
Experiment 10. Reaction Timer: Part 1. Generating
Random Delay
Masud ul Hasan  ⋅ Aiman El-Maleh  ⋅ Ahmad Khayyat  – Version 151,  27 October 2015

Table of Contents
1. Objectives
2. Materials Required
3. Background

3.1. Reaction Timer
3.2. Generating Random Numbers
3.3. From Random Numbers to Random Delays

4. Tasks
4.1. Design a 5-bit LFSR
4.2. Design a Down Counter
4.3. Counting Down Seconds
4.4. Counting Down a Random Number of Seconds

5. Grading Sheet

1. Objectives
Learn how to generate random numbers using a Linear Feedback Shift Register (LFSR).

Learn how to use counters to wait for specific amounts of time before performing an action.

2. Materials Required
An FPGA prototyping board.

Design and simulation software tools.

The onehz  module from previous experiments.

3. Background

3.1. Reaction Timer
The reaction timer is a circuit that measures human response time to a given event. We will develop the
reaction timer as a game the goes as follows:

1. A player starts the game.

2. After a random delay, an LED will turn on.

3. As soon as the LED is on, the player should respond by pushing a button.

4. The circuit measures the time between the LED turning on and the player’s response.

5. Depending on the response time, a message will be displayed, classifying the player’s response as
either fast, good (average), or slow.

To design this circuit, we need two components: a random time generator, and a response time

1/8



calculator.

This experiment is divided into two parts. In the first part, you will build the random time generator,
which will generate the random time delay between the start signal and the LED turning on. In the
second part, you will build the response time calculator, which will measure the time between the LED
turning on and the player’s response.

The Functional Block Diagram of the Final System figure shows the functional design of the system. The
white area highlights the blocks you are going to build in this part of the experiment. The designer
implementing this functional design, can either make each functional block as a stand-alone circuit, or
merge two or more blocks into one circuit. This choice is left to the designer. Such decision can affect the
complexity and the flexibility of the design.

Figure 1. Functional Block Diagram of the Final System

3.2. Generating Random Numbers
Random numbers can be generated using a component called a Linear Feedback Shift Register (LFSR). An
LFSR is a shift register with XOR feedback.

An n-bit LFSR can generate periodic sequences with a maximum period of 2  – 1. After the period is
finished, the sequence will repeat. The placement of the XOR gates defines the period of the LFSR.

LFSRs in general can be described using polynomials that specify the specific bits used in constructing
the XOR feedback.

An example of a maximal period LFSR is shown in the A 4-bit LFSR with Maximum Period Using Flip-
Flops figure. The corresponding Verilog implementation is also shown in the Verilog Implementation of a
4-bit LFSR listing. The flip-flops used have an active-high preset to initialize the register to the 1111
state.

n

2/8



Figure 2. A 4-bit LFSR with Maximum Period Using Flip-Flops

Verilog Implementation of a 4-bit LFSR

The polynomial that describes this LFSR is:

As apparent, the bits mentioned in the polynomial [1] are the ones XOR’ed, and the result is used as the
input to the shift register. That is, by knowing the polynomial, you can build a circuit that generates
pseudo-random numbers.

 For this LFSR, the state 0000  is a jam case: once you are in that state, you cannot leave
it!

If this LFSR is initialized to Q  Q  Q  Q  = 1111 , the maximal period will be 15, and the output sequence
will be as shown in the Function Table of the 4-bit LFSR and the Sequence of the 4-bit LFSR figure.

Table 1. Function Table of the 4-bit LFSR

Cycle Q  = Q  ⊕ Q Q Q Q Value

1 1 1 1 1 15

2 0 1 1 1 7

3 0 0 1 1 3

4 0 0 0 1 1

modulemodule lfsr_4b (inputinput clock, inputinput preset, outputoutput reg [3:0] y);
    alwaysalways @(posedgeposedge clock)
    beginbegin
        ifif (preset)
            y <= 4'b1111;
        elseelse
        beginbegin
            y <= { y[1] ^ y[0], y[3:1] };
        endend
    endend
endmoduleendmodule

1 + +x3 x4

3 2 1 0

3+ 0 1 2+ 1+ 0+

3/8



5 1 0 0 0 8

6 0 1 0 0 4

7 0 0 1 0 2

8 1 0 0 1 9

9 1 1 0 0 12

10 0 1 1 0 6

11 1 0 1 1 11

12 0 1 0 1 5

13 1 0 1 0 10

14 1 1 0 1 13

15 1 1 1 0 14

16 1 1 1 1 15

Cycle Q  = Q  ⊕ Q Q Q Q Value

Figure 3. Sequence of the 4-bit LFSR

3.3. From Random Numbers to Random Delays
We would like to use the randomly generated number to determine the length of time to wait for user
input. We can do that using a counter that counts up to the random number.

4/8





Counters, Revisited

Recall from previous experiments that a counter counts the edges of an input signal,
typically the clock  signal. It is is a sequential circuit that is composed of a
combinational unit and a register. The register holds the value that the counter has
reached, and the combinational unit will compute the next counter value, which
depends on whether the counter is counting up or down.

In experiment 8 (Clock), you learned how to model a parameterized counter with configurable width.
There are many other variations of counters. For example, synchronous vs. asynchronous clear, up
counter vs. down counter, whether the counter can be loaded with an initial value or not, and so on.

The Verilog Description of a 2-bit Up Counter with Load Capability shows another example of counter
implementation with parallel load: it can set the counter value to a user-provided value that can be
loaded, in parallel, using a dedicated input pin for each bit. A value is loaded using the data  input when
the load  input is set to 1 .

Verilog Description of a 2-bit Up Counter with Load Capability

4. Tasks

4.1. Design a 5-bit LFSR
1. Use the example 4-bit LFSR described in the “Generating Random Numbers” section as a guide.

Analyze its circuit and propose a design for a 5-bit LFSR based on the polynomial:

2. Write a Verilog module for your 5-bit LFSR design, named lfsr_5b . Simulate your design and verify
that the sequence is maximal, i.e., period = 31.

4.2. Design a Down Counter
1. Use the 2-bit up counter described in the “From Random Numbers to Random Delays” section as a

guide to design a 2-bit down counter with load.

The down counter should have a reset input that sets the counter to the value 2'b11  when set. In
addition, the down counter should be loadable, which means that once a load input ( load ) is set to 1 ,
the counter is loaded with a value through the 2-bit data  input. When the counter reaches 0, it
should set an output signal zero  to 1 .

modulemodule up_counter_2b (
    inputinput clock, reset, enable, load, [1:0] data,
    outputoutput reg [1:0] count);

    alwaysalways @(posedgeposedge clock)
    beginbegin
        ifif (reset)
            count <= 0;
        elseelse ifif (load)
            count <= data;
        elseelse ifif (enable)
            count <= count + 1;
    endend
endmoduleendmodule

1 + +x2 x5

5/8



2. Write a Verilog module for your 2-bit down counter design with the given requirements.

Use th interface below for your design:

3. Simulate your design and verify that the down_counter_2b  module counts correctly from a loadable
value n, i.e., outputs = n, n – 1, n – 2, … , 1, 0.

4.3. Counting Down Seconds
1. Use your 2-bit down counter to count seconds.

 Use your counter with a clock input that has a frequency of 1 Hz.



Use the onehz  module that you built in experiment 9 (Building a Digital Timer).
Alternatively, you can use the following implementation.

2. Propose a design that loads some fixed number of seconds and starts counting down.

3. Write a Verilog module for your design. Name it fixed_delay_counter . Use the following module
declaration:

4. Implement your fixed_delay_counter  module and verify its correct operation.

4.4. Counting Down a Random Number of Seconds
1. The following Verilog module, delay_counter , finalizes the design by integrating all the required

components.

modulemodule down_counter_2b (
    inputinput clock, reset, enable, load, [1:0] data,
    outputoutput zero, reg [1:0] count);

modulemodule onehz (
    inputinput  clock, reset,
    outputoutput clock_1hz);

    reg [26:0] counter;

    assignassign clock_1hz = (counter == 27'h5f5e0ff);

    alwaysalways @(posedgeposedge clock)
    beginbegin
        ifif (reset || clock_1hz)
            counter <= 0;
        elseelse
            counter <= counter + 1;
    endend
endmoduleendmodule

modulemodule fixed_delay_counter (
    inputinput  clock, reset, enable, load, [1:0] data,
    outputoutput zero, [1:0] count);

modulemodule delay_counter (
    inputinput  clock, reset, load_rand,
    outputoutput led);

    wire       enable_rand;
    wire [1:0] count;

6/8



Here, lfsr_5b  and fixed_delay_counter  are your modules that you implemented in the previous
tasks. dff  is a D flip flop (see below).

The user should first press the reset  button, which will reset the LFSR. Then, he presses the
load_rand  button, which will load the counter with a random number of seconds obtained from the
LFSR. The 2-bit random number is composed of bit 1 and bit 3 from the 5-bit LFSR output. Note that
when the user presses the load_rand  button, the onehz  module is reset. Once the counter reaches
zero, the counter stops counting and the led  signal should be 1 . The led  signal remains 1  until the
user presses the load_rand  or reset  buttons.

For the D flip flop, use the following Verilog module:

D Flip Flop Verilog Module

2. Implement your delay_counter  module on an FPGA by connecting the clock  signal to the system
clock (FPGA pin V10 ), and other signals to the necessary buttons and LEDs, and test it for correct
functionality. You may want to declare count[1]  and count[0]  as output signals to see the value
loaded in the counter when the load_rand  button is pressed.

3. Answer the following questions:

a. Why is the led  output signal defined as led = zero & ~load_rand ?

b. Why is the load_rand  signal stored in a D flip flop to obtain load_rand_q ?

c. Why is the enable_rand  signal defined as enable_rand = ~led & load_rand_q ?

5. Grading Sheet

Task Points

Design and simulate a 5-bit LFSR 20

Design and simulate a 2-bit down counter with load 20

Design and test your fixed_delay_counter 20

    wire [4:0] random;
    wire       zero;
    wire       load_rand_q;

    assignassign led = zero & ~load_rand;
    assignassign enable_rand = ~led & load_rand_q;

    dff load_rand_ff (clock, reset, load_rand, 1'b1, load_rand_q);
    lfsr_5b lfsr (clock, reset, random);
    fixed_delay_counter second_counter (clock, reset, enable_rand, load_rand,
                                        {random[3], random[1]}, zero, count);
endmoduleendmodule

modulemodule dff (
    inputinput  clock, reset, enable, d,
    outputoutput reg q);

    alwaysalways @(posedgeposedge clock)
        ifif (reset)
            q <= 0;
        elseelse ifif (enable)
            q <= d;
endmoduleendmodule

7/8



Design and demonstrate your delay_counter on the FPGA 20

Lab notebook and discussion 20

Task Points

1.  More accurately,  the bits whose positions correspond to the powers with non-zero coefficients in the polynomial.

Version 151
Last updated 2015-11-19 11:56:13 AST

Typesetting math: 100%

8/8


	Experiment 10. Reaction Timer: Part 1. Generating Random Delay
	1. Objectives
	2. Materials Required
	3. Background
	3.1. Reaction Timer
	3.2. Generating Random Numbers
	3.3. From Random Numbers to Random Delays

	4. Tasks
	4.1. Design a 5-bit LFSR
	4.2. Design a Down Counter
	4.3. Counting Down Seconds
	4.4. Counting Down a Random Number of Seconds

	5. Grading Sheet


