
Experiment 9. Building a Digital Timer
Masud ul Hasan ⋅ Ahmad Khayyat – Version 151, 9 April 2015

Table of Contents
1. Objectives

2. Material Required

3. Background

3.1. Modulo Counters

3.2. Pulse Generator with Exact Frequency

3.3. Digital Timers

4. Tasks

4.1. Building Modulo Counters

4.2. Pulse Generators

4.3. Building a Digital Timer

5. Grading Sheet

1. Objectives
Design modulo counters

Use cascaded modulo counters to build a digital timer

Generate slower clock signals with exact frequencies

2. Material Required
An FPGA prototyping board.

Design and simulation software tools.

A seven-segment display interface module.

3. Background

3.1. Modulo Counters
A modulo-N counter is a counter that counts from 0 to N − 1. For example, a modulo-10 counter counts
from 0 to 9, then it wraps around back to 0. A modulo-10 counter is also known as a BCD counter, for
Binary-Coded Decimal, because it counts through the decimal digits.

A modulo-N counter must be wide enough to represent all of its counter values. For example, a modulo-
10 counter must be able to represent all the values between 0 and 9, requiring four bits. Therefore, a
modulo-10 counter can be implemented using a 4-bit binary counter.

Unlike a typical binary counter, however, a modulo counter may need to go back to zero before it
exhausts all its binary combinations. For example, a 4-bit binary counter counts up to 15 (binary 1111),
then naturally resets to zero. A modulo-10 counter, however, must be coerced to go from 9 to 0, despite it
being implemented using a 4-bit counter.

The Waveforms of a Modulo-10 Counter figure shows the behavior of a modulo-10 counter. In the figure,
1/7

the C0 through C3 signals are the counter value bits. Collectively, they represent the values from 0 to 9.
The CE signal is the counter enable input, and CEO is the counter output enable signal, which allows the
counter to indicate to other circuits that it is going to wrap around by the next clock cycle. You can see in
the figure that CEO is high while the counter is at its last value, 9.

Figure 1. Waveforms of a Modulo-10 Counter

 The CEO output is also usually known as carry out, or CO .

To have the modulo-N counter reset itself to go from N − 1 back to zero, the binary counter needs to be
augmented with a circuit that detects the last valid counter value, N − 1, and when detected, uses the
counter’s clear input to reset it back to zero.

The input to this circuit would be the current counter value, and the output is a single bit that determines
whether to clear the counter or not.

The Schematic of a Modulo-10 Counter figure illustrates how you can build a modulo-10 counter using a 4-
bit binary counter. The CB4RE component in the figure is a 4-bit binary counter with a reset input (R).

Figure 2. Schematic of a Modulo-10 Counter

2/7



Synchronous vs. Asynchronous Clear

The reset, or clear, input of the counter can be synchronous or asynchronous. A
synchronous clear input clears the counter’s output, i.e. sets the counter value to zero,
on the next edge of the clock cycle. On the other hand, an asynchronous clear input
clears the counter’s output immediately, regardless of all other inputs, including the
clock.

The design of the reset circuit in a modulo counter depends on the type of the clear
input in the used binary counter. Using a binary counter with synchronous clear requires
a different reset circuit than the one required if a counter with an asynchronous clear is
used.

In general, synchronous inputs are preferred.

Exercise
From the Schematic of a Modulo-10 Counter figure:

Extract the Boolean expression for the circuit used to reset the binary counter (the R input).

Explain how that reset circuit transforms the 4-bit binary counter into a modulo-10 counter.

3.2. Pulse Generator with Exact Frequency
In the previous experiment, we used a counter to perform frequency division of a clock signal in order to
obtain a slower clock. While frequency division works, it does not allow us to obtain an accurate clock
signal for any arbitrary desired frequency, because each generated clock is half as fast as the previous
clock.

For example, if we want to generate a 1-kHz clock from a 100-MHz clock using frequency division, then:

where f and f are the frequencies of bits 15 and 16 of the binary counter used for frequency division,
respectively. These frequencies correspond to error of 50% and 24%, which is likely to be intolerable for
most applications.

Exercise
What condition must the desired frequency satisfy for it to be possible to obtain accurately using
frequency division, given a source clock frequency f?

To generate a signal with a frequency of exactly 1 kHz, or a period of 1 ms, for example, from a 1-MHz
clock (period of 1 µs), we need to count the exact number of 1-MHz cycles that make up a single 1-kHz
cycle (or the number of 1 µs periods in a single 1 ms period), i.e. 1 MHz / 1 kHz = 1000 cycles. Therefore,
we need to build a circuit that counts 1000 cycles, then resets back to zero, and starts counting again, i.e.
a modulo-1000 circuit.

= ≈ 1.5 kHz, = ≈ 763 Hzf15
100 MHz

215+1
f16

100 MHz

216+1

15 16

3/7



Pulse vs. Clock

Using a modulo counter to generate a pulse with an exact frequency will generate a
single-cycle pulse with the desired frequency. On the other hand, a frequency division
circuit generates a clock signal that remains high for half of its period. That is, it has a
50% duty cycle.

Exercise
What is the duty cycle of a 1-kHz pulse using a 1-MHz input clock?

3.2.1. Building a Modulo-1000 Circuit
Building a modulo counter for a small modulus can be intuitive. With a large modulus, however, it is
useful to analyze the problem and solve it systematically.

To count 1000 cycles and then reset, we need:

1. A binary counter that can count from 0 to 999 (1000 values)

2. A circuit that clears the counter after the value 999

Exercise
How wide of a counter do we need to count up to 999?

Because 999 is not a power of 2, we cannot detect its binary representation by simply monitoring a single
bit, as is the case with frequency division. In contrast, a comparator circuit is required, to compare the
counter’s value with the binary pattern of the value 999. Once detected, the comparator’s output is
asserted, and so it can be used to drive the reset input of the binary counter.

A comparator can be modeled in Verilog by a single continuous assignment.

Verilog Behavioral Model of a Comparator

3.3. Digital Timers
A digital timer is a digital circuit that measures time, like a stopwatch. A timer that counts minutes and
hours displays two digits for the minutes, to display values ranging from 00 to 59 , and one or more
digits for the hours, depending on the desired range.

equal = (count == 999);

4/7

Every time the minutes counter wraps around, i.e. goes from 59 back to 00 , the hours counter is
incremented. This behavior is called cascading counters, where two counters are connected to make up a
larger counter.

 To cascade a pair of counters, the CEO output of the lower-order counter can be used to
increment the higher-order counter, by connecting it to the counter’s CE input.

The Example Cascaded Counters figure shows how two modulo-10 counters can be cascaded to make up a
counter that counts from 00 to 99 . Notice that the CEO output of the entire circuit is the CEO output of
the high-order counter only. That is because this modulo-10 counter will assert its CEO output only when
it reaches its maximum value, 9 , while its CE input is also asserted. As a result, the CEO output will be
asserted only when the overall counter value is 99 .

Figure 3. Example Cascaded Counters

Exercise
How can you count from 00 to 59 using two cascaded modulo counters? What would the modulus
for each counter be?

Would it be easier to use a single modulo-60 counter, or two cascaded modulo counters, to display
the counter’s decimal value? Explain.

Suppose that we would like to cascade three counters, when should the CE input of the most-
significant counter be asserted? Can you formulate your answer as a Boolean expression?

3.3.1. Timer Resolution
The desired resolution of the timer determines the required frequency to drive it. For example, a timer
that displays hours, minutes, and seconds, needs a signal with a 1-Hz frequency to drive it, whereas a
timer that displays tenths of seconds needs a 10-Hz signal. Such a signal controls the least-significant
counter in the timer, which in turn, controls the next counter according to how the counters are
cascaded.



Although you may be tempted to use the clock input of the individual counters to
control their speed, it’s generally recommended to connect those clock inputs to the
main clock signal driving the entire design, without any tampering.

Instead, you can use the CE inputs of the counters to control their speeds.

5/7

4. Tasks

4.1. Building Modulo Counters
1. Design a modulo-10 counter Verilog module named mod10 . Simulate it to verify its correct operation.

2. Design a modulo-6 counter Verilog module named mod6 .

3. Design a modulo-60 counter Verilog module named mod60 by cascading modulo-10 and modulo-6
counters.

The module should output two BCD digits representing its current counter value.

4.2. Pulse Generators
1. Design a Verilog module, named onehz , that generates a pulse signal with an exact frequency of 1 Hz

from a 100-MHz input clock signal.

2. Design a Verilog module, named tenhz , that generates a 10-Hz pulse from a 100-MHz input clock
signal.

4.3. Building a Digital Timer
1. Design a digital timer Verilog module, named timer , that measures minutes and seconds. Minutes

should wrap around after 59 :

Inputs clock, reset, count enable (CE)

Outputs four BCD digits, two for minutes, and two for seconds

Simulate your module to verify its correct operation.

2. Instantiate your timer module in a Verilog module named timer_nexys3 where:

a. The CE input is driven by a circuit that can generate a 1-Hz or a 10-Hz pulse signal, based on a
switch on the FPGA board.

b. The reset input is connected to a push button on the FPGA board.

c. The four BCD digits are connected to the four seven-segment displays on the FPGA board.

Implement your timer_nexys3 module and test it on the FPGA board.

5. Grading Sheet

Task Points

Simulate modulo-10 counter 10

Simulate modulo-60 counter, output: two BCD digits 10

Simulate the timer module 20

Implement the timer_nexys3 module on the FPGA board 40

Discussion 20

6/7

Version 151
Last updated 2016-04-09 20:30:21 AST

7/7

	Experiment 9. Building a Digital Timer
	1. Objectives
	2. Material Required
	3. Background
	3.1. Modulo Counters
	3.2. Pulse Generator with Exact Frequency
	3.2.1. Building a Modulo-1000 Circuit

	3.3. Digital Timers
	3.3.1. Timer Resolution

	4. Tasks
	4.1. Building Modulo Counters
	4.2. Pulse Generators
	4.3. Building a Digital Timer

	5. Grading Sheet

