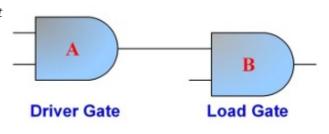
Experiment 2. Integrated Circuits; Electrical Properties and Specifications

Alaaeldin Amin · Masud ul Hasan · Hazem Selmi · Ahmad Khayyat – Version 151, 5 September 2015

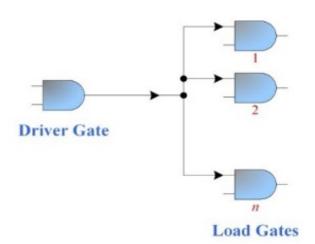
Table of Contents

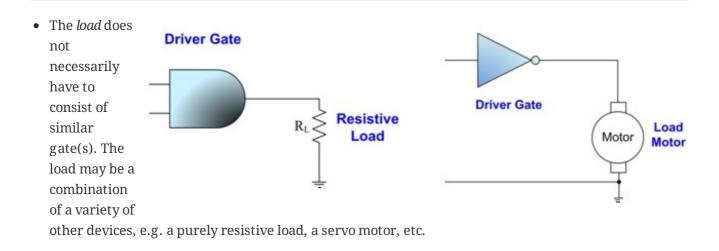
- 1. Objectives
- 2. Materials Required
- 3. Background
 - 3.1. Requirements for Proper Load Driving
 - 3.2. Voltage Requirements
 - 3.3. Current Requirements
- 4. Tasks
 - 4.1. Current Drive Capability (I_{OH} and I_{OL})
 - 4.2. Major Voltage Specifications (V_{OH}, V_{OL}, V_{IL}, and V_{IH})
- 5. Grading Sheet

1. Objectives

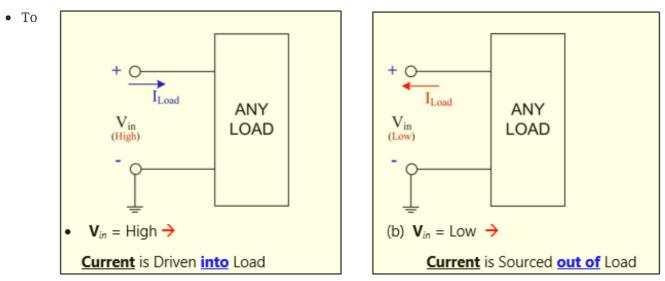

- Reading data sheets and extracting required parameters.
- Understanding the significance of some major input and output electrical specifications.
- Understanding the limitations of driving various loads.
- Develop experiments to measure and verify some of these specs.

2. Materials Required


- IC 7404
- Potentiometers / Variable resistors
- Wires
- Wire stripper
- Prototyping board with power and ground connections
- IC Tester
- Multi-meters


3. Background

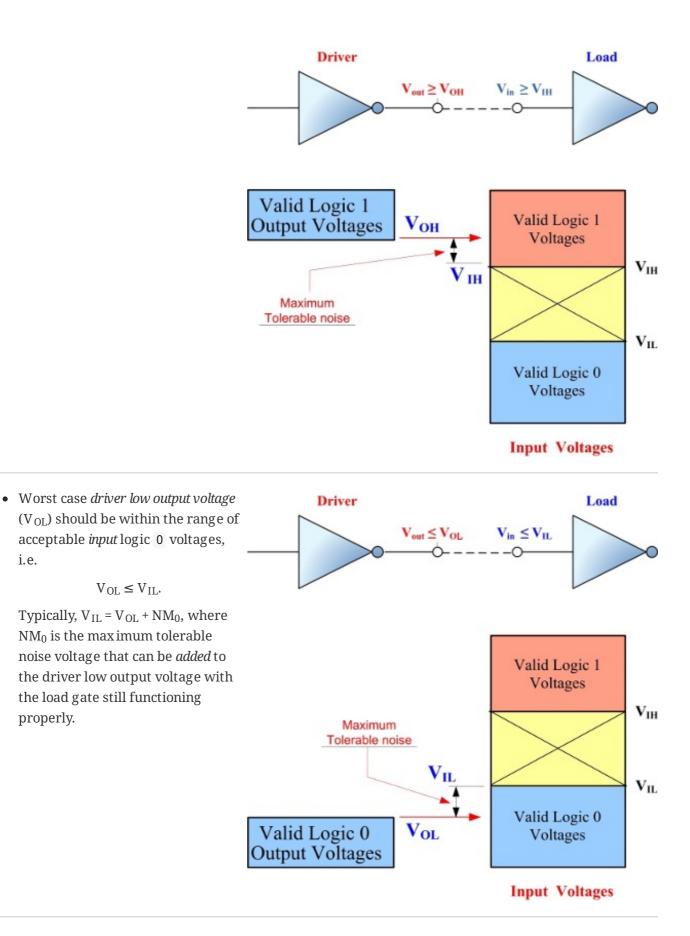
- If the *output* of some gate A is connected to the *input* of another gate B, gate A is said to be the driver gate, while gate B is said to be the load gate. Equivalently, we say:
 - A drives B, or
 - B loads A



• A single driver gate may have more than one load gate.

3.1. Requirements for Proper Load Driving

drive a given load, the driver must be capable of providing the load with the proper values of:


- 1. Input voltage (*high* and *low*), and
- 2. Current (in and out)

3.2. Voltage Requirements

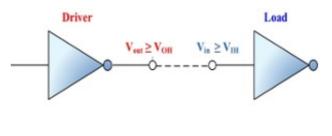
- Using electric signals to represent Volts logic values, a logic 0 value is Valid Logic 1 allocated a range of low voltages min voltage Voltages while a logic 1 value is allocated a accepted as Logic 1 range of high voltages: V_{High} Invalid Range Of Voltages VLow max voltage acceptrd as Logic 0 Valid Logic 0 Voltages • If both the driver and load are IC Valid Logic 1 gates, the driver output voltage Valid Logic 1 V_{OH} Voltages $V_{high}\,and\,V_{low}$ values and the load Voltages NM₁ input voltage $V_{\rm high}$ and $V_{\rm low}$ values VIH are different and are designated as V_{OH} and V_{OL} for outputs and as V_{IH} and V_{IL} for inputs. VIL NM_0 v Valid Logic 0 OL Valid Logic 0 Voltages Voltages **Output Voltages** Input Voltages
- Worst case *driver high output voltage* (V_{OH}) should be within the range of acceptable *input* logic 1 voltages, i.e.

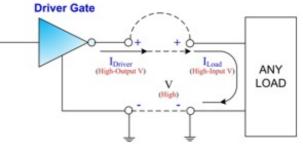
$V_{OH} \ge V_{IH}$

Typically, V_{OH} = V_{IH} + NM₁, where NM₁ is the maximum tolerable noise voltage that can be *subtracted* from the driver high output voltage with the load gate still functioning properly.

3.3. Current Requirements

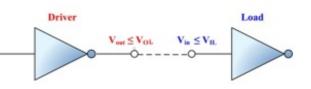
i.e.

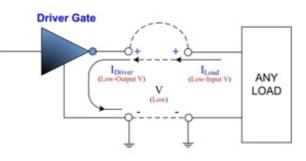

properly.


• When the *driver output* is high ($V_{out} \ge V_{OH}$), the maximum current that can be *delivered by* the driver is known as I_{OH}.

If the current drawn from the driver exceeds I_{OH}, the output voltage ay drop below the minimum acceptable logic 1 voltage of V_{OH} .

Thus, for proper operation:




• When the *driver output* is low ($V_{out} \le V_{OL}$), the maximum current that can be *sunk into* the driver from the load is designated as I_{OL} .

If more current than $I_{\rm OL}$ is sunk into the driver, the output voltage may exceed the maximum acceptable logic 0 voltage of V_{OL}.

Thus, for proper operation:

 $I_{OL} \geq I_{Load}$

Exercise

Check out the SN7404 ^[1] or the SN5404 ^[2] IC that you will use in this lab, read its corresponding data sheet, and answer the following:

- 1. What is the difference between the 7400 and the 5400 series?
- 2. Define the following electrical parameters in your own words, and extract their values from the data sheet of the specific IC type you will be using:

Parameter	Definition	Value
V _{IL}		
V _{IH}		
V _{OL}		
V _{OH}		
I_{IL}		
$I_{\rm IH}$		

Parameter	Definition	Value
I _{OS}		
102		

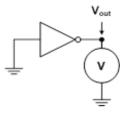
4. Tasks

In this experiment, we characterize some major electrical characteristics of IC input and output pins. The IC used in the experiment is a hex inverter 54/7404.

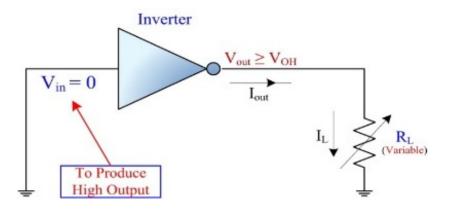
The tasks are broken down into two parts:

- 1. Determination of the current drive capability of the output of an IC driver, i.e. measuring I_{OH}, and I_{OL}.
- 2. Determination of some major voltage specifications of an IC:
 - $\circ~$ Output specifications (V $_{OH}$ and V $_{OL})$
 - $\circ~$ Input specifications (V $_{\rm IH}$ and V $_{\rm IL})$

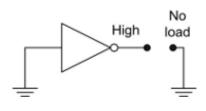
4.1. Current Drive Capability (I_{OH} and I_{OL})


In this part, we characterize the drive capability (I_{OH} and I_{OL}) of output pin drivers of the SN7404 IC.

Strategy


- 1. Plot the output voltage of one of the hex inverters versus the output load current in two cases:
 - a. $V_{out} = Logic \ 1 = High Voltage, i.e. V_{out} \ge V_{OH}$
 - b. $V_{out} = Logic \ 0 = Low Voltage, i.e. V_{out} \le V_{OL}$
- 2. Together we will develop, in a step-by-step manner, the circuit needed to test case 1 (a).
- 3. Independently, you will develop the circuit needed to test case 1 (b).

4.1.1. Plotting V_{out} vs. I_{out} with V_{out} = High (V_{out} \geq V_{OH})


- First, for an inverter of the SN7404 IC, make sure that V_{out} = High, i.e. force V_{in} = Low.
- This way, when connecting V_{out} to the load, the current will be sourced out of the driver.

• We need to draw different values of load current from the driver and see how this affects the output voltage value.

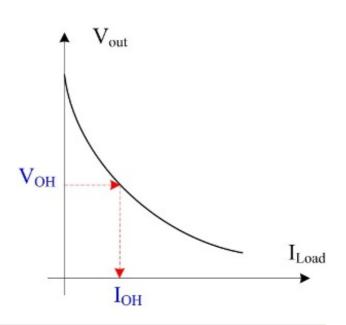
• For the highest impedance [3] load (open circuit), there will be no load (no current drawn, i.e. $I_{out} = 0$), and V_{out} assumes its highest value.

Max load current

R=0

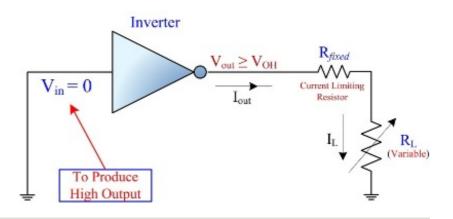
(short circuit)

• The lowest impedance load (short circuit) yields the largest load current, and V_{out} assumes its lowest value (V_{out} = 0).


In this case, V_{out} = 0 in spite of the fact that the inverter input V_{in} = 0.

Thus,

- V_{out} = highest value when I_{out} = 0 (no load condition, i.e. open circuit)
- V_{out} = lowest value = 0 when I_{out} = maximum (short circuit)


Conclusions

- As the load current I_{out} increases, V_{out} goes down.
- V_{out} must have acceptable logic 1 voltage for proper inverter operation, i.e. $V_{out} \ge V_{OH}$.
- Thus, the load current I_{out} must not exceed the value that brings V_{out} down to V_{OH} (i.e. at V_{out} = V_{OH}) → I_{Load} = I_{OH}.

Test Circuit

- The above circuit may inadvertently cause the variable load resistor to be 0 (R_L = 0). Thus, the driver inverter output is short circuited to ground causing huge currents that may damage the IC.
- To avoid such damaging large current, a fixed resistor, R_{fixed}, is connected in series with the variable resistor.

Estimating a Reasonable Value for R_{fixed}

- Maximum output current when $V_{out} = High (V_{out} \ge V_{OH})$ is I_{OH} .
- The I_{OS} current is damaging if sustained for more than a very short duration (about 1 second).
- Let's select the maximum allowed output current I_{out}(max) to be such that:

$I_{OH} < I_{out}(max) < I_{OS}$

• Assume that $I_{out}(max) = I_{OS}/2$. Then,

$$R_{fixed} = V_{out}(max) / I_{out}(max) = 2 V_{out}(no load) / I_{OS}$$

Steps

- 1. Vary the variable resistor from its maximum value to its lowest value in steps, each time recording V_{out} and the corresponding I_{out}.
- 2. Plot V_{out} vs. I_{out}. Determine the value of I_{out} corresponding to the spec. value of V_{OH}.
- 3. Compare your suggested I_{OH} value with the spec. value. Which value is lower? Why?

Questions

- 1. Is the value you selected for I_{OH} different from that specified by the manufacturer?
- 2. If yes, what are some of the factors that the manufacturer might have taken into account in defining his specified values of I_{OH}?

4.1.2. Plotting V_{out} vs. I_{out} with V_{out} = Low (V_{out} \leq V_{OL})

Follow the same steps in the previous section. Use the following hints as a guide.

- 1. Make sure the inverter output is low.
- 2. Make sure that I_{out} direction is into the driver (inverter) output, not out of it.
- 3. Make sure that your circuit allows varying I_{out} versus output voltage $V_{\,out}.$
- 4. Make sure that your circuit protects the inverter output from passing excessive currents, i.e. the max current should be limited to an acceptable value (> I_{OL}).

Steps

- 1. Vary the variable resistor from its maximum value to its lowest value in steps, each time recording V_{out} and the corresponding I_{out}.
- 2. Plot V_{out} vs. I_{out}. Determine the value of I_{out} corresponding to the spec value of V_{OL}.

3. Compare your suggested I_{OL} value with the spec. value? Which value is lower? Why?

Questions

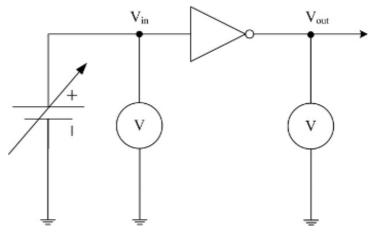
- 1. Is the value you selected for I_{OL} different from that specified by the manufacturer?
- 2. If yes, what are some of the factors that the manufacturer might have taken into account in defining his specified values of I_{OL}?
- 3. What is meant by the output drive? What are the parameters that define the driving-ability of an IC output pin?

4.2. Major Voltage Specifications (V_{OH} , V_{OL} , V_{IL} , and V_{IH})

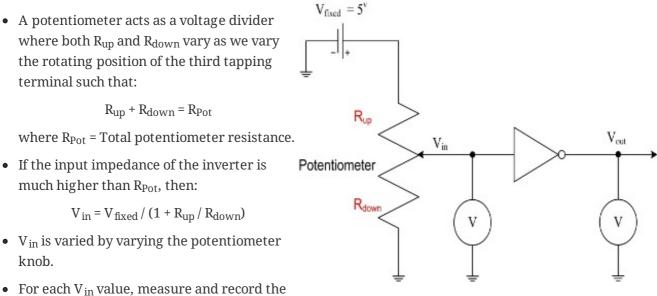
In this part, we determine V_{OL} , V_{IL} and V_{IH} for one of the hex inverters available in the SN7404 IC.

Strategy

Determination of these voltage quantities will be done through plotting the voltage transfer characteristics of the inverter. $V_{OH} = V_{OH} = -1$ $V_{OL} = V_{UL} = V_{UL$


4.2.1. The Test Circuit

In this section, we are going to incrementally build the test circuit, justifying each revision as we go.


Revision 1

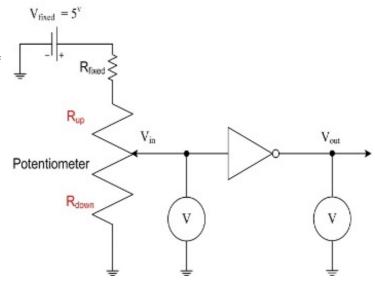
- Variable voltage source
- $V_{in} = V_{SRC}$
- V_{in} is varied by varying the input voltage source from 0 to V_{CC} .
- For each V_{in} value, measure and record the corresponding $V_{out}.$

Merits: Directly connecting the voltage source to the IC input is not recommended as the absolute maximum rating of the input may accidentally be exceeded causing device permanent damage.

Revision 2

corresponding V_{out} .

Merits: If $R_{up} \approx 0$, direct connection of the voltage source to the IC input may cause an input voltage overshoot and is not recommended.


Revision 3

- The lowest V_{in} in this case is when R_{down} = R_{Pot}(min) ≈ 0, leading to: V_{in}(min) ≈ 0.
- The highest V_{in} in this case is when R_{down} = R_{Pot} and is given by:

 $V_{in}(max) = V_{fixed} / (1 + R_{fixed} / R_{Pot})$

• For V_{in}(max) ≈ V_{fixed}, the value of R_{fixed} should be selected such that:

$$R_{\text{fixed}} \ll R_{\text{Pot}} \rightarrow R_{\text{fixed}} \le 0.1 R_{\text{Pot}}$$

Steps

- 1. Vary the potentiometer rotary switch knob, and read V_{in} and the corresponding V_{out} values.
- 2. Plot V_{out} vs. V_{in} .

Questions

- 1. Are the values you selected for V_{OH} , V_{OL} , V_{IL} , and V_{IH} different from those specified by the manufacturer?
- 2. If yes, what are some of the factors that the manufacturer might have taken into account in defining the specified values of V_{OH} , V_{OL} , V_{IL} , and V_{IH} ?

5. Grading Sheet

Task	Points
Plot and discuss V_{out} vs. I_{out} with V_{out} = High	25
Plot and discuss V_{out} vs. I_{out} with V_{out} = Low	25
Plot V _{out} vs. V _{in}	25
Lab notebook and discussion	25

1. SN7404, SN74LS04, or SN74S04.

2. SN5404, SN54LS04, or SN54S04.

3. resistance

Version 151 Last updated 2015-10-04 21:22:18 AST