
Experiment 5. Combinational Logic Design
Masud ul Hasan ⋅ Mohammad Elrabaa ⋅ Ahmad Khayyat – Version 151, 8 September 2015

Table of Contents
1. Objectives

2. Materials Required

3. Background

3.1. Building the Arithmetic Unit Using Structural Description

3.2. Building the Arithmetic Unit Using Behavioral Description

3.3. Extending the Arithmetic Unit Functionality

4. Tasks

4.1. Build the 4-Bit Arithmetic Unit Structurally

4.2. Build the 4-Bit Arithmetic Unit Behaviorally

4.3. Extend the Arithmetic Unit Functionality

4.4. Discussion

5. Grading Sheet

1. Objectives
Design a simple arithmetic logic unit (ALU) as an example of a combinational logic circuit.

Use a multiplexer, an adder, and simple logic gates to implement the arithmetic unit.

Implement an ALU using Verilog behavioral description.

2. Materials Required
An FPGA prototyping board.

Design and simulation software tools.

3. Background
In this experiment, you will design a combinational logic circuit that exists in every computer: the
arithmetic logic unit (ALU). You will implement the design using Verilog.

Verilog supports two different ways of describing a design: structural and behavioral descriptions.
Structural description of a circuit involves describing the components that make up the circuit, and the way
they are interconnected, i.e. the structure of the circuit. Such description is also known as a netlist.
Behavioral description, on the other hand, focuses on what the circuit does, i.e. its behavior. Behavioral
description is more powerful and allows us to describe very complex designs easily using familiar
sequential statements that are similar to statements of software programming language.

First, you will implement a simple 4-bit arithmetic unit structurally with Verilog using a multiplexer, an
adder and other gates.

1/6

What is a Multiplexer?

A multiplexer is a combinational circuit that accepts multiple inputs, and selects one of
them to form its single output. The selection is determined using a separate set of
inputs known as the select lines.

A multiplexer is also referred to as a MUX.

After implementing the arithmetic unit, you will implement a 4-bit ALU using behavioral Verilog
description.

3.1. Building the Arithmetic Unit Using Structural Description
The functionality of the 4-bit arithmetic unit is described in the Functionality of the 4-bit Arithmetic Unit
table. A and B in the table are 4-bit inputs, and Y is the 5-bit output.

Table 1. Functionality of the 4-bit Arithmetic Unit

Control Word (S S) Function Description

0 0 Y = A + B Add A and B

0 1 Y = A × 2 Multiply A by 2 (A + A)

1 0 Y = A + 1 Increment A by 1

1 1 Y = A + 2 Increment A by 2

 Note that all the required operations can be performed using a single 4-bit binary
adder. The trick is to carefully manipulate its inputs for each of the desired operations.

The Required Adder Inputs for Each Arithmetic Operation table shows the inputs that should be applied
to the adder to implement each of the required arithmetic operations. Note that, throughout the table:

The A input is always used as is.

C = 1 only when S = 1, or, equivalently, C is equal to S .

There are four different possibilities for the B input of the adder. This is where a 4-to-1 multiplexer
can become useful. It allows us to select one of the four possibilities depending on the operation being
performed.

The Structure of the Arithmetic Unit figure illustrates these connections.

Table 2. Required Adder Inputs for Each Arithmetic Operation

Control Word (S S) Required input connections Function

0 0 A → A, B → B, 0 → C Y = A + B + C = A + B + 0 = A + B

0 1 A → A, A → B, 0 → C Y = A + B + C = A + A + 0 = A + A = 2A

1 0 A → A, 0000 → B, 1 → C Y = A + B + C = A + 0 + 1 = A + 1

1 1 A → A, 0001 → B, 1 → C Y = A + B + C = A + 1 + 1 = A + 2

1 0

in 1 in 1

1 0

in in

in in

in in

in in

2/6

Figure 1. Structure of the Arithmetic Unit

The Verilog description of a 2-to-1 MUX, and a 4-to-1 MUX using the select operator ? are listed below.

2-to-1 Multiplexer

4-to-1 Multiplexer

To build the arithmetic unit shown in the Structure of the Arithmetic Unit figure, we need to modify the
above 4-to-1 MUX description so that it selects one of the B, A, 0, or 1 inputs, as shown in the Structure of
the Arithmetic Unit.

 Replace the Dx inputs in the 4-to-1 MUX description with the required inputs.

3.2. Building the Arithmetic Unit Using Behavioral Description
In the previous section, we saw how we can build the arithmetic unit by putting a few different
components together, structurally. In this section, we will implement the same unit by describing its
behavior instead of describing its structure or components.

The Verilog behavioral description of the 4-bit arithmetic unit is shown below.

Verilog Behavioral Descriptions of the 4-bit Arithmetic Unit

assignassign Y = S ? D1 : D0;
// If S is 1, Y <- D1, else Y <- D0. Y, D0, and D1 are wires of any width

modulemodule mux_4bit (
 inputinput wire [3:0] D0, D1, D2, D3,
 inputinput wire S1, S0,
 outputoutput wire [3:0] Y);

 assignassign Y = S1 ? (S0 ? D3 : D2) : (S0 ? D1 : D0);
 // if S1 is 1 then select between D3 and D2
 // else select between D1 and D0
endmoduleendmodule

modulemodule arithmetic_unit_4bit_behavioral (
 inputinput [3:0] A, B,
 inputinput S1, S0,
 outputoutput reg [4:0] Y);

 alwaysalways @*
 beginbegin
 casecase ({S1,S0})
 2'b00 : Y = A + B; // ADD A and B

3/6

The above Verilog description will result in a different structure than the one depicted in the Structure of
the Arithmetic Unit figure. It results in the structure shown in the figure: Structure of the Arithmetic
Unit Resulting from Behavioral Description. Behaviorally, the case statement in Verilog describes a
multiplexer, and the expression in each branch of the case statement results in its own circuit, which
generates one of the multiplexer’s inputs.

Figure 2. Structure of the Arithmetic Unit Resulting from Behavioral Description

3.3. Extending the Arithmetic Unit Functionality
Lastly, we would like to extend the arithmetic unit to become a full arithmetic logic unit (ALU), whose
functionality is described in the Required Functionality of the 4-bit ALU table. A and B in the table are 4-
bit inputs, and Y is the 5-bit output.

Table 3. Required Functionality of the 4-bit ALU

Control Word (S S S) Function Description

0 0 0 Y = A + B Add A and B

0 0 1 Y = A * 2 Multiply A by 2

0 1 0 Y = A + 1 Increment A by 1

0 1 1 Y = A + 2 Increment A by 2

1 0 0 Y = ~A Bit-wise invert A

1 0 1 Y = A & B Bit-wise AND A and B

 2'b01 : Y = A * 2; // 2A
 2'b10 : Y = A + 1; // Increment A by 1
 2'b11 : Y = A + 2; // Increment A by 2
 endcaseendcase
 endend
endmoduleendmodule

2 1 0

4/6

1 1 0 Y = A | B Bit-wise OR A and B

1 1 1 Y = A ^ B Bit-wise XOR A and B

Control Word (S S S) Function Description

4. Tasks

4.1. Build the 4-Bit Arithmetic Unit Structurally
In this task, you will implement the circuit shown in the Structure of the Arithmetic Unit figure.

1. Build a Verilog module for the 4-bit binary adder.

2. Build a Verilog module for the 4-to-1 multiplexer.

3. Instantiate the two modules in a top-level module, and apply the appropriate inputs to the
multiplexer.

4. Verify the correctness of your design using simulation.

A test bench module is provided to you to help you verify your design through simulation. To use the
test bench, instantiate your top-level module in the provided test bench, and use the test bench as the
top-level module in the simulator.

5. Implement your design, download it to the FPGA, and verify its operation.

4.2. Build the 4-Bit Arithmetic Unit Behaviorally
In this task, you will use the Verilog Behavioral Descriptions of the 4-bit Arithmetic Unit.

1. Enter the Verilog description.

2. Simulate the design and verify its correctness using the provided test bench.

3. Implement the design, download it to the FPGA, and verify its operation.

 Use the same UCF file of your structural design in the previous task (Build the 4-Bit
Arithmetic Unit Structurally).

4.3. Extend the Arithmetic Unit Functionality
In this task, you will extend the behavioral Verilog description of the arithmetic unit to implement an
arithmetic logic unit (ALU) with the functionality described in the Required Functionality of the 4-bit
ALU table.

1. Design your ALU in a module named alu_4bit .

2. Simulate your design using the provided test bench.

3. Verify its operation on the FPGA.

4.4. Discussion
Answer the following questions:

1. Considering the structural and the behavioral descriptions of the arithmetic unit, which style of

5/6

design did you find is easier to describe?

2. Why were you able to reuse the same UCF file for the first two tasks (structural and behavioral
implementations of the arithmetic unit)?

Can you reuse the same UCF file for the third task (building the ALU)?

Explain your answer.

3. Would you be able to add the additional ALU operations in the third task if you were using the
structural design of the first task?

If no, why? If yes, how?

4. How would you extend the functionality of the ALU in the third task to have three operands (i.e. A ,
B , and C instead of A and B only)? What would be the number of possible operations on these
operands?

5. Grading Sheet

Task Points

Build the arithmetic unit structurally 20

Build the arithmetic unit behaviorally 20

Build the ALU 35

Lab notebook and discussion 25

Version 151
Last updated 2016-02-18 00:10:51 AST

6/6

	Experiment 5. Combinational Logic Design
	1. Objectives
	2. Materials Required
	3. Background
	3.1. Building the Arithmetic Unit Using Structural Description
	3.2. Building the Arithmetic Unit Using Behavioral Description
	3.3. Extending the Arithmetic Unit Functionality

	4. Tasks
	4.1. Build the 4-Bit Arithmetic Unit Structurally
	4.2. Build the 4-Bit Arithmetic Unit Behaviorally
	4.3. Extend the Arithmetic Unit Functionality
	4.4. Discussion

	5. Grading Sheet

