
Saleh AlSaleh

King Fahd University of Petroleum and Minerals

College of Computer Sciences and Engineering

Computer Engineering Department

COE 301: Computer Architecture

▪ Overflow

▪ Logical Bitwise Instructions

▪ Shift Instructions

▪ Pseudo Instructions

▪ Live Examples

▪ Tasks

06-Feb-21 2

06-Feb-21 3

▪ Maximum positive integer number represented in 4-bit:

▪ Minimum negative integer number represented in 4-bit:

▪ Maximum positive integer number represented in 32-bit:

▪ Minimum negative integer number represented in 32-bit:

▪ add/sub causes/raises arithmetic exception in the case of overflow
and result is not written.

▪ addu/subu ignores overflow and writes result to destination register

(+7)10 = (0111)2

(-8)10 = (1000)2

(0x7FFFFFFF)16

(0x80000000)16

▪ AND

06-Feb-21 4

▪ OR

▪ XOR

▪ NOR

A 0 1 0 1

B 1 1 0 0

A & B 0 1 0 0

A 0 1 0 1

B 1 1 0 0

A | B 1 1 0 1

A 0 1 0 1

B 1 1 0 0

A xor B 1 0 0 1

A 0 1 0 1

B 1 1 0 0

A nor B 0 0 1 0

06-Feb-21 5

(0010)2

2

Shift Every bit to the left by 1

(0100)2

4

Shift Every bit to the left by 1

(1000)2

8

(0100)2

4

This is called Shift Left Logical (sll)

Every single shift left logical is equivalent to multiplying by 2

MIPS instruction: sll $dst, $src, shift_amount

06-Feb-21 6

(1010)2

10

Shift Every bit to the right by 1

(0101)2

5

Shift Every bit to the right by 1

(0010)2

2

(0101)2

5

This is called Shift Right Logical (srl)

Every single shift right logical is equivalent to dividing by 2 (with floor)

MIPS instruction: srl $dst, $src, shift_amount

06-Feb-21 7

(1010)2

-6

Shift Every bit to the right by 1

(1101)2

-3

Shift Every bit to the right by 1

(1110)2

-2

(1101)2

-3

This is called Shift Right Arithmetic (sra)

Every single shift right arithmetic is equivalent to dividing by 2 (with floor) for signed numbers

MIPS instruction: sra $dst, $src, shift_amount

▪ Maps to one or more basic simple assembly
instruction(s)

▪ Eases the programmer’s tasks in writing
applications.

▪ Common pseudo instructions: li, la, abs

▪ li $t0, 0xABCD => addi $t0, $0, 0xABCD

▪ li $t0, 0x89AB_CDEF => lui $t0, 0x89AB

ori $t0, $t0, 0xCDEF

06-Feb-21 8

0x89AB 0x0000

Load upper

16 bit

Clear lower

16 bit

$t0

0x89AB 0xCDEF $t0

Keep upper

16 bit

Or lower

16 bit

with

immediate

value

06-Feb-21 9

