King Fahd University of Petroleum and Minerals
College of Computer Sciences and Engineering
Computer Engineering Department
COE 301: Computer Architecture

LAB 03:
Integer Arithmetic

Saleh AlSaleh

Agenda

= Overflow

= Logical Bitwise Instructions
= Shift Instructions

= Pseudo Instructions

= Live Examples

= Tasks

/4
15-Sep-20 \@
-7/

Overflow

= Maximum positive integer number represented in 4-bit: (+7),, = (0111),
= Minimum negative integer number represented in 4-bit: (-8),, = (1000),
= Maximum positive integer number represented in 32-bit: (OX7FFFFFFF),
= Minimum negative integer number represented in 32-bit: (0x80000000),,

= add/sub causes/raises arithmetic exception in the case of overflow
and result is not written.

= addu/subu ignores overflow and writes result to destination register

15-Sep-20

(»': — N\
\i:;.;)

Logical Bitwise Instructions

= AND I ETGE = XOR A 010 1
i D
= OR = NOR

A 0101 A 0101
D B 1100 B 1100

/4
15-Sep-20 @
\//

Shift Instructions

Shift Every bit to the left by 1

(oo; 0), | > (o 20)2

Shift Every bit to the left by 1

0100
(0100), | > <1o§0>2

This is called Shift Left Logical (sll)
Every single shift left logical is equivalent to multiplying by 2
MIPS instruction: sll Sdst, Ssrc, shift_amount

Y/
15-Sep-20 3®
\-//

Shift Instructions (continued)

Shift Every bit to the right by 1

(1010), | (0101)
0 4 5

Shift Every bit to the right by 1

0101
010, | > (0010,

This is called Shift Right Logical (srl)
Every single shift right logical is equivalent to dividing by 2 (with floor)
MIPS instruction: srl Sdst, Ssrc, shift_amount

Y/
15-Sep-20 3®
\-//

Shift Instructions (continued)

Shift Every bit to the right by 1

(1010), | (1101)
10 » o,

Shift Every bit to the right by 1

1101
(10, | > (1110)

This is called Shift Right Arithmetic (sra)
Every single shift right arithmetic is equivalent to dividing by 2 (with floor) for sighed numbers
MIPS instruction: sra Sdst, Ssrc, shift_amount

Y/
15-Sep-20 ‘@
\-//

Pseudo Instructions

= Maps to one or more basic simple assembly
instruction(s)

= Eases the programmer’s tasks in writing
applications.

= Common pseudo instructions: li, la, abs

Load upper Clear lower

= li $t0, OXABCD => addi $t0, SO, OXxABCD 16 bit 16 bit
= li $t0, Ox89AB_CDEF => lui $t0, 0x89AB $t0
ori $t0, St0, OxCDEF
Sto
Keep upper Or lower
16 bit 16 bit
with
immediate

value

15-Sep-20

(»': — N\
\i:;.;)

Live Examples

15-Sep-20

©

