
Experiment 12: Traffic Light Controller

Page 1

Experiment 12

Traffic Light Controller

Objectives

In this experiment, you will:

 Learn how to write a Verilog model for a given finite state machine.

 Design and implement a traffic light controller.

 Perform simple experimental design.

Material Required

 An FPGA prototyping board

 Design and simulation software tools

 OneHz module from previous experiment

Design Overview

In this lab, you are going to develop a Finite State Machine (FSM) for a traffic light controller

that will control the operation of traffic lights of three roads at a crossing as shown in Figure

1. It also shows the three traffic light signals, S1, S2 and S3.

Figure 1: The three traffic light signals at a crossing.

Experiment 12:

Experiment 12: Traffic Light Controller

Page 2

Experiment 12

Design Specifications

There are three traffic light signals, S1, S2, and S3, each alternating between two states, RED

and GREEN. These signals control the traffic flow on the three roads: road1, road2 and road3

in four possible states as follows:

 In STATE 0: There is no traffic: so priority is given to road1. (S1 = GREEN, S2 = RED, S3 =

RED)

 In STATE 1: traffic is coming through road1. (S1 = GREEN, S2 = RED, S3 = RED)

 In STATE 2, traffic is coming through road2. (S1 = RED, S2 = GREEN, S3 = RED)

 In STATE 3, traffic is coming through road3. (S1 = RED, S2 = RED, S3 = GREEN)

An illustration of the last three states is shown in Figure 2.

Figure 2: Illustration of the last three states.

The operation of the three traffic light signals, S1, S2, and S3, is controlled through an

arrangement of traffic sensors and traffic light controller circuit as shown in Figure 3. There

are three traffic sensors X1, X2, and X3, which sense the presence of traffic on the three roads,

as illustrated in Table 1. The controller operation is determined by the output of these three

sensors as enumerated in Table 2.

Experiment 12: Traffic Light Controller

Page 3

Experiment 12

Figure 3: Traffic sensor and traffic light controller circuit.

Table 1: Traffic sensor signals.

X3 X2 X1 Indication

0 0 0 No traffic in all roads

0 0 1 Traffic in Road 1 only

0 1 0 Traffic in Road 2 only

0 1 1 Traffic in Road 1 and Road 2 only

1 0 0 Traffic in Road 3 only

1 0 1 Traffic in Road 1 and Road 3 only

1 1 0 Traffic in Road 2 and Road 3 only

1 1 1 Traffic in all Roads

Table 2: Traffic sensor and controller operation.

X3 X2 X1 Indication

0 0 0 Go to STATE 0

0 0 1 Go to STATE 1

0 1 0 Go to STATE 2

0 1 1 Alternate between STATE 1 and STATE 2,

going to STATE 1 from other states

1 0 0 Go to STATE 3

1 0 1 Alternate between STATE 1 and STATE 3,

going to STATE 1 from other states

1 1 0 Alternate between STATE 2 and STATE 3,

going to STATE 2 from other states

1 1 1 Normal operation: STATE 1, STATE 2,

STATE 3, STATE 1…

Assume that the controller has three inputs: X1, X2, and X3 coming from the traffic sensors,

and three outputs: S1, S2, and S3, which control the operation of the three traffic light signals

(logic 1 represents a GREEN signal and logic 0 represents a RED signal).

Experiment 12: Traffic Light Controller

Page 4

Experiment 12

FSM Modeling in Verilog

A synchronous sequential circuit is composed of data storage elements, often

implemented by D flip flops, and combinational logic to implement the output and the

next state functions as shown in Figure 4. The inputs to the combinational logic are the

current state variables and the primary inputs while the outputs of the combinational

logic are the next state variables and primary outputs.

Figure 4: Sequential circuit model.

To write a Verilog model for a sequential circuit, we can have two always blocks, one

modeling the storage elements and another modeling the combinational logic. As an

illustrative example, let us consider the Moore sequence detector for detecting the

sequence 1 followed by 1 followed by 0, shown in Figure 5.

0

Figure 5: Moore sequence detector (detecting sequence 110).

Experiment 12: Traffic Light Controller

Page 5

Experiment 12

The Verilog model for this Moore sequence detector is given below:

module moore_110_detector (output reg z, input x, clk, rst);

parameter reset = 2'b00, got1=2'b01, got11=2'b10, got110=2'b11;

reg [1:0] state, next_state;

always @(posedge clk, posedge rst)

 if (rst) state <= reset; else state <= next_state;

always @(state, x) begin

z = 0;

case (state)

 reset: if (x) next_state=got1; else next_state=reset;

 got1: if (x) next_state=got11; else next_state=reset;

 got11: if (x) next_state=got11; else next_state=got110;

 got110: begin

 z=1;

 if (x) next_state=got1;

 else next_state=reset;

 end

endcase

end

endmodule

Note that parameter is used to define the used state codes. We also need to define two

variables of type reg one to represent the current state (state) and the other to represent the

next state (next_state). The first always block models the storage elements using D-FFs

assuming asynchronous reset. The second always block models the combinational block

behavior using a case statement. You can use this model to model any FSM.

Tasks

1. Complete the state table given below for the traffic light control, assuming Moore

model. Assume that STATE0 is the reset state. Verify the correctness of your state

table with your lab instructor.

Current

State

Input Next State Output

X3 X2 X1 S3 S2 S1

STATE0 0 0 0 STATE0 0 0 1

STATE0 0 0 1 STATE1 0 0 1

STATE0 0 1 0 STATE2 0 0 1

STATE0 0 1 1 STATE1 0 0 1

Experiment 12: Traffic Light Controller

Page 6

Experiment 12

STATE0 1 0 0 STATE3 0 0 1

STATE0 1 0 1 STATE1 0 0 1

STATE0 1 1 0 STATE2 0 0 1

STATE0 1 1 1 STATE1 0 0 1

STATE1 0 0 0

STATE1 0 0 1

STATE1 0 1 0

STATE1 0 1 1

STATE1 1 0 0

STATE1 1 0 1

STATE1 1 1 0

STATE1 1 1 1

STATE2 0 0 0

STATE2 0 0 1

STATE2 0 1 0

STATE2 0 1 1

STATE2 1 0 0

STATE2 1 0 1

STATE2 1 1 0

STATE2 1 1 1

STATE3 0 0 0

STATE3 0 0 1

STATE3 0 1 0

STATE3 0 1 1

STATE3 1 0 0

STATE3 1 0 1

STATE3 1 1 0

STATE3 1 1 1

2. Complete the following Verilog model for the FSM of the traffic light controller:

module TLC (input CLK, Reset, EN, X3, X2, X1, output reg S3, S2,

S1, output st1, st0);

parameter STATE0 = 2'b00, STATE1 =2'b01, STATE2 =2'b10, STATE3

=2'b11;

reg [1:0] state, next_state;

assign st1 = state[1];

assign st0 = state[0];

always @(posedge CLK, posedge Reset)

 if (Reset) state <= STATE0;

 else if (EN) state <= next_state;

Experiment 12: Traffic Light Controller

Page 7

Experiment 12

always @(state, X1, X2, X3) begin

S1 = 0; S2 = 0; S3 = 0;

case (state)

 STATE0:

 begin

 S1=1;

 if ({X3,X2,X1}==3'b000) next_state=STATE0;

 else if ({X3,X2,X1}==3'b100) next_state=STATE3;

 else if ({X2,X1}==2'b10) next_state=STATE2;

 else next_state=STATE1;

 end

 STATE1:

 STATE2:

 STATE3:

endcase

end

endmodule

3. Simulate your TLC module and verify its correct operation. Assuming that the circuit

is initially in state0, determine the input sequence to obtain the following output

sequence: 001, 100, 100, 001, 010, 001.

4. Implement the following Verilog module on FPGA, which changes between traffic

light signals at a frequency of 1 HZ. Use the OneHZ module from previous labs. Test

the implemented module by connecting CLK to the system clock (V10), Reset to one

of the push buttons, X1, X2 and X3 to three switches, S1, S2, S3, st1, and st0 to LEDs.

Verify correct operation of your implemented module.

module TLC_Test (input CLK, Reset, X3, X2, X1, output S3, S2, S1,

st1, st0);

OneHZ M1 (CLK, Reset, CLK1HZ);

TLC M2 (CLK, Reset, CLK1HZ, X3, X2, X1, S3, S2, S1, st1, st0);

endmodule

Experiment 12: Traffic Light Controller

Page 8

Experiment 12

Grading Sheet

Task Points

Complete the state table 10

Complete the state machine Verilog model 20

Simulate your traffic light controller 15

Implement your traffic light controller 30

Lab notebook and discussion 25

