
Experiment 11. Reaction Timer: Part 2. Response Time
Masud ul Hasan ⋅ Aiman El-Maleh ⋅ Ahmad Khayyat – Version 151, 29 October 2015

Table of Contents
1. Objectives
2. Materials Required
3. Background

3.1. Design Overview
3.2. Building a Saturating BCD Counter
3.3. User Response Comparator

4. Tasks
4.1. Design a Three-Digit Saturating BCD Counter
4.2. Build the Response Time Comparator
4.3. Integrate the Reaction Timer Modules

5. Grading Sheet

1. Objectives
Learn how to design a saturating BCD counter.

Learn how to measure user response time.

Finalize the reaction timer experiment.

2. Materials Required
An FPGA prototyping board.

Design and simulation software tools.

Seven-segment display interface module.

3. Background
In the previous experiment, we have built a random delay counter, which waits for a random number of
seconds before turning on an LED for the player to see and react by pushing a push button. Therefore, we
need now to design the part that would measure the time between the LED turning on and the player
pushing the push button. Then, we need to classify how fast the response of the player was.

3.1. Design Overview
The Functional Block Diagram of the Final System figure shows the functional design of the system. The
white area highlights the blocks you are going to build in this part of the experiment.

1/6

Figure 1. Functional Block Diagram of the Final System

We need to design a component that would count the number of seconds between the LED turning on
and the time at which the push button is pressed by the user.

To simplify this task, we will measure the response time by counting using binary coded decimal (BCD)
numbers rather than binary numbers, which means we can display the value of the counter to the player
easily.

We will use a saturating counter, which is a counter that, upon reaching a preset maximum value, will
stop counting rather than going back to zero. The counter is driven by a two_khz module that generates
a 2-kHz signal; as a result, the counter has a half-a-millisecond accuracy, i.e. 500 µs. Once the counting
stops, the output of the counter will be fed into a module that would classify the response time as fast,
medium, or slow.

This design is illustrated in the Component Block Diagram figure below. In this experiment, we will
implement these two components shown in the figure, and will integrate them with the previously
implemented components to obtain a complete, functional system.

Figure 2. Component Block Diagram

2/6

3.2. Building a Saturating BCD Counter



Cascaded BCD Counters

Recall from experiment 9 (Building a Digital Timer) that a BCD counter is a mod-10
counter, and that BCD counters may be cascaded, such that when a digit counter
reaches the maximum digit value of 9, it resets back to 0, and increments the counter
of the next more significant digit. For more details, refer to experiment 9 manual.

The Verilog Module for a Two-Digit Saturating BCD Counter below shows how to build a two-digit
saturating BCD counter, which will count from zero up to 99, and stop at 99 until it is reset using the
reset input signal. Once this counter reaches the value of 99, the only way to get it out of that state is to
reset it.

 Observe how the two-digit counter in this example is built by cascading two one-digit
BCD counters.

Verilog Module for a Two-Digit Saturating BCD Counter

In this experiment, we will need a three-digit saturating BCD counter.

3.3. User Response Comparator
The response comparator is the component that we will use to compare the value of the counter at the time
of the user response against a standardized table that maps the response time to a response speed class
(fast, medium, or slow).

Once the user presses the measure push button, the counter should stop counting, and the response
comparator circuit will check the value of the counter and evaluates the user response time.

The comparator will generate the following three signals to categorize the user response time:

module bcd_counter_1d (
 input clock, reset, enable,
 output eq9, reg [3:0] q);

 assign eq9 = q[3] & q[0];
 always @(posedge clock)
 if (reset)
 q <= 4'b0000;
 else if (enable)
 if (eq9)
 q <= 4'b0000;
 else
 q <= q + 1;
endmodule

module saturating_bcd_counter_2d (
 input clock, reset, enable,
 output eq99, [3:0] q1, q0);

 wire eq9_0, eq9_1, enable_0, enable_1;

 assign eq99 = eq9_0 & eq9_1;
 assign enable_0 = enable & ~eq99;
 assign enable_1 = enable_0 & eq9_0;

 bcd_counter_1d bcd_0 (clock, reset, enable_0, eq9_0, q0);
 bcd_counter_1d bcd_1 (clock, reset, enable_1, eq9_1, q1);
endmodule

3/6

Fast if the user response time is less than 400

Medium if the user response time is 400 or greater but less than 800

Slow if the user response time is between 800 and 999

Combinational logic can be designed to generate the three signals. Two K-maps can be used to derive the
equations for the medium and slow signals. Then, the equation for the fast signal can be derived based on
the other two signals.

 The input of this circuit is the most significant digit (MSD) only of the three-digit
saturating BCD counter (i.e., q2).

4. Tasks

4.1. Design a Three-Digit Saturating BCD Counter
1. Write a Verilog module for a three-digit saturating BCD counter using the following module

declaration:

2. Simulate your three-digit saturating BCD counter and verify its correct functionality.

4.2. Build the Response Time Comparator
The response time comparator circuit determines whether the user’s response is fast, medium, or slow. See
the User Response Comparator section for details.

1. Using two K-maps, derive the equations of the medium and slow signals. Then, deduce the equation of
the fast signal.

2. Write a Verilog module to model the response time comparator circuit using the following module
declaration:

3. Simulate the response_speed module and verify its correct functionality.

4.3. Integrate the Reaction Timer Modules
The Reaction Timer Verilog Module, reaction_timer , below integrates the following modules: -
saturating_bcd_counter_3d - response_speed - delay_counter , from experiment 10 (part 1 of this
experiment).

along with other modules.

Reaction Timer Verilog Module

module saturating_bcd_counter_3d (
 input clock, reset, enable,
 output eq999, [3:0] q2, q1, q0);

module response_speed (
 input [3:0] q,
 output fast, med, slow);

module reaction_timer (

4/6

For the two_khz module, you can use the following Verilog Module for Generating a 2 kHz Signal.

Verilog Module for Generating a 2 kHz Signal

For the display7seg module, use the DISP7SEG.v file that will be given to you in the lab.

1. Implement the reaction_timer module on the FPGA.

a. The signals seg and an should be connected to the seven-segment display unit.

b. The clock signal should be connected to the board’s system clock (pin V10 on the FPGA).

c. The start and measure inputs are the two push buttons that the user will use.

2. Test the correct operation of your circuit.

a. Press the reset button.

b. Press the start button, which will load the down counter with a random number of seconds
between 0 and 3. Once this random number of seconds elapses, the LED will light. Once the LED
signal is 1, the counter will start counting and will stop once you hit the measure button.

c. Press the measure button as soon as you see the LED light. Before pressing the measure button,
you will see the count displayed on the seven-segment display unit. Once you push the measure
button, the classification of your speed will be displayed on the seven-segment display unit. If you
press the measure button before the LED is on, an error message will be displayed.

3. Answer the following questions:

a. Why are the measure and error signals stored in flip-flops (dff) to obtain measure_q and

 input clock, reset, start, measure,
 output led, [7:0] seg, [3:0] an);

 wire [3:0] q2, q1, q0;
 wire reset2 = reset | start;
 wire clock_2khz, measure_q, error, error_q, eq999, fast, med, slow;

 delay_counter m1 (clock, reset, start, led);
 two_khz m2 (clock, reset2, clock_2khz);

 assign error = ~led & measure;
 dff m3 (clock, reset2, measure, 1'b1, measure_q);
 dff m4 (clock, reset2, error, 1'b1, error_q);

 assign enable = clock_2khz & led & ~measure_q;
 saturating_bcd_counter_3d m5 (clock, reset2, enable, eq999, q2, q1, q0);
 response_speed m6 (q2, fast, med, slow);
 display7seg m7 (clock, reset2, q2, 4'b0000, q0, q1, seg, an,
 slow, med, fast, error_q, measure_q, 1'b0, 1'b1);
endmodule

module two_khz (
 input clock, reset,
 output clock_2khz);

 reg [15:0] counter;
 assign clock_2khz = (counter == 16'hc34f);
 always @(posedge clock)
 begin
 if (reset || clock_2khz)
 counter <= 0;
 else
 counter <= counter + 1;
 end
endmodule

5/6

error_q ?

b. Why is the enable signal, that is used to enable the counter, implemented as:
enable = clock_2khz & led & ~measure_q ?

c. Why is the reset2 signal, which is used for resetting all components except the delay_counter ,
implemented as:
reset2 = reset | start ?

5. Grading Sheet

Task Points

Design a three-digit saturating BCD counter + Simulation 15 + 5

Build the response time circuit + Simulation 15 + 5

Integrate the reaction timer modules 35

Lab notebook and discussion 25

Version 151
Last updated 2015-11-23 14:23:16 AST

6/6

	Experiment 11. Reaction Timer: Part 2. Response Time
	1. Objectives
	2. Materials Required
	3. Background
	3.1. Design Overview
	3.2. Building a Saturating BCD Counter
	3.3. User Response Comparator

	4. Tasks
	4.1. Design a Three-Digit Saturating BCD Counter
	4.2. Build the Response Time Comparator
	4.3. Integrate the Reaction Timer Modules

	5. Grading Sheet

