
 1 

COE 301/ICS 233 – Computer Organization 

Term 212 – Spring 2022 
 

Project: Pipelined Processor Design 

Objectives: 
• Designing a Pipelined 32-bit RISC processor with 32-bit instructions 

• Using the Logisim simulator to model and test the processor 

• Teamwork 

Instruction Set Architecture 

In this project, you will design a RISC processor that has 31 general-purpose 32-bit registers: R1 

to R31. Register R0 is hardwired to zero. Reading R0 always returns the value 0. Writing R0 has 

no effect. The value written to R0 is discarded. 

All instructions are 32-bit long and aligned in memory. Memory is word (32-bit) addressable. The 

PC register (20-bit wide) contains the instruction address. There are three instruction formats: R-

type, I-type, and SB-type as shown below: 

R-type 

6-bit opcode (Op), 5-bit register numbers (rs1, rs2, and rd), and 11-bit function field (f) 

f11 rs25 rs15 rd5 Op6 

31          21 20    16 15    11 10    6 5     0 

I-type 

6-bit opcode (Op), 5-bit register numbers (rs1 and rd) and 16-bit Immediate 

imm16 rs15 rd5 Op6 

31               16 15    11 10    6 5     0 

SB-type 

6-bit opcode (Op), 5-bit register numbers (rs1 and rs2) and 16-bit Immediate split into (imm11U 

and imm5L)  

imm11U rs25 rs15 imm5L Op6 

31          21 20    16 15    11 10    6 5     0 

 

Rs1 is the first source register number. This register is always read (never written). Ra is the 

name and value of register rs1. 

Rs2 is the second source register number. This register is always read (never written). Rb is 

the name and value of register rs2. 

Rd is the destination register number. This register is always written (never read). Rd is the 

name and value of destination register rd.  



 2 

Instruction Encoding 

The R-type, I-type, and SB-type instructions, meanings, and encodings are shown below: 

Instruction Meaning Encoding 

SLL Rd=ShiftLeftLogical(Ra, Rb[4:0]) f=0 rs2 rs1 rd Op=0 

SRL Rd=ShiftRightLogical(Ra, Rb[4:0]) f=1 rs2 rs1 rd Op=0 

SRA Rd=ShiftRightArith(Ra, Rb[4:0]) f=2 rs2 rs1 rd Op=0 

ROR Rd=RotateRight(Ra, Rb[4:0]) f=3 rs2 rs1 rd Op=0 

ADD Rd=Ra + Rb f=4 rs2 rs1 rd Op=0 

SUB Rd=Ra – Rb f=5 rs2 rs1 rd Op=0 

SLT Rd=(Ra < Rb) signed f=6 rs2 rs1 rd Op=0 

SLTU Rd=(Ra < Rb) unsigned f=7 rs2 rs1 rd Op=0 

XOR Rd=Ra ^ Rb f=8 rs2 rs1 rd Op=0 

OR Rd=Ra | Rb f=9 rs2 rs1 rd Op=0 

AND Rd=Ra & Rb f=10 rs2 rs1 rd Op=0 

NOR Rd = ~(Ra | Rb) f=11 rs2 rs1 rd Op=0 

MUL Rd = (Ra * Rb)[31:00] f=12 rs2 rs1 rd Op=0 

       

SLLI Rd=ShiftLeftLogical(Ra, sa) 0 sa rs1 rd Op=1 

SRLI Rd=ShiftRightLogical(Ra, sa) 0 sa rs1 rd Op=2 

SRAI Rd=ShiftRightArith(Ra, sa) 0 sa rs1 rd Op=3 

RORI Rd=RotateRight(Ra, sa) 0 sa rs1 rd Op=4 

ADDI Rd=Ra + sign_extend(imm16) imm16 rs1 rd Op=5 

SLTI Rd=(Ra < sign_extend(imm16)) signed imm16 rs1 rd Op=6 

SLTIU Rd=(Ra < sign_extend(imm16)) unsigned imm16 rs1 rd Op=7 

XORI Rd=Ra ^ zero_extend(imm16) imm16 rs1 rd Op=8 

ORI Rd=Ra | zero_extend(imm16) imm16 rs1 rd Op=9 

ANDI Rd=Ra & zero_extend(imm16) imm16 rs1 rd Op=10 

NORI Rd = ~(Ra | zero_extend(imm16)) imm16 rs1 rd Op=11 

LUI Rd=imm16<<16 imm16 0 rd Op=12 

JALR PC=Ra+sign_extend(imm16), Rd=PC+1 imm16 rs1 rd Op=13 

LW Rd=Mem[Ra+sign_extend(imm16)] imm16 rs1 rd Op=14 

      

SW Mem[Ra+sign_extend({imm11U, 

imm5L})]=Rb 
imm11U rs2 rs1 imm5L Op=15 

BEQ if (Ra == Rb)  

PC=PC+sign_extend({imm11U, imm5L}) 
imm11U rs2 rs1 imm5L Op=16 

BNE if (Ra != Rb)  

PC=PC+sign_extend({imm11U, imm5L}) 
imm11U rs2 rs1 imm5L Op=17 

BLT if (Ra < Rb)  

PC=PC+sign_extend({imm11U, imm5L}) 
imm11U rs2 rs1 imm5L Op=18 

BGE if (Ra >= Rb)  

PC=PC+sign_extend({imm11U, imm5L}) 
imm11U rs2 rs1 imm5L Op=19 

BLTU if (Ra < Rb) unsigned  

PC=PC+sign_extend({imm11U, imm5L}) 
imm11U rs2 rs1 imm5L Op=20 

BGEU if (Ra >= Rb) unsigned 

PC=PC+sign_extend({imm11U, imm5L}) 
imm11U rs2 rs1 imm5L Op=21 

 

 



 3 

Instruction Description 

Opcodes 0 is used for R-format ALU instructions. There are 13 instructions in total. 

Opcodes 1 through 14 are used for I-format instructions. There are 14 instructions in total.  

The I-format ALU instructions (SLLI through NORI) have identical functionality as their 

corresponding R-format instructions (SLL through NOR), except that the second ALU operand is 

an immediate constant. The imm16 immediate value is sign extended for all instructions except 

bitwise logical instructions (XORI, ORI, ANDI, and NORI) where the constant is zero extended.  

Opcode 14 define load word (LW) instruction. This instruction addresses 4-byte words in memory. 

The effective memory address = Ra + sign_extend(imm16). 

Opcode 15 define store word (SW) instruction. This instruction addresses 4-byte words in 

memory. The effective memory address = Ra + sign_extend({imm11U, imm5L}).. 

There are six branch instructions BEQ to BGEU with opcodes 16 to 21 and PC-relative 

addressing. If the branch is taken, then PC = PC + sign_extend({imm11U, imm5L}). Otherwise, 

PC = PC + 1. The conditional branch range is [-32768, +32677]. 

Opcode 12 define load upper immediate (LUI) instruction. LUI is used to build 32-bit constants 

and uses the I-type format. LUI places the imm16 value in the upper 16 bits of the destination 

register Rd, filling the lowest 16 bits with zeros.  

Opcode 13 defines the JALR (Jump-And-Link-Register) instruction. It saves the return address in 

Rd (Rd = PC+1) and does an indirect register jump with an offset (PC = Ra + 

sign_extend(imm16)). If Rd is R0 then the return address (PC+1) is not saved, and JALR 

becomes a Jump Register (JR) pseudo-instruction. If Ra is R0, then JALR instruction becomes a 

Jump and link (JAL) pseudo-instruction. If both Ra and Rd are R0, then JALR instruction 

becomes a Jump (J) pseudo-instruction. To use JALR instruction, follow the following syntax: 

JALR RD, RS1, imm16.  

Memory 

Your processor will have separate instruction and data memories. The PC register should be 20 

bits. The instruction memory can store 220 instructions, where each instruction occupies four bytes. 

There are 1048576 (1M) instructions in the instruction memory. 

The data memory will also be to 220 words = 4 Mi Bytes. The data memory is word addressable, 

since only the LW and SW instructions address memory. Words should be always aligned in 

memory. The ALU result represent the address for the data memory.  

Addressing Modes 

PC-relative addressing mode is used for branch and jump instructions. 

For taken branches: PC = PC + sign_extend({imm11U, imm5L}) 

For JALR: PC = Ra + sign_extend(imm16) 

For LW, displacement addressing is used: Memory address = Ra + sign_extend(imm16) 

For SW, displacement addressing is used: Memory address = Ra+sign_extend ({imm11U, 

imm5L}) 

 



 4 

Register File 

Implement a Register file containing 32 (thirty-two) 32-bit registers R0 to R31 with two read ports 

and one write port. R0 is a special register that can only be read not written (hardwired to zero).  

Register Rs1 is always read by all instructions (never written). 

Register Rs2 is always read by R-type and SB-type instructions. 

Register Rd is written by R-type and I-type instructions. 

Arithmetic and Logic Unit (ALU)   

Implement a 32-bit ALU to perform all the required operations: 

ADD, SUB, SLT, SLTU, XOR, OR, AND, NOR, SLL, SRL, SRA, ROR, MUL 

In addition, you should have special support for the LUI instruction. 

Program Execution 

The program will be loaded and will start at address 0 in the instruction memory. The data segment 

will be loaded and will start also at address 0 in the data memory. You can also have a stack 

segment to support procedures. The stack segment can occupy the upper part of the data memory 

and can grow backwards towards lower memory addresses. The stack segment is implemented 

completely in software. You can dedicate register R30 as the stack pointer. To terminate the 

execution of a program, the last instruction in the program can jump to itself indefinitely. 

Build a Single-Cycle Processor 

Start by building the datapath and control of a single-cycle processor and ensure its correctness. 

You should have sufficient test cases that ensure the correct execution of ALL instructions in the 

instruction set. You should also write test cases that show the correct execution of complete 

programs. To verify the correctness of your design, show the values of all registers in the register 

file (R0 to R31) at the top-level of your design. Provide output pins for all registers R0 through 

R31 and make their values visible outside the register file. 

Build a Pipelined Processor 

Once you have succeeded in building a single-cycle processor and verified its correctness, design 

and implement a pipelined version of your design. Make a copy of your single-cycle design, then 

convert it and implement a pipelined datapath and its control logic. Add pipeline registers between 

stages. Design the control logic to detect data dependencies among instructions and implement the 

forwarding logic. You should handle properly the control hazards of the branch and jump 

instructions. Also, stall the pipeline after a LW instruction if it is followed by a dependent 

instruction. 

Design Alternatives 

When designing the datapath and control unit, explore alternative design options and justify why 

a given design alternative is chosen. For example, when designing the control unit consider 

implementing it using a decoder and a set of OR/NOR gates, versus using a ROM to store the 

control signals, versus optimizing the equation of each control signal separately. When designing 



 5 

the ALU and the shifter unit, consider alternative designs and justify why a design alternative is 

chosen. The same should be applied for all design decisions in your CPU, such as handling control 

and data hazards in the pipeline. 

Testing 

To demonstrate that your CPU is working, you should do the following: 

1. Write a sequence of instructions to verify the correctness of ALL instructions. Use LUI and 

ORI to initialize registers. Demonstrate the correctness of all ALU R-type and I-type 

instructions. Demonstrate the correctness of LW and SW instructions. Similarly, you should 

demonstrate the correctness of all branch and jump instructions. 

2. Write a simple program that counts the number of 1's in a 32-bit register. 

3. Write short programs and loops to verify the correctness of a sequence of instructions. Make 

sure that your pipelined CPU can handle data hazards and control hazards properly. 

4. Write a sort procedure (selection sort, bubble sort, etc.). Write a main function to call the sort 

procedure and sort an array of integers in the data memory. 

Document all your test programs and files and include them in the report document. 

Project Report 

The report document must contain sections highlighting the following:  

1 – Design and Implementation 

• Highlight the design choices you made and why, and any notable features that your 

processor has. 

• Provide drawings of the various components and the overall datapath. 

• Provide a complete description of the control logic and the control signals. Provide a table 

giving the control signal values for each instruction. 

• Provide a complete description of the forwarding logic, the cases that were handled, and 

the logic you have implemented to handle the control hazards.  

2 – Simulation and Testing 

• Describe the test programs that you used to test your design with sufficient comments 

describing the programs, their input, and expected output. List all the instructions that were 

tested and work correctly. List all the instructions that do not run properly. 

• Describe all the cases that you handled involving data dependences between instructions, 

data forwarding, and stalling the pipeline. 

• Provide snapshots showing test programs and their output results. 

3 – Teamwork 

• Two or at most three students can form a group. Write the names of all the group members 

on the project report title page. 

• Group members are required to coordinate their work among themselves, so that    everyone 

is involved in design, implementation, simulation, and testing. 

• Show the work done by each group member using a chart. 

 

 

 

 



 6 

Submission Guidelines 

All submissions will be done through Blackboard. 

Attach one zip file containing all the design circuits, the test programs source code and binary 

instruction files that you have used to test your design, their test data, as well as the report 

document. 

Grading policy: 

The grade will be divided according to the following components: 

■ Correctness: whether your implementation is working. 

■ Completeness and testing: whether all instructions and cases have been implemented, 

handled, and tested properly. 

■ Participation and contribution to the project. It should be noted that being in a group that 

implemented the project correctly does not qualify you to get full mark. Your mark will 

depend on your contribution in the project. 

■ Report organization and clarity. 

Submission Deadlines: 

Task Deadline 

Single-cycle CPU Design Demo Week 13 

Pipelined CPU Design Demo Week 15 

Final Report Submission Week 15 

 

 


