
Saleh AlSaleh

King Fahd University of Petroleum and Minerals

College of Computer Sciences and Engineering

Computer Engineering Department

COE 301: Computer Architecture

▪ Caller vs. Callee

▪ Functions: Declaration, Execute (Call), Return Back

▪ Registers Use

▪ Stack Segment

▪ Recursive Function Example

▪ Live Examples

▪ Tasks

11-Oct-20 2

11-Oct-20 3

▪ The function that initiates the call to another function is known as Caller.

▪ The function that receives and executes the call is known as the Callee.

▪ To execute a function, the program must follow these steps:

▪ The caller must put the parameters in a place where the callee function can access them

▪ Transfer control to the callee function

▪ Execute the callee function

▪ The callee function must put the results in a place where the caller can access them

▪ Return control to the caller (point of origin) next to where the call was made

11-Oct-20 4

▪ Declaration:

▪ Define a label similar to if statements and loops

▪ Write the body of the function after the label

▪ Execution:

▪ Prepare the arguments in $a0-$a3 registers

▪ Call the function using the jal instruction (e.g. jal function)

▪ Return Back

▪ Prepare the results if any in $v0-$v1 registers

▪ Return to the caller using jr instruction (jr $ra)

11-Oct-20 5

Register Name Register Number Register Usage

$zero $0 Always zero, forced by hardware

$at $1 Assembler Temporary register, reserved for assembler use

$v0 - $v1 $2 - $3 Results of a function

$a0 - $a3 $4 - $7 Arguments of a function

$t0 - $t7 $8 - $15 Registers for storing temporary values

$s0 - $s7 $16 - $23 Registers that should be saved across function calls

$t8 - $t9 $24 - $25 Registers for storing more temporary values

$k0 - $k1 $26 - $27 Registers reserved for the OS kernel use

$gp $28 Global Pointer register that points to global data

$sp $29 Stack Pointer register that points to top of stack

$fp $30 Frame Pointer register that points to stack frame

$ra $31 Return Address register used to return from a function call

▪ Stack Segment provides an area that
can be allocated and freed by
functions. The programmer has no
control over where these segments
are located in memory.

▪ The stack segment can be used by
functions for passing many
parameters, for allocating space for
local variables, and for saving and
preserving registers across calls.

▪ Without the stack segment in memory,
it would be impossible to write
recursive functions, or pure functions
that have no side effects.

11-Oct-20 6

11-Oct-20 7

int fact (int n) {

if (n<2) return 1;

else return (n*fact(n-1));

}

fact:

bge $a0, 2, else # branch if (n >= 2) to else

li $v0, 1 # $v0 = 1

jr $ra # return to caller

else:

addi $sp, $sp, -8 # allocate a stack frame of 8 bytes

sw $a0, 0($sp) # save the argument n

sw $ra, 4($sp) # save the return address

addi $a0, $a0, -1 # argument $a0 = n-1

jal fact # call fact(n-1)

lw $a0, 0($sp) # restore $a0 = n

lw $ra, 4($sp) # restore return address

mul $v0, $a0, $v0 # $v0 = n * fact(n-1)

addi $sp, $sp, 8 # free stack frame

jr $ra # return to the caller

11-Oct-20 8

