.5 Biasless Selection

In this implementation, a scheme proposed by Khan et al [62] where the selection
bias B is totally eliminated and a cell is selected if Random > goodness; is used.
This method is as follows:

When number of cells in the problem is large, as in the case of VLSI partitioning,
the goodness distribution among the cells is Gaussian, with mean G, and standard
deviation G,. In the proposed selection scheme a Gaussian random number is used
instead of using uniformly distributed random number. This way the problem of
having cells with zero selection probability can be avoided. The mean R, and

standard deviation R, of the random number are calculated as follows

Rn = Gn—0Gs, (4.10)

R, = G, (4.11)

77

If we use G,, as the mean for random number generation, it is most likely that
around 50% cells would be selected which is not desirable in case of large number
of cells. To avoid such an unfeasible selection set, we change this mean to G, — G,
so that only 12 — 13% cells will be selected in the initial iterations. These values
are determined only in the first iteration of the algorithm. However, with increased
number of iterations, average goodness will increase and this may cause very small
number of cells to be selected. To avoid this, the mean of random number is updated
when the number of selected cells goes down to 5% of total number of cells in the

problem as follows:

Rp=Rn+01xR, (4.12)

this scheme has some significant advantages, (1) there is no cell in the design
having zero selection probability, hence avoiding local optima, (2) size of selection
set reduces with increase in the average goodness value, and (3) update procedure

avoids extremely small selection set.

4.6 Power FM Algorithm

Fidducia Mattheyeses presented an iterative heuristic that takes into consideration
multipin nets as well as sizes of circuit elements. As mentioned in Chapter 1,
Fidducia-Mattheyeses heuristic (Fig. 1.4) is an efficient and fast technique used in

the bipartitioning problem. The move in the Fidducia Mattheyeses is based on the

78

gain due to decrease in the cutset, and is defined as follows: The gain g(7) of a cell ¢
is the number of nets by which the cutset would decrease if cell 7 were to be moved.
A cell is moved from its current block to its complementary block. To avoid having
all cells migrate to one block, a balancing criterion is maintained. The algorithm
starts by choosing a node which causes maximum gain and does not disturb the
balance criteria (to a certain tolerance, usually 10%). The node is moved and the
gain of all affected cells is updated. When a cell is moved it is locked; when all cells
are moved then this means that we have finished one pass. At the end of a pass, all
cells are freed and the process repeated until a point where no further gain can be
achieved.

The PowerFM is a modification of the FM algorithm which seeks minimization
of the power consumption due to the cut. All concepts of FM are maintained;
the major difference is the calculation of the gain due to the sum of the switching
probabilities of the cut nets. Also some other necessary modifications are done in

some parts of the algorithm and are discussed later next.

4.6.1 Power Gain Calculation

The power gain for a cell i is calculated using Eq. 4.13. X; is the set of cut critical
nets. U; is the set of uncut critical net. An example of calculation of the power gain
is shown in Fig. 4.13, to calculate the gain of moving cell 7 we have Pgain(7) =

0 — (0.3+ 0.4) = —0.7 and for cell 1 Pgain(1) =0.1 -0=0.1.

79

k k
Pgain(i) = Cysy (Z i(J € Xi) Z i(je U)) (4.13)
Partition 1 Partition 2
. 0.1 -3 -
T —
__— 02
0.2 ~- 4"
.;" _
0.3 ’_-”_' —
L 0.1
7 e
- 0.4

— ~ J— —

Figure 4.13: Power gain calculation.

In each pass, the gain of every free cell is updated according to the Com-
pute_Cell_Gain algorithm shown in Fig. 4.14. Let F(n) be the number of cells
connected to net n in the From block (current block) of the cell i to be moved. Let
T(n) be the number of cells connected to net n in the To_block (destination block) of
the moved cell i. When computing the gain we consider only the critical nets A net
is critical if it has a cell which if moved will change its cutsate. That is if and only
if F(n) or T(n) is either 0 or 1. As an example consider cell 1 in Fig. 4.14 and the
net denoted as a formed by the connection of cells 1, 3, and 4; hence a = (1,3,4).
Considering the From block as partition 1 and the To_block as partition 2; it is clear

that F(a) = 1 and T(a) = 2 then this net contributes positively to the gain by 0.1

80

ALGORITHM Compute Cell_gains;
Begin
For each free cell ¢ Do
g(i) « 0;
F « From.lock of cell i
T « Toblock of cell i
FOR each net n on cell i DO
If F(n) = 1 Then g¢(i) = g(i) + (Coss x Sw prob of driving net)
(Cell i is the only cell in the From_block connected to net n.)
If T(n) = 0 Then g(i) = g(i) — (Cofs X Sw prob of driving net)
(All of the cells connected to net n are in the From block.)

EndFor
EndFor
End.

Figure 4.14: Procedure to compute gains of free cells.

(obtained from moving cell 1), and furthermore it is called a critical net. Another
example, consider cell 5 and nets b = (5,4, 2) and ¢ = (5,7), notice that F (b) =1
and T(b) = 2, F(c) = 2 and T(c) = 0, then net b contributes positively to the gain
by 0.2 and net ¢ contribute negatively by 0.3 and both are critical nets. The idea
behind the algorithm is simple. It checks if the net is critical, if (n) = 1 then mov-
ing cell i will increase the gain by C,sy x (Sw prob of driving net) and if T(n)=0

then moving the cell : will decrease the gain by Cozp X (Sw prob of driving net).

4.6.2 General Description

The first step consists of computing the gains of all free cells. Cells are considered

to be free if they are not locked either initially by the user, or after they have been

81

moved during this pass. Having computed the gains of each cell, we now choose the
“base cell”. The “base cell” is one that has the maximum gain and does not violate
the balance criterion. If no base cell is found then the procedure stops. When the
balance criterion is satisfied, then the cell with maximum gain is selected as the
base cell. In some cases, the gain of the cell is non-positive. However, we still move
the cell with the expectation that the move will allow the algorithm to escape out
of the local minimum. As mentioned before, to avoid migration of all cells to one
block, during each move, the balance criteria is maintained. After each move, the
selected cell is locked in its new block for the remainder of the pass. Then, the
gains of cells comprising the critical net are updated. If more free cells exist then
we search for the next base cell. If found, then we go back and lock the cell, and
repeat the update. If no free cells are found then we move on. After all cells have
been considered for movement, as in the case of Kernighan-Lin, the best partition
encountered during the pass is taken as its output. The number of cells to move is
given by the value of k which yields maximum positive gain G, where Gy = ¥5_, g;.
Only the cells given by the best sequence, that is cy, ¢z, ..., Ck, are permanently moved
to their complementary blocks. Then all cells are freed and the complete procedure

is repeated.

Chapter 5

Experiments and Results

5.1 Introduction

This chapter presents the experimental results obtained from the algorithms dis-
cussed in this thesis, namely GA, TS, SimE and PowerFM. First, the performance
of GA and TS in case of the multiobjective optimization and the single objective
optimization is analyzed and compared in Section 5.3. Then, the GA and TS al-
gorithms are compared in terms of time performance and quality of solution in
Section 5.4. SimE results are presented and compared with TS and PowerFM in
Section 5.5. Moreover, the case of using PowerF'M as a starting solution for GA and

TS is analyzed in Section 5.6.

82

83

[Name | Number of cells | Number of nets |
S298 136 130
5386 172 165
5641 433 410
S832 310 291
S953 440 417
S1196 561 547
51238 540 526
S1488 667 648
51494 661 642
S2081 122 121
S53330 1962 1888
S5378 2994 2944
59234 5845 5822
$13207 8652 8530
S15850 10384 10296

Table 5.1: Circuits details.

5.2 Circuits Detalils

ISCAS-85/89 benchmark circuits were used in all the experiments. Most of the
circuits considered are sequential thus reflecting real life systems where purely com-
binational circuits are rarely used. However, sequential circuits have more severe
delay problems than combinational circuits, as the latter are more often well struc-
tured. The key characteristics of these circuits are given in Table 5.1. The details

of the cell characteristics are obtained from the 0.25p MOSIS, TSMC and CMOS

technology library [63).

84

5.3 Single Objective Versus Multiobjective Opti-

mization

MOP and SOP are compared to study the relations between the multiple possibly
conflicting objectives (delay, cutset, power) and the effects on the overall quality of
the final solution. The following three sub-sections present the comparison between
MOP and the SOP for cutset, delay and power consumption. Each sub-section is

divided into both GA and TS results.

5.3.1 Power-only Optimization Versus MOP

Interconnect power dissipation is an important objective to be minimized in VLSI
optimization. Hence, the first experiment is conducted for power-only optimization
and then compared with the multiobjective optimization. The costs of the three
objectives for the best solution obtained from GA and TS are given in Table 5.2 and
5.3 respectively. Various implementation parameters that were tuned experimentally
are as follows: For GA, the population size is 10, probability of crossover is 0.99,
and the probability of mutation is 0.09. For TS, the number of neighbors is 10 and
the Tabu list size is 0.1 times the size of the circuits. C,pp (off-chip capacitance)
is taken as 100 femtofarad. Each experiment is run is of for 10,000 generations,
and the fuzzy fitness constant 3 = 0.7. To save on runtime instead of starting by a

completely random solution, this implementation starts by a random solution with

85

a 10% unbalance. The balance criteria is then taken as an objective in the cost

function.
[Circuit | For Power-only | For all objectives]
Delay (ps) | Cutset (nets) | Power (S.P.) | Delay (ps) | Cutset (nets) | Power (S.P.)
5298 407 34 892 233 19 1013
S386 450 37 1327 356 36 1529
5641 1314 72 2195 1043 45 2355
S832 686 59 2861 444 45 3034
5953 685 134 2500 926 96 2916
S1196 530 135 3417 396 123 5443
S1238 471 133 5539 475 127 5713
S1488 747 107 5232 571 104 5648
S1494 181 118 9431 614 102 5474
S2081 292 19 632 302 26 787
S3330 720 358 10331 o571 299 10358
S5378 923 653 18509 587 573 18437
S9234 1547 1189 36894 1313 1090 38149
S$13207 2243 1908 44801 1399 1683 45611
S15850 2167 2409 31607 1820 2183 51747

Table 5.2: A Comparison between the quality of the best solutions obtained from
GA by performing SOP for power consumption and MOP.

As seen in Table 5.2, for all circuits except S3378, it is observed that power-only
optimization performs better than MOP in terms of power cost. However, at the
same time, the other two objectives are affected adversely for all the circuits. This
behavior is easy to understand; when optimization is done for power only, the target
is to minimize the number of the nets cut having high switching probabilities. All
other nets may be ignored in this process, and thus the overall cutset is not reduced
as in the case of multiobjective or cut-only optimization. It can also be noticed

that for the particular circuit S2081, the power-only optimization performed better

for all objectives than MOP. This can be attributed to the fact that S2081 is the

86

| Circuit | For Power-only For all objectives |

Delay (ps) | Cutset (nets) | Power (S.P.) | Delay (ps) | Cutset (nets) | Power (S.P.)
5298 339 34 870 197 24 926
S386 456 36 1215 386 30 1426
S641 1416 67 2018 889 59 2281
S832 556 51 2619 446 50 2731
S953 765 142 2516 466 99 2518
51196 541 133 4705 301 106 4920
51238 584 103 4350 408 79 4597
S1488 705 110 5332 528 98 5529
$1494 620 108 5258 o985 101 5339
S2081 431 27 672 225 17 770
S3330 755 339 10239 533 295 10298
S5378 665 538 15847 590 430 16527
59234 1577 1085 33854 1052 918 34055
S13207 2039 1632 40513 843 1332 41114
S$15850 1988 1817 46095 1411 1671 47480

Table 5.3: A Comparison between the quality of the best solutions obtained from
TS by performing SOP for power-only and MOP.

smallest circuit (121 nets) and thus its search space is limited and easily explored.

Table 5.3, shows the results obtained from TS for power-only optimization. As
in the case of GA, it can be noticed that TS for power-only optimization performs
better than TS for MOP in terms of power cost, but not for the other two objectives
(cutset and delay). When comparing the performance of TS (Table 5.3) and GA
(Table 5.2) we see that TS outperformed GA in the case of power-only optimization
with respect to the quality of the solution, for most of the circuits except (5933,
S1488, S2081).

In both cases the delay objective is most negatively affected as the process of
optimizing power is very limited in terms of number of affected nets and thus it may

totally ignore the nets lying on the timing-critical paths. As a result, delay costs

are not optimized at all.

5.3.2 Delay-only Optimization Versus MOP

In this section, a comparison between SOP for delay and MOP is made. Table 5.4

87

and Table 5.5 show these comparative values of cutset, power, and delay costs for

the solutions obtained from GA and TS respectively.

| Circuit | For Delay-only For all objectives |

Delay (ps) | Cutset (nets) | Power (S.P.) | Delay (ps) | Cutset(nets) | Power (S.P.)
S298 233 57 1608 233 19 1013
5386 350 61 2537 356 36 1529
S641 1014 158 5030 1043 45 2355
5832 378 108 4945 444 45 3034
S953 485 195 4857 526 96 2916
S1196 392 301 11150 396 123 5443
S1238 385 287 10425 475 127 5713
51488 552 281 9956 871 104 5648
51494 301 152 6231 614 102 5474
52081 252 43 1685 302 26 787
$3330 684 964 22106 571 299 10358
S$5378 678 1725 43227 587 573 18437
$9234 1426 3077 84474 1313 1090 38149
S13207 1448 4625 93877 1399 1683 45611
S$15850 1920 5520 84449 1820 2183 51747

Table 5.4: A Comparison between the quality of the best solutions obtained from

GA by performing SOP for delay-only and MOP.

Delay-only optimization ignores the other two objectives. The costs of cutset
and power consumption are very high in this case for all the circuits. The reason
for this behavior is that the optimization for delay targets a limited number of nets

which lie on the critical paths; all other nets are totally ignored. As a consequence,

the overall cutset and power consumption are not optimized at all. Observing the

88

| Circuit For Delay-only For all objectives |

Delay (ps) | Cutset (nets) | Power (S.P.) | Delay (ps) | Cutset (nets) | Power (S.P.)
S298 189 66 1991 197 24 926
S386 345 65 2568 386 30 1426
S641 872 181 5521 889 59 2281
$832 399 126 5316 446 50 2731
S953 402 172 4615 466 99 2518
S1196 300 106 4919 301 106 4920
S1238 407 79 4596 408 79 4597
S1488 524 286 9912 528 98 5529
S1494 581 275 9750 285 101 5339
S2081 232 61 1792 225 17 770
S3330 654 935 21854 333 295 10298
S5378 590 1682 41845 590 430 16527
59234 1044 3162 85944 1052 918 34055
S13207 964 4565 92975 843 1332 41114
$15850 1675 5565 90029 1411 1671 47480

Table 5.53: A Comparison between the quality of the best solutions obtained from
TS by performing SOP for delay-only and MOP.

results in Table 5.4, it can be noticed that for the first ten circuits the delay-only
optimization performed better in delay measure when compared with multiobjective
optimization. However, when the size of the circuit gets bigger (as in the case of
the last five circuits) the multiobjective optimization gives better results. This is
because delay-only optimization considers only a small part of the circuit, which
will improve the delay at a certain cutset and power value (may be high or low).
On the other hand, multiobjective optimization decreases also the cutset and the
power value, opening a new search space where more optimal delay solutions can
be found. This effect is mainly noticed for the bigger and more complex circuits,
where the cells that affect the delay comprise a relatively smaller set than the entire

circuit. This effect is also noted for TS in Table 5.5 where circuits S2081, S3330,

89

S13207 and S15850 have worse delay than multiobjective TS. Comparing the results
for TS and GA, we can notice that TS outperformed GA in the case of delay-only

optimization, for all circuits except S832 and S1238.

5.3.3 Cut-only Optimization Versus MOP

Comparison between cut-only optimization versus MOP is shown in Table 5.6 and

Table 5.7 for GA and TS respectively.

{ Circuit | For Cut-only | For all objectives |

Delay (ps) | Cutset (nets) | Power (S.P.) | Delay (ps) | Cutset (nets) | Power (S.P.)
S298 284 18 1056 233 19 1013
S386 418 29 1755 356 36 1529
S641 1015 44 2540 1043 45 2355
S832 445 44 3286 444 45 3034
S953 580 93 3196 526 96 2916
S1196 431 107 5859 396 123 5443
S1238 646 116 6369 475 127 5713
51488 708 99 6271 571 104 5648
S$1494 701 82 5743 614 102 5474
S2081 449 16 449 302 26 787
S3330 703 277 11349 571 299 10358
S5378 594 488 20531 587 573 18437
59234 1557 960 41284 1313 1090 38149
$13207 1572 1538 50364 1399 1683 45611
$15850 1938 2001 54800 1820 2183 51747

Table 5.6: A Comparison between the quality of the best solutions obtained from
GA by performing SOP for cut-only and MOP.

Table 5.6 lists the values of all three objectives in the solutions obtained from
GA in both the case of MOP and cut-only optimization. Similarly, Table 5.7 shows
the same comparison for the solutions obtained from TS. It is observed that in all

the circuits, cut-only optimization approach results in slightly smaller cutset size

90

| Circuit For Cut-only | For all objectives |

Delay (ps) | Cutset (nets) | Power (S.P.) | Delay (ps) | Cutset (nets) | Power (S.P.)
$298 233 13 905 197 24 926
5386 328 18 1453 386 30 1426
S641 1286 51 2853 889 a9 2281
S832 453 35 3097 446 S50 2731
$953 543 76 3055 466 99 2518
51196 941 79 5170 301 106 4920
S1238 382 66 5041 408 79 4597
S$1488 670 92 6251 528 98 5529
S1494 693 94 5959 585 101 5339
S2081 266 5 592 225 17 770
S3330 670 252 11309 533 295 10298
S5378 773 396 18502 590 430 16527
$9234 1365 899 39330 1052 918 34055
$13207 1135 1240 46789 843 1332 41114
$15850 1965 1545 50629 1411 1671 47480

Table 5.7: A Comparison between the quality of the best solutions obtained from

TS by performing SOP for cut-only and MOP.

but with an increase in values of the other two objectives. The power consumption

objective is less affected because it is related to the cutset i.e., if the nets with high

switching probability are not cut then the circuit consumes less power. The delay

on the other hand may not be minimized when minimizing cutsize because the value

of delay depends only on those cells that are on the longest path in the circuit, and

these comprise a small subset of the circuit.

54 GA Versus TS

The results obtained from GA and TS for MOP are compared in terms of the overall

quality of best solution and runtime in Table 5.8. P represents an estimate of the

cost due to power, which is the sum of the switching probabilities of all the cut

91

GA TS

Circuit | D (ps) | Cut | P (sp) | #(z) | T (8) | Toese(s) | D (ps) [Cut [P(sp) [u(z) [T(S) [Thear(s)
5298 233 19 1013 0.79 123 43 197 24 926 0.81 62 21
5386 356 36 1529 0.75 163 151 366 30 1426 0.76 82 77
5641 1043 45 2355 0.83 1868 1540 889 59 2281 0.85 939 818
S832 444 45 3034 0.68 289 276 446 50 2731 0.682 148 80
5953 526 96 2916 0.69 618 182 466 99 2518 | 0.734 313 225
S1196 396 123 5443 0.76 375 373 301 106 4920 | 0.801 184 134
$1238 475 127 5713 0.72 397 365 408 79 4597 0.75 187 160
S1488 571 104 5648 0.71 1238 1183 528 98 5529 0.72 616 405
51494 614 102 5474 0.70 1228 1040 585 101 5339 0.71 616 427
52081 302 26 787 0.73 94 32 225 17 770 0.79 47 16
53330 571 299 10358 | 0.75 2096 2074 533 295 10298 0.79 1078 994
55378 587 573 18437 | 0.74 2687 2686 590 430 16527 | 0.79 1338 1100
59234 1313 1090 | 38149 | 0.72 5963 5949 1052 918 | 34055 | 0.81 2992 2821
S13207 1399 1683 | 45611 | 0.74 8098 8097 843 1332 | 41114 0.79 4001 3690
515850 1820 | 2183 | 51747 | 0.74 | 10214 10206 1411 1671 | 47480 | 0.831 | 5131 5130

Table 5.8: Comparison between costs of the best solutions generated by GA and
TS.

nets. [t has no unit since it is a probability. D is the delay of the most critical path
in pico-seconds (ps), u(z) is the membership value, T'(s) is the total run time in
seconds, and Tp.,(s) is the execution time in seconds for reaching the best solution.

When the fuzzy fitness pu{z) for TS is compared with GA in Table 5.8, it is notice
that TS performed better than GA for most of the circuits in terms of quality of
best solution as well as run time.

For small circuits like S2081, S298, and S386 the quality of the final solutions
obtained from GA is comparable with those obtained from TS. However, as the size
of the circuit increases (and hence size of search space increases), TS consistently
performs better than GA. Also, the execution time of GA increases significantly
with the increase in circuit complexity. The higher execution time of GA can be
attributed to its parallel nature i.e., a population of solutions is to be processed in

each generation. Fig. 5.2 and Fig. 5.3 show the trend of solution’s cutset, delay,

92

power, balance, average fitness and best fitness for GA and TS respectively, in case
of circuit S13207. It is clear from these plots that TS achieves a better membership
that is better than that reached by GA. The best solution for GA is found after 8097
seconds and has 0.74 fitness value, while for TS, it was found after 3690 seconds and
has a higher fitness value of 0.79.

Fig. 5.1 shows the performance of TS and GA against execution time in seconds.

It is clearly noticed that TS is by far faster and the solution obtained is of better
quality.

Genetic Vs Tabu with respect lo ime in seconds
09 T T T T T ™

|)
-
w

Fitness

0.2

1 L L A i L L A
o] 1000 2000 3000 4000 5000 6000 7000 8000 9000
Times in Seconds

Figure 5.1: Comparison between GA and TS for circuit S13207 with respect to
execution time in seconds.

(a)Cutset(nets cut)

8
g

—
o

(c)Power (sum of Sw P)

[=]

o
[

(e)Avg Faness

o

n
o
N

(a)Cutset{nets cut)

g

(c)Power (sum of Sw P)

o

{e)Avg Fitness

g

fﬁ
?f

2000 4000 6000 8000 10000

8
§
8
g
:

o0

»~ -]

-

(x
(d)Cell ddterence

o 8 & 8

4000 6000 8000 10000

g
:
g
:
:
g

o®

o
-~
(t)Best Fness
o o
b [

0 2000 400C 6000 8000 10000 0 2000 4000 600C 8000 10000
Generations Generations

Figure 5.2: Performance of GA for circuit S13207.

g

ﬁs
7

3

500
0 2000 4000 6000 8000 10000 0 2000 4000 6000 B80OC 1000C
4
x 10
-
8 5
3 1000
& 8 sw0
)
0
%0 2000 4000 6000 8OO0 10000 0 2000 4000 6000 8000 10000

-

o
&
(f)Best Fitness
o o o
o [+ -]

o
(]

o

2000 4000 6000 8000 10000 2000 400C 6000 8000 10000
Generations Generations

Figure 5.3: Performance of TS for circuit S13207.

94
5.5 Simulated Evolution and PowerFM

The results obtained from SimE when used in the case of MOP are given in Table 5.9.
When these results are compared to the ones in Table 5.8, it can be noticed that the
overall time (T'(s)) for TS is less than SimE, but SimE outperformed TS for all the
circuits except S386, S1238 and S1488 in terms of quality of solution. These results
are a good justification of the use of SimE as an efficient iterative heuristic in the
VLSI partitioning problem. Furthermore, they prove the ability of SimE to explore
the search space in a more indepth way due to its micro operations (evaluation and
selection) on an individual solution.

The results obtained from the PowerFM algorithm are presented in Table 5.10
with a comparison to the results of SimE algorithm for power-only optimization.
PowerFM is also compared to SimE in Table 5.11 for the case of multiobjective
optimization. The notation in Tables (5.10, 5.11) is as follows: Pq,, refers to the
average power of the resuits obtained from 100 runs of the PowerF'M, D(ps) stands
for Delay and is measured in pico-seconds, Cut is the number of nets cut, P(sp) is
the power dissipation measured in terms of switching probability, T'(s) is the total
overall time taken by the one run, and Tyes(s) is the time that the algorithm needs to
find the best solution. It is noticed that the PowerFM is better in optimizing power
for smaller circuits (5298, S386, S641, S832, S953, S1196, S1238, S1488, S1494,

and S2081) but performs worse for bigger ones (83330, S5378, $9234, 513207, and

Multiobjective SimE
Circuit | D (ps) [Cut [P (sp) | p(z) | T(s) | Toest(s)

5298 197 11 837 095 | 102 62
S386 393 28 | 1696 | 0.74 | 156 152
5641 886 16 1738 | 0.98 | 1390 966

5832 400 39 | 3132 | 0.691 | 274 257
5953 476 48 | 2473 | 093 | 528 249
S1196 415 78 | 5488 | 0.82 | 463 398
51238 350 77 | 5960 | 0.73 | 417 205
51488 612 83 | 5892 | 0.70 | 1082 716
51494 502 71 | 6250 | 0.81 | 1017 802
S2081 325 13 706 0.94 93 89
53330 394 46 | 8431 | 0.98 | 1328 812
S5378 554 161 | 14094 | 0.95 | 2117 465
59234 831 196 | 25672 | 0.98 | 4733 | 3853
S13207 | 1014 | 313 | 35014 | 0.98 | 6295 | 3129
S15850 | 1188 | 416 | 40716 | 0.96 | 7978 1850

Table 5.9: Performance of the Multiobjective SimkE.

S$15830) in terms of the best solution obtained in both Tables (5.10, 5.11). The
overall average P,,, of the PowerFM is not as good as the results obtained from
SimE . However, the execution time of the PowerFM is many orders of magnitude
smaller than SimE and varies from 25 to 2000 times faster than SimE. This is
due to the fact that the PowerFM is based on passes and it usually finishes after
executing several passes (on each pass all the cells are considered for movement).
The algorithm stops as soon as it reaches a local minima.

Fig. 5.4 shows the performance of the SimE on the circuit S12307 which gives
far better results than GA and TS and better results than PowerFM in terms of the
quality of solution. Fig. 5.5 shows the performance of SimE versus TS and GA with
respect to time. It can be seen clearly that SimE outperforms both algorithms in

terms of quality and runtime.

96

Power-only SimE PowerFM

Circuit | D (ps) | Cut | P (sp) | s(z) | T (S) | Toest(s) | D (ps) [Cut | P(sp) [T(s) | Paug
5298 301 21 738 0.92 97 26 301 20 732 0.05 828

5386 449 37 1567 0.73 156 152 434 29 1511 0.39 1673
S641 1133 38 1704 0.95 1416 719 1221 44 1667 0.61 1773
S832 527 68 3116 0.601 213 162 527 Sl 2855 1.97 3338
S953 1120 134 2369 0.643 424 398 902 120 2191 0.60 2422
S1196 598 109 5206 0.71 361 343 612 68 4116 1.81 5289
S1238 658 131 5928 0.60 330 316 544 62 4281 1.80 5358
S1488 655 105 5686 0.65 1009 879 724 70 5228 5.60 5787
51494 738 125 6201 0.68 800 433 630 80 5354 7.19 6022
$2081 386 15 583 0.94 73 58 335 7 565 0.11 586

S3330 552 228 9354 0.89 1685 1008 593 226 9522 6.37 10180
$5378 738 299 13688 0.91 1582 1142 574 363 14565 19.22 15453
$9234 898 209 25565 0.96 3672 1976 832 389 | 26784 92.50 29100
S13207 1099 690 34921 0.94 7150 5365 1286 929 | 37190 273 39155
S15850 1458 688 40686 0.91 8122 5732 1464 919 | 42521 | 318.56 | 43238

Table 5.10: Comparison between SimE and PowerFM for power-only optimization.

Multiobjective SimE PowerFM

Circuit | D (ps) | Cut | P (sp) | T (5) | Tbest(s) | D (ps) [Cut [P (sp) [T(s) | Pavg
5298 197 133 837 62 301 20 732 0.05 828
S386 393 28 1696 152 434 29 1511 0.39 1673
S641 886 16 1738 1390 966 1221 44 1667 0.61 1773
S832 500 45 3232 274 257 527 51 2855 1.97 3338
S953 476 48 2473 528 249 902 120 2191 0.60 2422
S1196 415 78 5488 463 398 612 68 4116 1.81 5289
S1238 350 77 5960 417 205 544 62 4218 1.80 5358
S1488 612 83 5892 1082 716 724 70 5228 5.60 5787
$1494 502 71 6250 1017 802 630 80 5354 7.19 6022
S2081 325 13 706 89 335 7 565 0.11 586
S3330 394 46 8431 1662 1086 593 226 9522 6.37 10180
S5378 554 161 14094 2117 465 574 363 14565 19.22 15453
$9234 831 196 | 25672 4733 3853 832 389 26784 92.50 29100
S13207 1014 313 | 35014 6295 3129 1286 929 37190 273 39155
S15850 1189 416 | 40716 7978 1850 1464 919 42521 318.56 | 43238

Table 5.11: Comparison between Multiobjective SimE and PowerFM.

97

N = N s o
= =

7 ") n
0 \n 0
o o o
A A o " A o o

m m g 8 8 ¥ 2 o ©o © o

N -~
(sd) keraq(a) pajoalas s|jan(p) ssaull4 i1sag())
o 40 N 40 (4Y]
x »
n 0)
b and Aol ﬁ hand
L {0 (1)
o o o
~
e

o X o n o

) 8 o ® © ¢ N O - o« © A

=) S (‘d'MS jo wns) 1amod(2) =] =] o

6000

ssaupoob s|ja0 Bay(a)
(1no s1su)iesin)(e)

A

x 10

Generations

x 10

Generations

Figure 5.4: Multiobjective SimE performance for the circuit 513207.

98

oof

o
)
T

o
~

Maximum Fitness per generation
(=] o
(3 ()

©
'S

0.3}

- TS
— GA
— - SimE
0.2 1 1 1 l 1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000 8000

9000

Figure 5.5: Multiobjective SimE versus GA versus TS performance for the circuit

S13207 against time.

99

5.6 Starting from PowerFM as Initial Solution to

GA and TS

The idea of using PowerF'M as a starting solution for other multiobjective iterative
algorithms is relevant given its speed and reasonable performance. Such a strategy
saves significant time for algorithms like GA and TS. The results showed that GA
and TS were able to improve the overall quality of a solution provided by PowerFM
(Fig. 5.6, Fig. 5.7).

Fig. 5.6 shows the performance of GA on circuit S1488 when starting with a
solution provided by PowerFM. Fig. 5.7 shows the performance of TS on circuit
S1488 when starting with the same solution. For this circuit, GA was able to
get better delay, power, cutset values than SimE and PowerFM, with considerably
shorter runtime (compared with the random start GA). For this particular circuit,
TS results were comparable to SimE but not better.

Table 5.12 and Table 3.13 shows the results of using PowerFM to provide an
initial solution for GA and TS respectively when compared to random start and
SimE results. Table 5.12 shows that when starting from a solution provided by
PowerFM, GA results (for all circuits) were better than those starting from a random
solution in terms of the overall quality, which is also the case for TS in Table 5.13.

In Table 5.12, the performance of GA (starting from PowerFM) and multiobjec-

tive SimE is compared. It can be noticed that SimE is better than GA in terms of

100

GA Random Start GA Start From PowerFM Multiobjective SimE

Circuit D (ps) Cut | P (sp) D(ps) | Cut | P (sp) D{ps) | Cut | P (sp)
5298 233 19 1013 191 10 921 197 11l 837
5386 356 36 1529 345 31 1401 393 28 1696
S641 1043 45 2355 861 43 2343 886 16 1738
5832 444 45 3034 441 42 3032 500 45 3232
5953 526 96 2916 465 89 3012 476 48 2473
S1196 396 123 5443 390 86 4921 415 78 5488
S1238 475 127 5713 461 91 5702 350 77 5960
S1488 571 104 5648 541 83 5248 612 83 5892
S1494 614 102 5474 601 97 5123 502 71 6250
S2081 302 26 787 260 15 740 325 13 706
S3330 571 299 10358 435 203 9296 394 46 8431
S5378 587 573 18437 442 423 15356 554 161 14094
59234 1313 1090 38149 856 375 28305 831 196 25672
S13207 1399 1683 45611 951 750 39620 1014 313 35014
515850 1820 2183 51747 1350 851 43680 1189 416 40716

Table 5.12: Start from PowerFM versus random start GA and SimE.

TS Random Start TS Start From PowerFM Multiobjective SimE

Circuit D(ps) [Cut | P(sp) D(ps) | Cut | P (sp) D(s) | Cut | P (sp)
S298 197 24 926 189 10 849 197 11 837
5386 386 30 1426 333 27 1264 393 28 1696
S641 889 59 2281 844 48 2476 886 16 1738
5832 4416 50 2731 431 40 3135 500 45 3232
$953 466 99 2518 430 85 2999 476 48 2473
S1196 3ol 106 4920 335 77 4823 415 78 5488
S1238 408 79 4597 405 56 4506 350 77 5960
S1488 528 98 5529 521 94 6005 612 83 5892
S1494 585 101 5339 534 95 5058 502 71 6250
52081 225 17 770 244 12 704 325 13 706
S3330 533 295 10298 418 103 9285 394 46 8431
S5378 590 430 16527 431 351 15319 554 161 14094
59234 1052 918 34055 833 365 26980 831 196 25672
S13207 843 1332 41114 869 650 38140 1014 313 35014
515850 1411 1671 47480 1250 836 43098 1189 416 40716

Table 5.13: Start from PowerFM versus random start TS and SimE.

1

(c)Power (sum of Sw.P.) (a)Cutset(nets cut)

(e)Avg Fitness

[+)]
g
o

2
8

(5]
g

g
o

o
w
a

10

0 500 1000 1500 2000

500 1000 1500 2000

o

o
F' S

o
w

500 1000 1500 2000
Generations

o

101

2000

2000

700
§650 1
)
@ 600+
2
2550+
500
0 500 1000 1500
60
@
Q
S
5 40
E
o
Q 204
h=X 4l_-r’_‘—‘1d_‘_
0
0 500 1000 1500
0.4
(1] //_’J_/—J_"/"
17,3
[+]
£
% 0.35 I
0
3
0.3 -
0 500 1000 1500
Generations

Figure 5.6: Genetic Algorithm starting from PowerFM for circuit S1488.

2000

N

8

(a)Cutset(nets cut)

R

)

500 1000 1500

2000

w.P
-
&
S

9 7000}

(c)Power (sum o
3
S
S

2000

o
w
(4]

(e)Avg Fitness

o©
w

1000 2000
Generations

3000

102

700

(b)Detay (ps)
g &
o

g

3
o2

500 1000 1500 2000

& 8

(d)Cell difference
n
(=]

0

o@m&wg

500 1000 1500 2000

0.42

04}

(f)Best Fitness

1000 2000 3000
Generations

Figure 5.7: Tabu Search algorithm starting from PowerEF'M for circuit 51488.

103

all objectives (delay, cutset, power) for the circuits S3330, S53378, S9234, 513207 and
S15850. While GA performed better than SimE in terms of all objectives only for
the circuit S832. GA performed better than SimE in terms of delay and power for
the circuits S1488, S1196 and S386 but worse for cutset. Also in terms of delay only
for circuits S2081, S953 and S641 but worse for cutset and power. The overall per-
formance of SimE is better for larger circuits, while GA performance is competitive
for the other smaller ones.

When the results of TS (starting from PowerFM) in Table 5.13 and GA (starting
from PowerF M) in Table 5.12 are compared, it is noticed that TS is better than GA
for all circuits (in terms of all objectives) except for circuits S641 and S1488. For
these two circuits TS is better in terms of cutset and power objectives and worse
for the delay objective.

When the performance of TS (starting from PowerF M) and multiobjective SimE
is compared in Table 5.13, it can be noticed that SimE is better than TS for the
circuits $3330, $3378, S9234, S13207 and S15850 in terms of overall quality of so-
lution, while TS is better for the circuits S386, S832, S1196 and S2081. For other
circuits like S1488, S5378 and S641 TS is better in terms of delay objective only. It
can be concluded that the overall performance of SimE is better than TS for larger
circuits, while TS performs very well for other smaller ones.

The results proved that it is beneficial to use PowerFM as a starting solution

for multiobjective GA and TS. Furthermore, it showed the importance of SimE

104

algorithm and its ability to explore the bigger solution space in a more efficient way.

Chapter 6

Conclusions and Future Directions

In this thesis, the problem of timing and low power driven VLSI standard cell
placement is addressed. This is formulated as a multiobjective optimization problem
(MOP) and the use of fuzzy rules is proposed for designing aggregate cost function.
Two iterative algorithms, namely, GA and TS are presented for solving this hard
problem. In addition, a SimE algorithm was proposed along with a new variation of
the Fiduccia-Mattheyeses algorithm specifically to optimize power called PowerF'M.
The results of the above techniques are promising and show that these are well
engineered algorithms for the problem.

Here are some concluding statements regarding the thesis work:

e The present work successfully addressed the important issue of reducing power

and delay consumption in VLSI circuits.

105

106

e The present work successfully formulate and provide solutions to the problem

of multiobjective VLSI partitioning

e TS partitioning algorithm outperformed GA in terms of quality of solution

and execution time.

e SimE results were better than TS and GA in terms of quality of solution and

execution time.

e PowerFM proved to be a fast and efficient algorithm for power-only optimiza-

tion
e PowerFM results are comparable to SimE but with a faster runtime.

e PowerFM can be used to provide TS and GA algorithms a good starting

solution.

e For GA and TS when starting from PowerFM proved to improve the solutions

obtained from PowerFM.

e For GA and TS when starting from PowerFM proved to give better results

than when starting from a random solution.

e TS (from PowerFM) was better than SimE for smaller circuits but SimE still

better for larger ones.

107

e The results showed the importance of SimE algorithm and its ability to explore

the bigger solution space in a more efficient way.

Future Directions

Some possible directions of future work can as follows:

e Investigation of some other iterative heuristics for the presented problem.

e Some other hybrid techniques can be proposed and experimented with for

further improvement of the results.

e The presented standard cell partitioning techniques can be extended to per-

form the optimization of other steps of VLSI physical design.

Bibliography

[1]

2]

3]

[4]

5]

6]

Semiconductor Industry Association. National Technology Roadmap for Semi-

conductor, 1997.

Sadiq M. Sait and Habib Youssef. VLSI Physical Design Automation: Theory

and Practice. McGraw-Hill Book Company, Europe, 1995.

Sadiq M. Sait and Habib Youssef. Iterative Computer Algorithms with Appli-
cations in Engineering: Solving Combinatorial Optimization Problems. IEEE

Computer Society Press, California, December 1999.

J. Cong. Challenges and Opportunities for Design Innovation in Nanomete

Technologies. SRC Design Sciences Concept Paper, 1997.

K. Shahookar and P. Mazumder. VLSI Cell Placement Techniques. ACM

Computing Survey, 2(23):143-220, June 1991.

Massoud Pedram. CAD for Low Power: Status and Promising Directions. IEEE

International Symposium on VLSI Technology, Systems and Applications, pages

108

[7]

8]

9]

[10]

[11]

[12]

13

109

331-336, 1995.

Unni Narayanan, G.I. Stamoulis, and Rabindra Roy. Characterizing Individual
Gate Power Sensitivity in Low Power Design. 12th International Conference

on VLSI Design, pages 625-628, January 1999.

H. B. Bakoglu. Circuits, Interconnections, and Packaging for VLSI. Addison-

Wesley Pub. Co., 1990.

J. Cong. An Interconnect-Centric Design Flow for Nanometer Technologies.

Proc. of the IEEE, 89(4):505-528, April 2001.

Eckart Zitzler. Evolutionary Optimization for Multiobjective Optimization:
Methods and Applications. DTS Thesis, Swiss Federal Institute of Technology

Zurich, November 1999.

M.R. Garey and D.S. Johnson. Computers and Intractability. Freeman, San

Francisco CA, 1979.

B. W. Kernighan and S. Lin. An Efficient Heuristic Procedure for Partitioning

Graphs. The Bell System Technical Journal, 29(2):291-307, 1970.

Charles M. Fiduccia and R. M. Mattheyses. A Linear-Time Heuristic for Im-
proving Network Partitions. Proc. of the 19#* IEEE Design Automation Con-

ference, pages 175-181, 1982.

[14]

[15]

[16]

[17]

[18]

[19]

[20]

110

H. Vaishnav and M. Pedram. Delay Optimal Partitioning Targeting Low Power
VLSI Circuits. IEEE Trans. on Computer Aided Design, 18(6):298-301, June

1999.

M. Holzrichter and S. Oliveira. New Graph Partitioning Algorithms. The

University of lTowa TR-120., 1998.

L. Hagen and A. Kahng. Combining Problem Reduction and Adaptive Mul-
tistart: A new technique for Superior Iterative Partitioning. [EEE Trans. on

CAD, 16(7):709-717, 1997.

S. Areibi and A. Vannelli. A Combined Eigenvector Tabu Search Approach For
Circuit Partitioning. Proc. of the 1998 Custom Integrated Circuits Conference

(San Diego), pages 9.7.1 - 9.7.4., 1993.

Slawomir Koziel and Wladyslaw Szczesniak. Evolutionary Algorithm for Elec-
tronic Systems Partitioning and its Applications in VLSI Design. IEEE Com-

puting, pages 1411-1414, 1999.

Shantanu Dutt and Wenyong Deng. A Probabilistic Approach to VLSI Circuit

Partitioning. Proc. Design Automation, pages 100-103, June 1996.

Charles J. Alpert and So-Zen Yao. Spectral Partitioning: The More Eigenvec-

tors, the Better. Design Automation Conference, pages 195-200, 1995.

111

[21] L. Hagen and A. Kahng. New Spectral Methods for Ratio Cut Partitioning

And Clustering. IEEE Trans. CAD, 11(9):1074-1083, September 1992.

[22] S. Barnardand and H. Simon. A Fast Multilevel Implementation of Recur-
sive Spectral Bisection for Partitioning Unstructured Problems. Concurrency:

Practice & Ezperience, 6(2):101-117, 1994.

[23] S. Areibi and A. Vannelli. Advanced Search Techniques for Circuit Partitioning,
in Quadratic Assignment and Related Problems, DIMACS Series in Discrete
Mathematics and Theoretical Computer Science edited by P. Pardalos and H.

Wolkowicz. 16:77-99, 1994.

[24] H. Shin and C. Kim. A Simple Yet Effective Technique for Partitioning. IEEE

Transaction on VLSI, pages 380-386, September 1993.

(25] L. Hagen and A. Kahng. Combining Problem Reduction and Adaptive Multi-
start: A New Technique for Superior Iterative Partitioning. IEEE Trans. on

CAD, 16(7):709-717., 1997.

[26] L. A. Sanchis. Multiple-Way Network Partitioning. I[EEE Trans. on Computers,

IEEE Computer Society, Washington D.C., 38(1):62-81, 1989.

[27] Kirkpatrick, C.D. Gelatt and Vecchi M.P. Optimization by Simulated Anneal-

ing. Science, 220(4398):671-680, May 1983.

112

[28] Fred Glover. Tabu Search- Part I. ORSA Journal on Computing, 1(3):190-206,

1989.

[29] C.J. Alpert and A.B. Kahng. A Hybrid Multilevel/Genetic Approach for Circuit

Partitioning. Physical Design Workshop, pages 100-105, 1996.

[30] E. Lawler, K. Levitt, and J. Turne. Module Clustering to Minimize Delay in

Digital Networks. IEEE Trans. on Computer-Aided Design, 47-57, 1969.

[31] J. De Gruijter and A. B. McBratney. A Modified Fuzzy K-Means Method for
Predictive Classification. Proc. of the First Conference of the International

Federation of Classification Societies (IFCS), 1988.

[32] C. Ball, P. Kraus, and D. Mlynski. Fuzzy Partitioning Applied to VLSI-

Floorplanning and Placement. Proc. IEEE Intl. Symp. Circuats and Systems,

pages 177-180, 1994.

[33] D.S. Johnson. Hierarchical Clustering Schemes. Psychometrika, 32(3):241-254,

1967.

[34] S. Dey, F. Brglez, and G. Kedem. Corolla Based Circuit Partitioning and

Resynthesis. ACM/IEEE Design Automation Conf., pages 607-612, 1990.

[35] S. Dey, F. Brglez, and G. Kedem. Partitioning Sequential Circuits for Logic

Optimization. IEEE Intl. Conf. Computer Design, pages 70-76, 1990.

[36]

[37]

[38]

[39]

[40]

[41]

4]

113

S. Hauck and G. Borriello. An Evaluation of Bipartitioning Techniques.
IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems,

16(8):849-866, August 1997.

A. Chandrakasan, T. Sheng and R. W. Brodereson. Low Power CMOS Digital

Design. Journal of Solid State Circuits, 27(4):473-484, April 1992.

Srinivas Devadas and Sharad Malik. A Survey of Optimization Techniques
Targeting Low Power VLSI Circuits. 32nd ACM/IEEE Design Automation

Conference, pages 242-247, 1995.

LS. Choi and S.Y. Hwang. Circuit Partitioning Algorithm for Low-Power De-
sign Under Area Constraints Using Simulated Annealing. JIEE Proc. Cicrcuits

Devices Systems, 146(1):8-15, February 1999.

Jun’ichiro Minami, Koide Tetsushi and Wakabayashi Shin’ichi. A Circuit Par-
tiotioning Algorithm Under Path Delay Constraints. IPSJ SIGNotes Design

Automation, 87(4):WT32-1.1 WT32-1.4, 1998.

Wayne Wolf. Modern VLSI Design. PTR Prentice Hall Inc, Englewood Cliffs,

New Jersey, 1994.

J. Hwang and A. El Gamal. Optimal Replication for Min-Cut Partitioning.
Proc. of IEEE/ACM International Conference on Computer-Aided Design.,

pages 432-435, November 1992.

114

[43] Abrajit Ghosh, Srinivas Devadas, Kurt Keutzer, and Jacob White. Estimation
of Average Switching Activity in Combinational and Sequential Circuits. Design

Automation Conference, pages 253-259, 1992.

[44] G. Fandel and T. Gal, eds. Multiple Criteria Descision Making Theory and
Applications. Lecture Notes in Economics and Mathematics Systems. Berlin:

Springer-Verlag, 177:468-486, 1980.

[45] J. P. Ignizio. The Determinition of a Subset of Efficient Solution via Goal

Programming. Computing and Operations Research, 3(9), 1981.

[46] H.J. Zimmerman. Fuzzy Set Theory and its Applications. Kluwer Academic

Publishers, 3rd edition, 1996.

[47) Sadiq M. Sait, Habib Youseff, and Hussain Ali. Fuzzy Simulated Evolution
Algorithm for Multi-objective Optimization of VLSI Placement. Congress on
Evolutionary Computation, IEEE Service Center, Washington, D.C., pages 91-

97, July 1999.

[48] L. A. Zadeh. Outline of a New Approach to the Analysis of Complex Sys-

tems and Decision Processes. IEEE Transaction Systems Man. Cybern, SMC-

3(1):28-44, 1973.

[49] L. A. Zadeh. The Concept of Linguistic Variable and its Application to Ap-

proximate Reasoning. Information Science, 8:199-249, 1975.

[50]

[51]

[52]

(53]

[54]

(35

[56]

[57]

115

R. Yager. Multiple Objective Decision-making using Fuzzy Sets. International

Journal of Man-Machine Studies, pages 9:375-382, 1977.

R. Yager. Second Order Structures in Multi-criteria Decision Making. Interna-

tional Journal of Man-Machine Studies, pages 36:353-570, 1992.

D. H. Ackley. A Connectionist Machine For Genetic Hillclimbing. Kluwer

Academic Press, Boston, 1987.

T. Bui and B. R. Moon. A Genetic Algorithm For A Special Class of the
Quadratic Assignemnt Problem. DIMACS Series in Discrete Mathematics and

Theoretical Computer Science, 16:99-116, 1994.

S. Areibi. An Integrated Genetic Algorithm With Dynamic Hill Climbing for
VLSI Circuit Partitioning. In Genetic and Evolutionary Computation Confer-

ence (GECCO-2000) IEEE. Las Vegas, Nevada, July 2000.
J. P. Cohoon and W. D. Paris. Genetic Placement. IEEE Trans. on CAD,
pages 956-964, 1987.

L. Tao.,, Y. C. Zhao, K. Thulasiraman and M. N. S. Swamy. An Efficient
Tabu Search Algorithm For Graph Bisectioning. In Proc. First Great Lakes

Symposium on VLSI in Kalamazoo, Michigan, pages 92-95, 1991.

A. Lim and Y. M. Chee. Graph Partitioning using Tabu Search. In Proc IEEE

Intl.symp. Circuits and Systems, Seattle, WA, pages 1164-7, 1991.

116

[58] S. Areibi and A. Vannelli. Circuit Partitioning using Tabu Search Approach.

In Proc. IEEE Intl. Symp. Circuits and Systems, pages 1643-1646, 1993.

[39] R. M. Kling. Optimization by Simulated Evolution and its Application to Cell

Placement. PhD thesis, University of Illinois, Urbana, 1990.

[60] R. M. Kling and P. Banerjee. ESP: Placement by Simulated Evolution. IEEE

Transaction on Computer-Aided Design, 3(8):245-255, March 1989.

[61] Y. Saab and V. Rao. Fast Effective Heuristics for the Graph Bisectioning

Problem. IEEE trans. Computer-Aided Design, 9(1):91-98, January 1990.

[62] Junaid A. Khan, Sadiq M. Sait, and Mahmood R. Minhas. Fuzzy Biasless
Simulated Evolution for Multiobjective VLSI Placement. IEEE CEC 2002,

Hawaii USA, 12-17 May 2002.

[63] Tanner Consulting and Engineering Services. Digital Low Power Standard Cell
Library for MOSIS TSMC CMOS 0.25u Process Deep Sub-Micron Technology.

Tener Research, Inc.

117

Vitae

e Raslan Hashim Al-Abaji

e Born in Beirut, Lebanon.

e Received Bachelor of Science in Electrical Engineering Computers Section
Beirut Arab University, Beirut, Lebanon.

e Joined Computer Engineering Department, KFUPM, as a research assistant
in January 2000.

o Received Master of Science degree in Computer Engineering from

KFUPM, Dhahran, Saudi Arabia in 2002.

