King Fahd University of Petroleum and Minerals
College of Computer Sciences and Engineering
Computer Engineering Department
COE 301: Computer Architecture

LAB 08:
MIPS Exceptions and I/0

Saleh AlSaleh

Agenda

= Exceptions

= Coprocessor 0

= Exception Codes

= Exception Handler

= Memory Mapped I/0
= Live Examples

= Tasks

Y/
18-Oct-20 3@
\-//

Exceptions

= Exception is any unexpected change of control flow, regardless of its source.
= MIPS CPU operates either in the user mode or kernel mode.

= User programs (applications) run in user mode.

= The CPU enters the kernel mode when an exception happens/occurs.

= In MIPS, all the instructions inside text segment are in the try block.

/4
18-0ct-20 x@
\-//

Coprocessor O

= Coprocessor 0 has several important registers such as:
= Vaddr ($8): Contains the invalid memory address caused by load, store, or fetch.

= Status ($12): Contains the interrupt mask and enable bits (see below).
= Cause ($13): Contains the type of exception and any pending bits (see below).
= EPC ($14): Contains the address of the instruction when the exception occurred.

15 14 13 12 11 10 9 8 6 5 4 3 2

Pending Interrupts Exception Code

Figure 8.3: The Cause Register $13

18-Oct-20

(»': — N\
\i:;.;)

Exception Codes

O 00 N o U1 N O

12
13
15

INT
ADDRL
ADDRS
IBUS
DBUS
SYSCALL
BKPT
RI

OVF
TRAP
FPE

Hardware Interrupt

Address error exception caused by load or instruction fetch
Address error exception caused by store

Bus error on instruction fetch

Bus error on data load or store

System call exception caused by the syscall instruction
Breakpoint exception caused by the break instruction
Reserved instruction exception

Arithmetic overflow exception

Exception caused by a trap instruction

Floating-Point exception cause by a floating-point instruction

18-Oct-20

(.»“ -‘.\)
“\"‘E;«/!! 4

Exception Handler

= A special piece of code in the kernel
text (at address 0x80000180) that
handles exceptions.

= There is a default exception handler in
MARS. However, it can be overwritten.

oxffffoooe

0x90000000

0x80000000

0x10040000
0x10000000

0x00400000

0x00000000

Memory-Mapped I/O

Kernel Data Segment

Kernel Text Segment

Operating
System

Stack Segment

\
A

Stack grows
Downwards

Dynamic Area

Static Area

}Data Segment

Text Segment

Reserved

18-Oct-20

)

? —

Memory Mapped 1/0

= Input/Output devices reside outside
the processor chip.

= There are two general ways for the
processor to communicate with the
|/0 devices:

= Using specialized instruction to
communicate with each device.

= Map 1/0 device registers to memory
space. Then, use load and store
instructions to read and write to the
devices respectfully.

MIPS
Processor

N

Main
Memory

N

Disk (DMA)

N

Oxffff0000
Control
Interrupt Enable T Ready
Oxffff0004
8 bits | Data
Oxffff0008
Control

Interrupt Enable M Ready

OxffffO00c

A 4

8 bits

Data

Y/
18-Oct-20 ‘@
\-/

i Keyboard

Display

N

Live Examples

18-Oct-20

o

Task #1

= Write a MIPS assembly program that Sample Run of the task

reads two integers from the user x & — _

y. If y is zero, raise an exception and Enter Dividend (x): 10

the user should be prompted to enter Enter Divisor (y): 0

a different value of y. If y is not zero, . _

perform the operation x/y. Divide By Zero EXCEptlon. Please
- (Hint: use trap instruction after enter a different value fory.

reading y) Enter Divisor (y): 2

Theresultof x/yis 5

/4
18-Oct-20 K@
\-//

Task #2

= Write a MIPS assembly program that
reads a string str (one character at a

time) from the user using Memory Sample Run of the task

Mapped I/0 (Do not use syscall). Loop

over each character and flip its case Enter String: Hello,
(i.e. the uppercase should be small

case and vice versa). Finally, print the World!

modified String (one character at a . ..
time) again using Memory Mapped 1/0 The string after flipping the

(Do not use syscall). cases is: hELLO, wORLD'

/4
18-0ct-20 3@
\-//

