Embedded Systems Lab Manual

Table of Contents

. Experiment 1: Development Platform
1.1. Objectives

1.2. Parts List

1.3. Background

1.4. Tasks

1.5. Grading Sheet

Resources

. Experiment 2: General-Purpose Input/Output (GPIO)

2.1. Objectives
2.2. Parts List
2.3. Background
2.4. Tasks
2.5. Grading Sheet
Resources
. Experiment 3: Interrupts
3.1. Objectives
3.2. Parts List
3.3. Background
3.4. Tasks
3.5. Grading Sheet
Resources
. Experiment 4: Analog Input and Output
4.1. Objectives
4.2. Parts List
4.3. Background
4.4. Tasks
4.5. Grading Sheet
Resources
. Experiment 5: Hardware Timers
5.1. Objectives
5.2. Parts List
5.3. Background
5.4. Tasks
5.5. Grading Sheet
Resources

. Experiment 6: Pulse-Width Modulation

W W NN

10
12
12
13
13
13
13
18
18
18
18
19
19
19
25
25
25
26
26
26
26
33
33
33
33
33
34
34
41
41
42
42



6.1. Objectives
6.2. Parts List

6.3. Background
6.4. Tasks

6.5. Grading Sheet

Resources

7. Experiment 7: Serial Communication

7.1. Objectives
7.2. Parts List

7.3. Background
7.4. Tasks

7.5. Grading Sheet

Resources

8. Experiment 8: Microcontroller on an FPGA

8.1. Objectives
8.2. Parts List

8.3. Background
8.4. Tasks

8.5. Grading Sheet

Resources

9. Programming Assignment: Seven-Segment Display and C Libraries

9.1. Objectives

9.2. Parts List

9.3. Background

9.4. Tasks

9.5. Grading Sheet
10. Mini Project: Distance Sensor

10.1. Objectives

10.2. Parts List

10.3. Background

10.4. Tasks

10.5. Grading Sheet

References

42
42
42
46
47
47
47
47
47
48
54
35
35
35
56
56
56
64
66
66
67
67
67
67
70
70
70
70
71
71
73
74
75

1. Experiment 1: Development Platform

Ahmad Khayyat; Hazem Selmi; Saleh AlSaleh 212, 14 February 2022

1.1. Objectives

* Get familiar with the development platform:



Hardware microcontroller, development board, peripherals
Software IDE, compiler, debugging, programming

* General-purpose input/output (GPIO): digital output

e Introduce CMSIS: Cortex Microcontroller Software Interface Standard

1.2. Parts List

¢ LPC1768 mbed board

i
e
e
s
-
-—a
-—
- e
o
-k
-y
-y
-
L e
e
-
-
-y
-
-
-
&
&y
-
-

Wi

' El
L -'

i il o s -
B DB u?muw m&:r@f&"&;’fw”.a;w;@ e

O

* USB A-Type to Mini-B cable

1.3. Background

1.3.1. Microcontroller

LPC1768 is a microcontroller manufactured by NXP. LPC1768 is only one member of a big family of
microcontolles. NXP was founded by Philips as Philips Semiconductors, and renamed NXP in 2006.
A major difference between a microcontroller and a microprocessor is that the former has some
additional built-in devices, such as memory, I/O peripherals, and timers.



The LPC1768 microcontroller is an ARM 32-bit Cortex-M3 microcontroller. Some of its features
include: CPU clock up to 120MHz, 512kB on-chip Flash ROM, 64kB RAM, Ethernet 10/100 MAC, USB
2.0 full-speed Device controller and Host controller, four UARTSs, general purpose I/O pins, 12-bit
ADC, 10-bit DAC, four 32-bit timers, Real Time Clock, System Tick Timer.

The product data sheet for the LPC1768 microcontroller [Ipc1768-data-sheet] and the more detailed
user munual [Ipc1768-manual] are essential resources for any developer.

1.3.2. Development Board

The LPC1768 microcontroller chip is used to build the LPC1768 mbed board, which we will be using
in this LAB.

The LPCXpresso board consists of two parts:

1. LPCXpresso target board, which hosts the LPC1768 microcontroller

2. LPC-Link: a debug probe for debugging and the target microcontroller.

1.3.3. Compilation Methods

There are two main ways to compile C/C++ code for LPC1768:

1. Using mbed online compiler where you only need a web browser to compile the source code
and download the binary. Then, you need to copy the binary file to the mbed drive. In order to
use mbed online compiler, you need to create an account at mbed online compiler.

2. Using MCUXpresso IDE which allows a wide range of advanced debugging features. The
MCUXpresso IDE will build/compile the project and transfer the compiled binary to the
development board. Then, it will start execution of the main function.

In order to use MCUXpresso IDE with LPC1768, the LPC1768 must have firemware
version equal to or greater than 141212. The firmware version is stored in the

o MBED.htm file in the LPC1768, use a text editor to open the MBED.htm file. Please
refere to LPC1768 Firmware to download and upgrade the firmware of the
LPC1768.

MCUXpresso IDE will be used for the lab manual, but feel free to use mbed online compiler.

1.3.4. MCUXpresso IDE

The MCUXpresso IDE is an Eclipse-based software development environment for NXP’s LPC
microcontrollers.

The MCUXpresso IDE uses the GNU toolchain (compiler and linker), and offers the choice of two C
libraries:

* Redlib (default): a proprietary ISO C90 standard C library, with some C99 extensions. Often
results in smaller binary size.

» Newlib: an open source complete C99 and C++ library.


https://os.mbed.com/ide/
https://os.mbed.com/handbook/Firmware-LPC1768-LPC11U24
https://www.eclipse.org/
https://sourceware.org/newlib/

Installation

To install your copy of the MCUXpresso IDE:

1. Using a web browser, navigate to the MCUXpresso Integrated Development Environment (IDE)
page.

2. Use the Download button to go to the download page, then use the download link that matches
your operating system.

o You may need to create an account to access the download page.

3. Run the downloaded installer.

1.3.5. Input/Output Ports

The LPC1768 microcontroller has five input/output (I/O) ports. Each port is 32 bits. However, not all
of them are available for the developer. For example, pins 12, 13, 14, and 31 of port 0 are not
available.

Each of the I/O pins can be referred to using the port number and the pin number. For example,
P0.17 or PO[17] is pin 17 in port 0, and P1.22 or P1[22] is pin 22 in port 1.

Most of the I/O pins have multiple functions. For example: P@.10 can perform one of these jobs:

PO[10] General purpose digital input/output pin.
TXD2 Transmitter output for UART2.
SDA2 12C2 data input/output.

MAT3[0] Match output for Timer 3, channel 0.

o Don’t worry if you don’t understand these functions, you will learn about them
throughout the course.

A command is needed to choose which function is to be used in a specific pin. The only exception is
the first function (GPIO) because it is the default function.

Relying on a default value may be acceptable in simple programs. However, a good

o programming style when you have many functions and interrupts is not to assume
any default value as they may have been changed somewhere in your program.
Instead, you should explicitly specify any desired values.

Pin Layout

The pin layout of the LPC1768 mbed board is shown in the LPC1768 pin layout figure below.


https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools-/mcuxpresso-integrated-development-environment-ide:MCUXpresso-IDE

MATZ2.3
MAT2.2
MATZ.1
MATZ2.0

=¥ 1.
LED4
P1.23
P4

LED1 | LED2
P1.13 | P1.20
P | PV

LED3
P1.21
P3G

Figure 1. LPC1768 pin layout

Memory-Mapped I/O

CAP2.0
CAP21
MAT3.0
MAT3.1

ARM uses memory-mapped I/O. When using memory-mapped I/O, the same address space is shared
by memory and I/O devices. Some addresses represent memory locations, while others represent
registers in I/O devices. No separate I/O instructions are needed in a CPU that uses memory-mapped
I/O. Instead, we can use any instruction that can reference memory to move values to or from

memory-mapped device registers.

General-Purpose Input/Output (GPIO)

GPIO is available in most I/O pins. A GPIO pin is a pin that can be used for digital input or digital
output. You need to choose the direction of the pin (whether it is used for input or output). In the
first example of this experiment, we will set the direction to be output. To use a digital output pin,

you need to be able to to set the output to HIGH (1), and to clear it to LOW (0).
In summery, we need to learn about 3 registers for our first experiment:

1. The register that controls the direction of GPIO pins
2. How to set a pin to HIGH.

3. How to clear a pin to LOW.

Accessing Registers
Each I/O register has an address. For example:
1. The address of the register that controls the direction of port 0 pins is: 8x2009c000.

2. The address of the register that sets port 0 pins to HIGH is: 0x2009c@18.
3. The address of the register that clears port 0 pins to LOW is: 0x2009c01c.



To access a register more easily, you can give it a name. One way to give a register a name in the C
programming language is to use pointers, pointer dereferencing, and the define directive.

o For more details about these features (and more) of the C programming language,
it is strongly recommended to consult the document Data Structures in C.

Example 1. Giving Registers Names

Here are examples showing how to assign names to registers:

// GPIO Port 0

#define DIR_P® (*((volatile unsigned long *) 0x2009c000))
#idefine SET_P@ (*((volatile unsigned long *) 0x2009c@18))
#define CLR_P® (*((volatile unsigned long *) 0x2009c@1c))
// GPIO Port 1

#define DIR_P1 (*((volatile unsigned long *) 0x2009c020))
#define SET_P1 (*((volatile unsigned long *) 0x2009c038))
#define CLR_P1 (*((volatile unsigned long *) 0x2009c@3c))

Example 2. Setting Pin Direction

To set the direction for pins 1, 2, 3 and 4 of port 0 as output, while setting the direction of the
remaining pins as input:

DIR_P@ = 0x0000001E;
// OR
DIR_P@ = 30;

// Make sure that you understand that these statements are equivalent!

(r) The first task is to blink an LED using the above registers!

w

(r') In the first experiment, you can avoid making any external connections by using
- the one of on board LEDs, which is connected to P1.18.

1.3.6. CMSIS

The Cortex Microcontroller Software Interface Standard (CMSIS) is a vendor-
independent hardware abstraction layer for the Cortex-M processor series
[...]. The CMSIS enables consistent device support and simple software
interfaces to the processor and the peripherals, simplifying software re-use

[...].



— ARM Ltd., CMSIS: Introduction

The CMSIS components are: CMSIS-CORE, CMSIS-Driver, CMSIS-DSP, CMSIS-RTOS API, CMSIS-Pack,
CMSIS-SVD, CMSIS-DAP, CMSIS-DAP/

The most relevant component to us is CMSIS-CORE.

CMSIS-CORE implements the basic run-time system for a Cortex-M device
and gives the user access to the processor core and the device peripherals.
In detail it defines:

« Hardware Abstraction Layer (HAL) for Cortex-M processor registers
with standardized definitions for the SysTick, NVIC, System Control Block
registers, MPU registers, FPU registers, and core access functions.

« System exception names to interface to system exceptions without
having compatibility issues.

* Methods to organize header files that makes it easy to learn new
Cortex-M microcontroller products and improve software portability.
This includes naming conventions for device-specific interrupts.

* Methods for system initialization to be used by each MCU vendor. For
example, the standardized SystemInit() function is essential for
configuring the clock system of the device.

* Intrinsic functions used to generate CPU instructions that are not
supported by standard C functions.

* A variable to determine the system clock frequency which simplifies
the setup the SysTick timer.

— ARM Ltd., CMSIS-CORE: Overview

CMSIS provides abstraction at the chip level only. Other libraries provide more extensive APIs for
additional peripherals and board features, but are usually less generic and more vendor-specific.

1.3.7. Accessing Registers Using CMSIS

When using CMSIS, you don’t need to know register addresses, which implies that you don’t need to
use the #define directive to name the registers. Instead, you use the #include directive to include the
1pc17xx.h header file, which contains all the register address definitions for the LPC17xx family of
microcontrollers. When you use the LPCXpresso IDE to create a CMSIS project, the IDE generates a
basic source file which already includes this header file.

In the 1pc17xx.h header file, the names are not given using the #define directive
o only. They are given using #define (for the base address) then using structures to



group similar (and adjecent) registers.

Structures and Pointers

The CMSIS header file, 1pc17xx.h, organizes the registers into logical groups based on their
functions, using C structures. First, a structure is defined by listing its fields. Then, a pointer is
defined for each needed instance of that structure, pointing to the starting address of the instance,
as documented in the microcontroller manual.

For example, the names of the pointers to the structure instances for the five GPIO ports are:

LPC_GPIO@ for port 0
LPC_GPIO1 for port 1

LPC_GPIOZ for port 2

LPC_GPIO3 for port 3
LPC_GPIO4 for port 4

These pointers are defined in the 1pc17xx.h file as follows:

#idefine LPC_GPIO@ ((LPC_GPIO_TypeDef *) LPC_GPIO@_BASE)
#define LPC_GPIOT ((LPC_GPIO_TypeDef *) LPC_GPIO1_BASE)
#define LPC_GPIO2 ((LPC_GPIO_TypeDef *) LPC_GPI02_BASE)
#define LPC_GPIO3 ((LPC_GPIO_TypeDef *) LPC_GPIO3_BASE)
#define LPC_GPIO4 ((LPC_GPIO_TypeDef *) LPC_GPIO4_BASE)

where LPC_GPIO_TypeDef is the name of the structure, which is defined earlier in the file to describe
the registers related to GPIO ports, and LPC_GPI0@_BASE through LPC_GPI04_BASE are fixed addresses,
also defined earlier in the header file, at which the registers for each port start. Other structures are
also defined for registers related to functions other than GPIO.

Fields are Registers

For each instance of a structure, such as LPC_GPI00, you can access a register by accessing the
corresponding field in that structure instance. For example, the three registers used in Experiment
1 are defined in the aforementioned LPC_GPIO_TypeDef structure as the following fields:

1. FIODIR
2. FIOSET
3. FIOCLR

Each of these registers is accessible within the structure instance of each port.

Therefore, when using CMSIS, you need to know two names to access a register:

1. The name of the pointer to the structure instance.



2. The name of the field within the structure, corresponding to the desired
register.

Example 3. Setting Pin Directions and Values

 To set the direction of pins 3,4, 5, and 6 in port 2 as output (and set the remaining pins as
input):

LPC_GPI02->FIODIR = 0x00000078;
* To set pins 3 and 7 in port 1 while keeping the rest of the pins unchanged, use:

LPC_GPIOT->FIOSET = 0x00000088;

o Again, to learn more about structures and pointers in the C programming
language, refer to the Data Structures in C document.

1.3.8. LEDs

* What is an LED?
* How does an LED work?
* What is the maximum voltage that an LED can tolerate?

« If the output voltage is higher than the LED maximum voltage, what should you do?

O An LED should be connected to an output GPIO pin.

GPIO, Revisited

The GPIO mode is available in all I/O pins. A GPIO pin is one that can be used as a digital input or

digital output. Obviously, you need to choose the direction of the pin to determine whether it is
going to be used as input or output. In this experiment, we will choose the direction to make the

required pin work as GPO (General-Purpose Output). In this case (GPO), you need a command to set

this output pin to HIGH (1), and a command to Clear it to LOW (0).

(;) A 0in a SET or a CLR register has no effect on the port pins!

w

G A basic way to add delay is to use a for loop, e.g.: for(i=0;1<500000;i++);. You will
- learn about more sophisticated and accurate ways in later experiments.

1.4. Tasks

10



1.4.1. Create a Non-CMSIS Project

Click Quickstart Panel > New project....
. Choose LPC13/LPC15/LPC17/LPC18 > LPC175x_6x > C Project.
. Choose a project name, e.g. blinky.

1.

2

3

4. In the Target selection dialog, choose LPC1700 > LPC1768.

5. In the CMSIS Library Project Selection dialog, set CMSIS Core library to link project to to None.
6

. In the CMSIS DSP Library Project Selection dialog, set CMSIS DSP Library to link project to to
None.

7. Uncheck Enable linker support for CRP, then click Finish.

8. Open the main source file named after the project, and write your main function.

1.4.2. Blink an LED without CMSIS

1. Figure out which pin is connected to the LED.

@ Refer to the LPC1768 board documentation.

-
2. Give the required registers some friendly names using the #define directive.
3. In an infinite loop inside the main function:
a. Set the pin to act as output by setting the correct bit in the direction register to 1.
b. Set the output pin to 1.
c. Clear the output pin (set to 0).
d. Insert a delay loop after both set and clear, to be able to see the LED blink.

4. Which value of the pin turns the LED on, and which value turns it off? and why?

1.4.3. Import the CMSIS Libraries

1. Click Quickstart Panel > Import project(s)

2. In the Project archive (zip) dialog, click Browse next to the Archive field, and choose:

C:\nxp\MCUXpressoIDE_<version>\ide\plugins\com.nxp.mcuxpresso.tools.wizards_<versio
n>\Examples\Legacy\CMSIS_CORE\CMSIS_CORE_Latest.zip

3. Keep only these two projects selected: CMSIS_CORE_LPC17xx and CMSIS_DSPLIB_CM3, and click Finish.

1.4.4. Create a CMSIS Project

To create a project that uses CMSIS, follow the same instructions for creating a non-CMSIS project
up to the CMSIS Library Project Selection dialog. Instead of None, select CMSIS_CORE_LPC17xx.

11



1.4.5. Blink an LED Using CMSIS

Using a CMSIS project, rewrite your LED blinking program to use CMSIS facilities.

1.4.6. Debug Your Project

1. Click Quickstart Panel > Build 'cmsis_blinky' [Debug] to build the project.
2. Connect the LPC1768 board to the PC using the USB cable.

3. Click Quickstart Panel > Debug 'cmsis_blinky' [Debug] to debug the project interactively on the
target board.

Running the Debugger

You can run the debugger using any of the following three ways:

1. In the Quickstart Panel at the lower left corner, click Debug '<project-name>'

3
Q [Debug].
2. In the main menu, choose Run > Debug As > C/C++ (NXP Semiconductors)
MCU Application.

3. In the toolbar, click on the debug button % = .

o You may need to download and install mbedWinSerial application if you cannot
find the target board.

1. Once the debugger starts, it will pause execution at the first statement in the progrm. Resume
execution by hitting the F8 key, or using the resume button in the toolbar [ .

1.5. Grading Sheet

Task Points
Blink an LED without CMSIS 4
Blink an LED using CMSIS 4
Debug your project 2
Resources

= [Ipc1768-data-sheet]

NXP Semiconductors. LPC1769/68/67/66/65/64/63 — Product data sheet. Rev. 9.10. 8 September
2020.
https://www.nxp.com/docs/en/data-sheet/LPC1769_68_67_66_65_64_63.pdf

= [Ipc1768-manual]

NXP Semiconductors. UM10360 — LPC176x/5x User Manual. Rev. 3.1. 4 April 2014.
https://www.waveshare.com/w/upload/0/07/LPC176x5x_User_manual_EN.pdf

12


https://os.mbed.com/handbook/Windows-serial-configuration
https://www.nxp.com/docs/en/data-sheet/LPC1769_68_67_66_65_64_63.pdf
https://www.waveshare.com/w/upload/0/07/LPC176x5x_User_manual_EN.pdf

= [Ipc1768-schematic]

Embedded Artists AB. _Board Schematics for current LPC1768 board — LPCXpresso LPC1768 25
July 2011.
https://os.mbed.com/media/uploads/chris/lpc1768-refdesign-schematic.pdf

= [c-data-structures]

Data Structures in C.
http://www.ccse.kfupm.edu.sa/~salehs/courses/212-coe306/html/data-structures-in-c.html

2. Experiment 2: General-Purpose
Input/Output (GPIO)

Ahmad Khayyat; Hazem Selmi; Saleh AlSaleh 212, 14 February 2022

2.1. Objectives

» Using GPIO pins as input and output
* Interfacing with external LEDs, switches, and push-buttons

* Bit manipulation in C

2.2. Parts List

* LPC1768 mbed board

* USB A-Type to Mini-B cable
* Breadboard

* LEDs

330-Ohm Resistors

* Jumper wires

2.3. Background

2.3.1. Bit Manipulation in C

The core of embedded system programming is setting (or clearing) specific bits in different
registers inside the microcontroller. This highlights the importance of bit manipulation as a
programming skill.

Most modern architectures are byte-addressable: the smallest unit of data is the byte. Nonetheless,
it is possible to operate on individual bits by clever use of bitwise operators.

13


https://os.mbed.com/media/uploads/chris/lpc1768-refdesign-schematic.pdf
http://www.ccse.kfupm.edu.sa/~salehs/courses/212-coe306/html/data-structures-in-c.html

Bitwise Operators

Bitwise operators apply to each bit of their operands.

Operator Function Examples
& Bitwise AND 0011 & 0101 = 0001
3 & 5 = 1
| Bitwise OR 0011 | 0101 = 0111
3] 5 = 7
A Bitwise XOR 0011 N 0101 = 0110
3 A 5 = 6
~ Bitwise NOT ~00110101 = 11001010
<< Shift left 3« 2=12
>> Shift right 8>>2=2
o In C, numbers can be written in decimal, octal, hexadecimal, or binary, e.g. 16 =
020 = 0x10 = 0b10000.

a Right-shifting in C is implementation-specific. Often, logical shifting is applied to
unsigned values, whereas arithmetic shifting is applied to signed values.

Masking

A simple assignment to a 32-bit register or memory location will overwrite all 32 bits. However,
manipulating specific bits implies that the remaining bits in the register remain intact. An essential
technique to achieve that is bit masking.

A mask is a value that can be used in a binary, i.e. two-operand, bitwise operation to change specific
bits of some other value. Masking relies on the following rules of Boolean Algebra:

* ANDing a bit with a 0 results in a 0. ANDing a bit with a 1 results in the same bit.
* ORing a bit with a 0 results in the same bit. ORing a bit with a 1 results in a 1.

* XORing a bit with a @ results in the same value. XORing a bit with a 1 inverts the bit.

Exercises

1. What mask and bitwise operation are required to set the third least significant bit (bit 2)
to 1 without affecting the other bits in a 32-bit variable x?

2. What mask and bitwise operation are required to reset bit 10 of a 16-bit variable y to 0?

3. What mask and bitwise operation are required to toggle bit 20 of a 32-bit variable z?

Creating Masks by Shifting

If you have worked out the exercises above, you would have noticed that spelling out masks can be

14



tedious, verbose, and error-prone. One trick that makes it easier to create masks is to use the shift
operations. For example, to create a mask whose bit 10 is 1 and whose other bits are 0, you can use
the following C statement:

mask = 1 << 10;

Exercise

Repeat the three exercises above by using shift operations to create the masks.

2.3.2. Digital Input

A GPIO pins can be configured to act as a general-purpose input pin by setting the corresponding
bit in the FIODIR register to 0. A digital input pin is digital because it is driven by an external digital
device that has only two states (HIGH or LOW); and it is input because its state is read by the
microcontroller. That implies that some external device/circuit is needed to generate that digital
input value (HIGH or LOW).

Examples for simple digital input devices include switches and push-buttons.

° A common mistake is to forget about or misuse the FIODIR register.

The FIOPIN Register

In addition to the three registers used in Experiment 1 (FIODIR, FIOSET, and FIOCLR), there are a few
additional GPIO-related registers. The one that is particularly essential for reading from a digital
input peripheral is FIOPIN.

This register is a R/W register that stores the current state of a port’s pins. In other words, you can
write to FIOPIN to set and clear pins of a specific port. You can also read the state of port pins. FIOPEN
is essential for the read operation, but since it is a R/W register, it can also be used with output pins.
For instance, you can redo Experiment 1 using FIOPIN only instead of FIOSET and FIOCLR.

There is an FIOPIN register for each one of the five I/O ports, and it can be accessed in the same way
FIOSET and FIOCLR are. For example, port 1’s FIOPIN register can be accessed using:

LPC_GPIOT->FIOPIN

Example 4. Using the FIOPIN Register

To set the third bit of port 0, i.e. PO[2]:

LPC_GPI0Q->FIODIR |= (1 << 2); // configure the pin for output
LPC_GPIO@->FIOPIN |= (1 << 2); // set the the pin value to high or one
LPC_GPIO0@->FIOPIN &= ~(1 << 2); // clear the pin value, set its value to be low or

15



zero

2.3.3. Debugging

The MCUXpresso IDE along with LPC-Link hardware provide the ability to step through the code by
executing one statement or instruction at a time. This helps find which line in the code causes some
errors or invalid values.

To step through the program statements or instructions, run it by pressing F6 instead of F8. This will
execute the code one statement at a time.

o You can add a breakpoint to a statement and the debugger will stop at that
statement only.

You can learn more about MCUXpresso’s debugging support by referring to the
[mcuxpresso-ide-user-guide].

@,

w In particular, you may want to check out section 3.4.2 Controlling Execution, which
lists all the possible ways to step through your code, such as stepping into and
stepping over functions.

Inspect Variable Values at Runtime

After uploading a program to the microcontroller, start debugging it by stepping through the
statements or by adding a breakpoint. Now, you can get the value of any variable simply by
hovering the mouse over the variable in the code. A window will be shown containing details about
the variables such as type and value.

o This can also be used for registers. For example, you can use it to find the value of
LPC_GPIO® > FIOPIN.
Print Variable Values

To be able to use the printf function to print variables to the console:

Right Click on the project’s name and then click on Properties.
Expand C/C++ Build and select Settings.
Under MCU Linker, click on Managed Linker Script.

L

Change the Library used from Redlib (none) to Redlib (semihost), as shown in the Semihost
Debugging Configuration figure.

o This is a limited implementation of the printf function that does not recognize all
format specifiers, but is sufficient for most debugging needs.

16



Example 5. Using the printf Function

printf("push-button value: %d\n", value);
// Given that value is an integer (int) containing the state of a push button

Properties for test SR >}
€] Settings @ v oD v o
+ Resource
Builders Configuration:  Debug [ Active] v | Manage Configurations...
- C/C++ Build

Build Variables WTool Settings  #Build steps  “PBuild Artifact @ Binary Parsers @ Error Parsers

Environment
- & MCU C Compiler Manage linker script

¢ Dialect Enable Code Read Protection

Logging
MCU settings
e gy it
5
ool Chain Editor 22 symbols Stack offset | 0

% Includes

+ CfC++ General Library Redlib (semihost) w

## optimization
22 Debugging
2 warnings

Project References Enable printf float

Run/Debug Settings Enable scanffloat

Linker script | "test_Debug./d'

# Miscellaneous
(22 Architecture script path
- B MCU Assembler

% General

(2 Architecture & Headers
- B MCU Linker

% General

22 Libraries

(2 Miscellaneous

(%% shared Library Settings

#5 Architecture

#% Managed Linker Script

22 Multicore

Restore Defaults Apply

@ Cancel oK

Figure 2. Semihost Debugging Configuration

17



2.4. Tasks

In this experiments, you will control LED lights by software.

2.4.1. Hardware

1. Find out which I/O Pins you can use for controlling LEDs, and choose specific ones.
2. Connect four LEDs using a proper current-limiting resistor.

3. Connect two switches using a proper current-limiting resistor.

2.4.2. Software

Blink an LED without using FIOSET and FIOCLR

Pick an LED and blink it using only one FIOPIN statement and one delay loop!

(r) Use bitwise exclusive-OR.

Implement LED Scrolling

1. Write a program that makes it look like the light is scrolling through 4 LEDs that are connected
externally. The scroll effect can be achieved by turning LEDs ON and OFF sequentially.

2. Use two switches to control the scrolling. For example, you can use one switch to turn the
scrolling ON and OFF, and the second switch to reverse the scroll direction.

2.5. Grading Sheet

Task Points
Using FIOPIN with XOR 4
Using FIOPIN with input pins 4
Discussion 2
Resources

= [mcuxpresso-ide-user-guide]

MCUXpresso IDE User Guide Guide_. Rev. 11.4.1. 15 September 2021.
https://www.nxp.com/docs/en/user-guide/MCUXpresso_IDE_User_Guide.pdf

3. Experiment 3: Interrupts

Hazem Selmi; Ahmad Khayyat; Saleh AlSaleh 212, 14 February 2022

18


https://www.nxp.com/docs/en/user-guide/MCUXpresso_IDE_User_Guide.pdf

3.1. Objectives

* Understand interrupts in LPC1768

» Using external interrupts

3.2. Parts List

* LPC1768 mbed board

* USB A-Type to Mini-B cable
* Breadboard

* LEDs

e Push-buttons or switches

330-Ohm Resistors

* Jumper wires

3.3. Background

o Interrupts are essential for embedded systems. The information in this experiment
will be used in all future experiments in this lab.

3.3.1. Interrupts in LPC1768

Interrupts allow for suspending the currently executing code, and having the CPU switch to execute
a routine associated with the received interrupt request.

In LPC1768, there are 35 hardware interrupts. Each interrupt is identified by a number called IRQn,
or Interrupt ID as called in the LPC1768 manual. Below are some examples of hardware interrupts
and their IDs:

Table 1. Example Interrupt IDs

Interrupt Interrupt Source

ID

1 Timer 0
2 Timer 1
5 UART 0
6 UART 1
13 SPI

18 EINTO
19 EINT1
20 EINT2

19



Interrupt Interrupt Source
ID

21 EINT3
33 USB Activity Interrupt

(2 .
O In CMSIS, interrupts are numbered from 0 to 34.
w
o In addition to these 35 interrupts, there are 8 exceptions with negative numbers.
Exceptions are not discussed in this experiment.

Exercise

Find the interrupt number definitions of the LPC1768 in the 1pc17xx.h header file.

Setting up Interrupts in LPC1768

There are four main steps to correctly setup any interrupt in LPC1768:
1. Configure the required peripheral to generate interrupt requests. For example, to be able to use
a timer interrupt, a timer must be activated and configured to generate interrupt requests.

2. Enable the interrupt in the Nested Vectored Interrupt Controller (NVIC). See Enabling the
Interrupt in the NVIC for more information about the NVIC.

3. Write an interrupt service routine (ISR): the routine that needs to be executed when an interrupt
request is received.

4. Clear the interrupt request at the end of the ISR to allow future requests of the same interrupt.

Some peripherals that are capable of generating interrupts can also be used

o without interrupts. There are valid uses for either approach. That’s why it is
required to configure devices to generate interrupt requests when that behavior is
desired (step 1 in the list above).

Upon setting up an interrupt as described above, the LPC1768 microcontroller will be responsible
for:

* Detecting the interrupt request generated by a peripheral. This request will be generated by the
peripheral that has been enabled by software.

* Jumping to the interrupt service routine associated with that request.

3.3.2. Configuring Microcontroller Interrupts

This section elaborates the four steps listed in the previous section (Setting up Interrupts in
LPC1768) to configure the LPC1768 microcontroller to handle interrupt requests generated by a
given device.

20



The programmer must perform four main steps:

1. Enable a peripheral to generate a hardware interrupt request (not to be discussed here because
it is peripheral dependent)

2. Enable the required interrupt in the NVIC

3. Write an interrupt service routine (ISR)

4. Clear the interrupt request at the end of the ISR
Enabling the Interrupt in the NVIC

The Nested Vectored Interrupt Controller (NVIC) offers very fast interrupt handling and provides
the vector table [keil-nvic].

In addition, the NVIC:

» Saves and restores automatically a set of the CPU registers (R0-R3, R12, PC, PSR, and LR).
* Does a quick entry to the next pending interrupt without a complete pop/push sequence.

* Provides many other advanced features.

NVIC Functions

The CMSIS core module defines a set of interrupt helper functions. For example, to enable
interrupts for a given interrupt ID, you can use the function:

NVIC_EnableIRQ(IRQn); // IRQn is the interrupt ID

For example, for UART1, IRQn is 6 (see Example Interrupt IDs Table). You can use this number or use
the given name in 1pc17xx.h: UART1_IRQn.

The ISR

Whenever an interrupt request is generated, the CPU will jump to the corresponding ISR. When
using CMSIS, the ISR is a C function that has the following prototype format:

void __peripheral___IRQHandler();

Example 6. An ISR for the TIMERZ2 Device

void TIMER2_IRQHandler() {
// Your code goes here
// Clear the interrupt request at the end of the ISR

o If you are using mbed online compiler, you need to wrap the interrupt handler by
an extern "C" as shown below since mbed online compiler uses C++ compiler

21



rather than C compiler.

extern "C" {
void TIMER2_IRQHandler() {
// Your code goes here
// Clear the interrupt request at the end of the ISR
}
}

Clearing the Interrupt Request

As indicated in the format of the ISR above, the last statement in any ISR should be to clear the
request that has just been served. This is required to allow future requests of the same interrupt.

This step is peripheral-dependent and is usually done by clearing a bit in one of the peripheral
registers.

Other Interrupt-Related Operations

Interrupts will not function at all without the above four steps. There are other issues, however,
that are not essential in simple applications, but can be very useful and even essential in some
applications, especially when you have multiple interrupts. We will discuss two such issues here:

1. Interrupt status

2. Interrupt priority

Interrupt Status

Sometimes, you need to check the status of a specific interrupt. For example, is it pending, active or
disabled.

When using CMSIS, the status of interrupts can be checked by calling one of the following functions,
depending on the application:

* uint32_t NVIC_GetPendingIRQ(IRQn_Type IRQn)
o If the interrupt status is not pending, the function returns 0.
o If the interrupt status is pending, the function returns 1.

e uint32_t NVIC_GetActive(IRQn_Type IRQn)
o If the interrupt status is not active, the function returns 0.

o If the interrupt status is active, the function returns 1.

Interrupt Priority
When using CMSIS, you can set interrupt priorities by calling the function:
void NVIC_SetPriority(IRQn_Type IRQn, uint32_t priority)

* The fist argument is the interrupt ID.

22



* The second argument represents the priority, where 0 is the highest priority and 31 is the lowest
priority.

(r) To assign a different priority for each interrupt, you need to call this function for
- every interrupt you are using.

3.3.3. External Interrupts

To practice interrupts, we will concentrate on external interrupts only in this
o experiment, since other hardware interrupts require understanding the functions
with which they are associated, which we did not cover yet.

One type of interrupts that is easy to experiment with is external interrupts. They are the interrupts
that are generated by a device outside the microcontroller. An external interrupt should be
connected to one of the I/O port pins.

In external interrupts, an interrupt request is generated by a pulse at a pin that has been enabled to
accept external interrupt requests. A simple way to implement that is to use a push-button to
generate that request.

The difference between such implementation and what you did in Experiment 2 is that in
Experiment 2, we used polling, where the CPU is always busy reading the pin in order to detect a
change that would trigger some action. When using interrupts, however, the CPU is available to
execute other code. When the push-button is pressed, the CPU stops whatever it is doing and jumps
to the routine associated with that interrupt request.

There are four external interrupt channels available to the developer, called EINT@, EINT1, EINT2 and
EINT3. In older ARM versions, a pin’s function must be set for the pin to act as an external interrupt.
This is done using the PINSELx register. However, one of the new features of the newer Cortex
family is accepting external interrupts from some GPIO pins! Any GPIO pin used for external
interrupts will be using external interrupt channel 3 (EINT3).

You can use GPIO pins from ports 0 and 2 only for external interrupts. You have about 24 different
pins to choose from. Compare that, for example, to ARM7 where only 7 pins are available for
external interrupts.

External interrupts can be enabled on two sets of pins:

(r') 1. Four dedicated pins (P2.10, P2.11, P2.12 and P2.13) that act as EINTO, EINTT,
b EINT2, and EINT3, respectively.

2. Any GPIO pin in port 0 and port 2.

In the two following sections, we will discuss and practice:

o * GPIO external interrupts

* Non-GPIO external interrupts

23



GPIO external interrupts

GPIO external interrupts share the same ISR for EINT3. As discussed in Setting up Interrupts in
LPC1768, you always need to enable the NVIC and write an ISR.

For GPIO external interrupts, that leaves two more steps:

1. Activating GPIO external interrupts

2. clearing a GPIO interrupt request at the end of the ISR

Activating GPIO External Interrupts

To activate external interrupts on a GPIO pin, you only need to configure whether the pin is to
generate an interrupt request on the rising edge or on the falling edge.

You can set external interrupts to be generated on the rising edge on a GPIO pin by setting the
I00IntEnR and I02IntEnR registers, depending on the port to which the pin belongs. These names
refer to 32-bit registers. Setting a bit to 1 enables rising-edge interrupts at the corresponding pin.

To generate interrupts on the falling edge, you can use the I00IntEnF and I02IntEnF registers instead.

In LPC17xx.h, the structure that deals with GPIO external interrupts is LPC_GPIOINT, which includes a
few fields that control the GPIO pins when acting as an external interrupt.

Example 7. Enable Rising-Edge Interrupts on Pin 0 of Port 2 Only

LPC_GPIOINT->I02IntEnR = 1;

Clearing External GPIO Interrupt Requests

To clear the interrupts of a port pin, set the corresponding bit to 1 in register 100IntC1lr or I02IntClr,
depending on the port. Both registers are fields of the LPC_GPIOINT structure.

Other issues related to GPIO interrupts

Level and Edge Sensitivity (For Non-GPIO Interrupts)

You may have noted that, to enable GPIO interrupts, you have to select whether they are triggered
by the rising or falling edge of the pulse at the pin.

Interrupt Status for GPIO External Interrupts

You can check for pending GPIO interrupts by reading the appropriate status register. There are
four status registers for ports 0 and 2 that indicate whether an interrupt is pending, and whether it
is triggered by a rising edge or a falling edge. They are I100IntStatR, I02IntStatR, I00IntStatF, and
I02IntStatF.

For Example, if bit 9 of 102IntStatR is 1, then P2.09 has a pending rising-edge interrupt request.
This is particularly important when you have multiple interrupts sharing the same interrupt

channel (EINT3 in our case). Any one of them can result in executing the same ISR. Now, If you

24



want to perform different actions for each interrupt, you need to identify the source interrupt in
order to perform the corresponding action. You can do that by checking the status registers in your
ISR.

Non-GPIO external interrupts

External interrupt requests can be generated using any of the 4 dedicated external interrupt pins,
named EINT1, EINT2, EINT3, and EINT4:

EINTO P2.10
EINT1 P2.11
EINT2 P2.12

EINT3 P2.13

However, These four pins are not available in LPC1768 mbed board.

3.4. Tasks

3.4.1. One External Interrupt

Use a push-button to generate an external interrupt using a GPIO pin. Do something interesting in
the ISR!

3.4.2. Two External Interrupts

Use two external interrupts, where each interrupt triggers a different task. For example, each
interrupt could blink an LED 10 times at a different rate.

A All tasks must be completed during the lab session.

3.5. Grading Sheet

Task Points
Task 1: External interrupt using a GPIO pin 3.5
Task 2: Two external interrupts 3.5
Discussion 3
Resources

» [keil-nvic]

Cortex™-M3 'Technical Reference Manual'

25



https://www.keil.com/dd/docs/datashts/arm/cortex_m3/r1p1/ddi0337e_cortex_m3_r1p1_trm.pdf
* [Ipc1768-manual]

NXP Semiconductors. UM10360 — LPC176x/5x User Manual. Rev. 3.1. 4 April 2014.
https://www.waveshare.com/w/upload/0/07/LPC176x5x_User_manual_EN.pdf

4. Experiment 4: Analog Input and Output

Hazem Selmi; Ahmad Khayyat; Saleh AlSaleh 212, 14 February 2022

4.1. Objectives

* Introduce the PINSELx registers
* Using the Analog-to-Digital Converter (ADC) to read analog input

» Using the Digital-to-Analog Converter (DAC) to write analog output

4.2. Parts List

* LPC1768 mbed board

* USB A-Type to Mini-B cable

* Breadboard

 Light sensor and/or potentiometer

» Seven-segment display or set of LEDs

330-Ohm Resistors

* Jumper wires

4.3. Background

Many microcontrollers have pins that can be used for analog input. Because the microcontroller
processes digital data only, analog input must be converted to digital data. An analog-to-digital
converter (ADC) is an I/O circuit often integrated into microcontrollers to allow directly connecting
external analog devices, such as sensors. The ADC would convert the sensor voltage into a digital
value by transforming it into a binary code with a specific number of bits.

Although not critical to conducting this experiment, it would be useful to review

O the three steps involved in analog-to-digital conversion: sampling, quantization,
et and bit encoding (COE 241).

4.3.1. Using LPC1768 Peripherals

The LPC1768 includes an integrated ADC peripheral device. In general, using any peripheral device
involves three main issues:

26


https://www.keil.com/dd/docs/datashts/arm/cortex_m3/r1p1/ddi0337e_cortex_m3_r1p1_trm.pdf
https://www.waveshare.com/w/upload/0/07/LPC176x5x_User_manual_EN.pdf

1. Powering up the peripheral

2. Configuring the peripheral clock

3. Configuring pin functions
Power Up

All microcontroller peripherals must be powered up before they can be used. This was not a
concern in earlier experiments because we were using peripherals that are powered up by default.

Powering peripherals up and down is controlled through the Power Control for Peripherals Register
(PCONP).

By referring to table 46 in Chapter 4 of the LPC176x manual, you can see that the reset value
(default value) is 1 for some peripherals, meaning that they are powered on by default, whereas it
is 0 (OFF by default) for others.

Example 8. Powering peripherals on

LPC_SC -> PCONP [= (1 << xx);
// where xx is the bit number in PCONP that controls the
// power (ON/OFF) for a specific peripheral.

is 0 by default. You must set that bit to power up your ADC.

To save power, you can turn the power OFF for any unused peripherals that are

o The A/D converter (ADC) power is controlled by bit 12 of the PCONP register, which
@,
- ON by default.

Peripheral Clock

Most of the microcontroller peripherals, including timers and the ADC, require setting a peripheral
clock (PCLK) to drive the peripheral.

There are four possible frequency configurations for the peripheral clock (PCLK), which are set using
a pair of bits.

Table 2. Peripheral Clock (PCLK) Frequency Configurations

Bit Values Frequency Configuration
01 PCLK = CCLK
10 PCLK = CCLK /2
00 PCLK = CCLK /4
n PCLK = CCLK /8

These pairs of bits belong to the PCLKSEL® and PCLKSEL1 registers, which control the PCLK frequency

27



for all peripherals.

The PCLKSEL@ and PCLKSEL1 Register Fields figure illustrates some of the fields of the PCLKSEL® and
PCLKSEL1 registers. Every two bits control the PCLK frequency for a specific peripheral.

eveees | UARTO [ Timer1 | Timero| wot |

31 20 29 7 6 5 4 3 2 1 0 Bit#
PCLKSELO

e | UART2 | Timers | Timer2| sspo | ...

[ I I

31 30 17 16 15 14 13 12 11 10 ... Bit#
PCLKSELL

Figure 3. PCLKSEL® and PCLKSEL1 Register Fields

Exercise

Refer to Chapter 4 in the LPC176x manual to find out the two bits needed to configure the
PCLK frequency for the ADC.

Question

What would happen if you skip this step?

o For the full list of peripherals and their corresponding two bits in PCLKSEL® or
PCLKSEL1, you can refer to Chapter 4 (section 4.7.3) in the LPC176x manual.

Pin Functions

4.3.2. The PINSELx Registers

o This section is not specific to ADC. It is about configuring the function of a pin in a
port. One possible functions is ADC.

Configuring the hardware involves a common step regardless of the hardware being configured.
That common step is configuring the functions of the relevant pins.

Each pin can be configured to perform one of four functions. Therefore, the function of each pin is
controlled by two bits, as follows:

00 Primary (default) function, (GPIO)

28



01 First alternate function
10 Second alternate function

11 Third alternate function

As such, to configure the functions of the five 32-bit ports, ten function selection registers are
required. They are named PINSEL®, PINSEL1, PINSEL2, ..., PINSEL9. PINSEL® controls the functions of the
lower half of port 0 (P0.0 to P0.15), PINSEL1 controls the functions of pins P0.16 to P0.31, PINSEL2
controls the functions of pins P1.0 to P1.15, and so on.

For example, the two least significant bits in PINSEL® control the function of pin P0.0 as follows:

00 GPIO
01 RD1: CAN1 receiver input
10  TXD3: Transmitter output for UART3

11 SDA1: 12C1 data input/output

(See Table 73 in the LPC1768 User Manual.)

O All PINSELx registers are fields in the LPC_PINCON structure.

So, to configure P0.0 to function as TXD3 instead of GPIO:

LPC_PINCON -> PINSELO = 0x00000002; // Assignments like this are not the best way,

// unless you want to set the remaining pins to
GPIO

o To avoid affecting other pins, You may want to use bitwise operations to set and/or
clear the required bits in PINSELx.

o Using 00 for any pin sets its function to GPIO. The reset value for PINSELx registers
is 0x00000000. That is why the default function for all I/O pins after a reset is GPIO.

o You may want to refer back to this section whenever you want a pin to have a
function other than GPIO.

4.3.3. ADC Pins

Many microcontroller pins can be configured to perform one of many functions. To use the ADC,
you must set the function of an appropriate pin to be analog input (AD@. x in the manual).

29



Exercise

Refer to Chapter 8 of the LPC176x manual to determine:

1. which PINSELx register should be modified
2. which bits of the register should be modified

3. what value should the bits be set to

You should connect a device that generates an analog voltage signal to the selected pin. Examples of
such devices are light sensors (LDR) and potentiometers.

o It is professional to correctly address the above three issues for every peripheral
you plan to use, regardless of the defaults.

4.3.4. ADC Configuration

The main setup register for the ADC is the A/D Control Register (ADOCR). The ADOCR Register Fields
figure illustrates the fields of the ADOCR register.

There is only one ADC in the LPC1768 microcontroller. In the LPC17xx.h header file,

o the control register is referred to as ADCR; while in the chip manual it is called
ADOCR. The reason for that is that some other chips have multiple ADCs, named:
ADOCR, AD1CR, etc.

bit number
31|30(20(28|27 26| 25(24 23222 (20191817 (16|15 14(13(12|11|10| o (&8 |7 |6 |5 (4|3 |2 |1|0

E START B

RED are reserved bits Bit21 is PDN shouldbel to enable the ADC
and should be 0 1 The A/D converter is operational.

0 The A/D converter is in power-down mode.

Bits 8 to 15 (called CLKDIV)

are the binary representation Bits 24, 25 and 26 ( called START).
for a number (n) START = 000 (no start). 5till the ADC can be

The elock for ADC will be continuously running if bit 16 is 1.
PCLK/(n+1) START =001 (Stat conversion now]. Analog value is

converted to digital one time.

The remaining 6 combinations allow different
hardware sourcesto trigger or start conversion. Check
Bits0 to 7 (called SEL) . LPC176x manualfor details.

Place "1" in any of bits 0 to 7

to activate the corresponding
ADC channel.

The clock has to be < 13 MHz.

Bits 16 and 27 are related to START bits.
See the text below for details.

Figure 4. A/D Control Register (ADOCR) Fields

30



The following table explains the function of the B (Burst) and E (Edge) bits of the ADOCR register.

Bit 27 (E) works only if B = 0 and START > 2. When 2 < START < 7, the conversion starts
when the state of a specific pin is changed. The E bit decides whether the ADC is
triggered on the positive edge or the negative edge of that pin specified by START.

Bit Label Value Effect

16 B 0 The START bits control when the ADC starts the
conversion

1  The ADC is continuously running (START should be 000)
27 E 0  Start conversion on a falling edge

1  Start conversion on a rising edge

START vs. BURST
Using START will perform the conversion only once.
If you want the analog value to be repeatedly converted, you have two options:

1. Set the B bit (Burst) of the ADACR register to 1; or

2. Set the START bits to 001 repeatedly, i.e. in a loop. The analog value is read every time such a
statement is executed.

Using ADC Interrupt

In simple ADC applications, you don’t need interrupts. You can simply read the digitized value from
the proper register whenever needed and take some action. However, in some applications, such as
real time applications, you may need to interrupt the CPU to take an action only when the
conversion is completed. To do that, you can use the ADGINTEN register.

(r) See Table 534 in Chapter 29 of the LPC176x manual for details.

4.3.5. Reading Digital Values

There are 8 ADC channels, each corresponding to an analog pin. The digitized value corresponding
to an input analog voltage is stored in 12 bits in one of the A/D Data Registers: ADDR@ to ADDR7, where
each register corresponds to an analog pin.

The ADDR Register Fields figure illustrates the fields of the ADDRx registers.

31



bit number

il

30| 29(28] 27| 26(25(29] 23( 22| 21| 20) 19] 18] 17| 16 15|14|13|12

1fwo|9e]7]e|s]al3]2][1]0

Bit30 is OVERRUN. If you don't use burst
mode, forget about this pin. This bit is 1 in burst
mode if the results of one or more conversions was
(were) lost and overwritten before the conversion
that produced the result in the RESULT bits. This bit is
clearedwhen the register is read.

Your RESULT (12 bit digitised
value) is stroedin bits 4 to 15.

Figure 5. A/D Data Register (ADDR) Fields

o Using proper shifting and bitwise operations, you should be able to get the proper
value representing the analog voltage.

The DONE and OVERRUN bits are less important (may not be needed) in BURST mode.
However in START mode, you may need to check them to avoid reading an old or

unintended value.

Example 9. Using the DONE Bit

Bit31 is DONME. It will be set
to 1 when conversion is
comlete. Itis cleared when
whenthe registeris read.

To wait until the conversion of the ADC channel 3 is over, you may use:

The 12-bit digital value generated by the ADC ranges from 0 to 4095. The way to process this value

while ((LPC_ADC->ADDR3 & (1 << 31)) == 0);
channel #3

depends on your application.

You may want to divide this range to a number of sub-ranges, and assign different actions for each

sub-range. In this case, you can use an if-else block.

In many applications, however, you will want to map this range to a another range using a
mathematical formula. For example, if you are reading from an analog temperature sensor, you
would want to map the 0-to-4095 range to the range of temperatures supported by the sensor, as

// Check the DONE bit for ADC

specified in the sensor’s data sheet. In most cases, a linear relationship is sufficient.

4.3.6. Analog Output

To write analog values to an analog output device, use the LPC1768’s digital-to-analog converter

(DAC) as follows:

1. Use PINSELx to configure P0.26 to function as analog output (AOUT).

32



2. Use the D/A Converter Register (DACR) to set the digital value to be converted to analog.

Refer to Chapter 30 in the LPC176x manual for details.

4.4. Tasks

1. Use the ADC in LPC1768 to read an analog input device, such as the LDR (light sensor) or the
potentiometer.

The output can be any thing you want. The seven-segment display is a good option. You can
simply display the analog level. If you use one seven-segment display, you have 10 different
levels (0 to 9).

It is recommended to use a formula to map the readings to sensible values, instead of using an
if-else block.

2. Use the DAC in LPC1768 to output analog values to an analog device.

4.5. Grading Sheet

Task Points
Analog Input 5
Analog Output 2
Discussion 3
Resources

= [Ipc1768-manual]

NXP Semiconductors. UM10360 — LPC176x/5x User Manual. Rev. 3.1. 4 April 2014.
https://www.waveshare.com/w/upload/0/07/LPC176x5x_User_manual_EN.pdf

5. Experiment 5: Hardware Timers

Hazem Selmi; Ahmad Khayyat; Mansour Alharthi; Saleh AlSaleh 212, 14 February 2022

5.1. Objectives

» Using hardware timers
* Using the LPC176x manual to figure out how to use a given register

* Identifying how to access a given register by referring to the LPC17xx.h file

33


https://www.waveshare.com/w/upload/0/07/LPC176x5x_User_manual_EN.pdf

5.2. Parts List

* LPC1768 mbed board

» USB A-Type to Mini-B cable
* Breadboard

* LEDs

330-Ohm Resistors

* Jumper wires

5.3. Background

There are four hardware timers in LPC1768: Timer O, Timer 1, Timer 2, and Timer 3. They are
identical and can work independently with different settings.

Throughout this document, timer or TIMERx refer to one of these LPC1768 timers. Every one of the
timer-related registers discussed henceforth applies to all of these four timers, and cannot be used
without specifying the targeted timer.

5.3.1. Timer Basic Operation: Timer Counter

The basic function of any timer is to have a counter running. In LPC1768, this counter is called
Timer Counter (TC).

In this section, we will learn how to enable TC to start ticking, and will find out how fast it can run.

Controlling the Counting Speed

Peripherals in LPC1768 are fed with an input clock called the peripheral clock (PCLK). By default, the
Timer Counter (TC) register is incremented every PCLK cycle.

There are two ways to change that:

1. Divide PCLK by a factor other than the default. This will change the input clock frequency. Since
this method is applicable for all peripherals we will discuss it in a separate section at the end of
this document.

2. Using an intermediate counter called the prescale counter.

The prescale counter is always incremented every PCLK pulse. This continues till the prescale counter
= the prescale register. When that happens, two events take place in the next PCLK pulse:

* Increment TC by 1

* Reset the prescale counter and continue counting

If the prescale register is not set to any value (the default is 0), TC to be incremented every PCLK.

o Although it was claimed ealier that TC is by default incremented every PCLK, you

34



now know that this is only true when the prescale register = 0.
Example 10. TC and the Prescale Register

If you set the prescale register to 5, TC will be incremented every 6 PCLK pulses.

Enabling the Counter

To start using a timer, you first must enable counting! In LPC1768, the Timer Control Register (TCR)
is the register that allows you to do that.

As should be clear from previous experiments, you interact with peripherals
through registers. In the case of timers, to enable a counter and have it start
counting, you need to write to the TCR register. To do that, you must:

o 1. Identify the relevant bit(s) of the register. For that, refer to table 428 in chapter
21 of the LPC1768 manual.

2. Find out how to access this register using CMSIS. One easy way to do that is to
check the 1pc17xx.h file to find the structure containing the TCR field.

Exercise

» How can you enable Timer 0 counter?

* How can you enable Timer 3 counter?

7 You can write a single line of code that would enable the counter, and then use
- printf() to see whether TC is counting.

5.3.2. Timer Counter (TC) is Ticking; Now What?

There are two main ways to use a ticking timer:

1. Load a match register (MR) with some value and then wait till TC=MR to trigger some action.

2. Capture the time in a capture register (CR), i.e. set CR= TC, whenever an event takes place on a
given pin. The event is simply any change of the pin state (HIGH — LOW or LOW - HIGH, i.e. a
positive edge or a negative edge).

In this section, we will discuss these two options.

Timing Using a Match Register

For each LPC1768 timer, there are four match registers: MR@, MR1, MR2, and MR3.

Timer Registers

o Hereafter, MR or MRx refers to one of MRO, MR1, MR2, and MR3 match registers of a

35



specific LPC1768 timer.

When the value of TC reaches the value in the match register (MR), an action is triggered. Therefore,
setting MR specifies the timer’s period. The action triggered every time TC reaches MRO can be set
using the Match Control Register (MCR) to one (or more) of the following:

1. Generate an interrupt
2. Reset TC
3. Stop TC

= Timer Counter Register

= When the value of TC reaches
' ' MR, the actions set at MCR

' will be taken ...

0318008

Match Register
PCLKs MR

Figure 6. Timers in LPC1768

You can enable or disable the above actions when the TC register reaches the value stored in MR0
register by setting or clearing the three least significant bits of the MCR register.

Table 3. Setting Timer Actions Using the NCR Register

MCR bit Bit value=1 Bit value = 0
0 Enable timer interrupt Disable timer interrupt
1 Reset TC Disable this feature
2 Stop TC Disable this feature

External Match Action

You can also trigger a different action when TC=MRx, which is, to set, reset, or toggle a specific bit.
This bit can be pinned out to an external output pin, hence the name: External Match bit (EMx).

For each timer, there are 4 EM bits, namely EM0, EM1, EM2, and EM3. Each EMx bit can be controlled when
TC equals the corresponding MRx. These four EM bits belong to the ENMR register. In other words, for
each MRx, the external match control bits and the controllable bit are all part of the same EMR
register.

(r) Study the EMR register tables (432 and 433) in chapter 21 of the LPC1768 manual to
- understand the following examples.

36



Example 11. External Match Actions

* Assigning 0 to bit 6, and 1 to bit 7 in EMR will force bit 1 in EMR to be HIGH when TC = MR1.
» Assigning 1 to both bits 10 and 11 in EMR will toggle bit 3 in EMR when TC = MR3.

Theoretically, any EM bit can be pinned out to a pin that is named MATx.y, where x is the timer
number and y is the match register number.

Example 12. Pinned Out External Match Actions

* When using MR3 with Timer 2, the EM3 bit of the ENMR register of Timer 2 can be pinned out to
MAT2.3.

* When using MR1 with Timer 0, the EM1 bit of the ENMR register of Timer 0 can be pinned out to
MAT@.1.

Practically, however, only MATx.0 and MATx.1 are available in LPC1768 for Timer 0, Timer 1, and
Timer 3, whereas Timer 2 can use all four MAT2.y pins.

o You need to change a pin’s function to use it as MATx.y. Refer to the PINSEL section
in experiment 3 and chapter 8 of the LPC1768 manual for more details.

Exercise

One of the tasks in this experiment is about external match actions. To be able to complete
that task, you need to find a suitable MATx.y pin.

So, refer to chapter 8 of the LPC1768 manual and list all the MATx.y pins and find out which of
them is physically available and accessible on your MCUXpresso board.

Capturing an Event (Event Timers)

Instead of using a match register, you can capture the time in a capture register (CR) when a pin’s
state changes. In other words, you can take a snapshot of the timer value when an input signal
changes.

This happens by loading the TC value into a CR (CR < T() when an input pin has a positive edge
and/or a negative edge.

For each timer, there are two capture registers: CR0 and CR1. A pin that can be used with a CR is
named CAPx.y, where x is the timer number and y is capture register number.

Example 13. Capture Registers

* By using CAP1.0, you will be loading TC into CR0 of Timer 1.
* By using CAP0.1, you will be loading TC into CR1 of Timer 0.

37



To enable this feature, you need to use the CCR register. In addition to capturing the time, you can
use the CCR register to enable generating an interrupt when the state of CAPx.y changes.

(r) Study the CCR register table (431) in chapter 21 of the LPC1768 manual to
- understand the following examples.

Example 14. Using the CCR Register

Assign 15 (1111 in binary) to the CCR register of Timer 0 will:

» Load TC to CR@ on both the positive and negative edges of CAP0.0
* Generate a Timer 0 interrupt request

* Load TC to CR1 only on the positive edges of CAP@.0, without generating interrupt requests.

o You need to change a pin’s function to use it as CAPx.y. Refer to the PINSEL section
in experiment 3 and chapter 8 of the LPC1768 manual for more details.

Exercise

One of the tasks in this experiment is about capturing event times. To be able to complete that
task, you need to find a suitable CAPx.y pin.

So, refer to chapter 8 of the LPC1768 manual and list all the CAPx.y pins and find out which of
them is physically available and accessible on your MCUXpresso board.

5.3.3. Important Notes

* If you choose to enable the timer interrupt, remember to enable the the NVIC and to clear the
interrupt bit in the ISR. To clear the MR interrupt flag, set the least significant bit in the Interrupt
Register (IR).

* A common misconception is to assume that register MR can be used with timer 0 only, register
MRT with timer 1 only, and so on. Each timer has its own 4 match registers.

* Asusual, all the registers in this experiment are fields of some structures. Refer to the LPC17xx.h
header file to find the required name and field to access the required register.

Exercise

In this exercise, we will use a hardware timer and timer interrupts to blink an LED.

// "x" is a placeholder. Replace x with an appropriate value.
int main(void) {

// Try to find out the IRQ number. Why is this step important?

38



NVIC _EnableIRQ(x);
// Answer:

// What does register TCR do?
LPC_TIMx->TCR |= x;
// Answer:

// What does register MRx do?
LPC_TIMx->MRx = x;
// Answer:

// What does register MCR do?
LPC_TIMx->MCR = x;
// Answer:

LPC_GPIOX->FIODIR = 1 << x ;

// Can we remove this while loop? Why?
while(1);
// Answer:

return 0 ;

// When will the following function be executed? Who is going to call it?
// Answer:

void TIMERx_IRQHandler() {

LPC_GPIOx->FIOPIN ?? (1 << x);
// Replace "??" with the appropriate operator

// What does register IR do?
LPC_TIMx->IR |= (1 << x);

5.3.4. Peripheral Clock (PCLK)

Timers, among other devices, rely on peripheral clocks (PCLK), which in turn are derived from the
core clock (CCLK).

There are four possible frequency configurations for the peripheral clock (PCLK), which are set using
a pair of bits.

Table 4. Peripheral Clock (PCLK) Frequency Configurations

39



Bit Values Frequency Configuration

01 PCLK = CCLK

10 PCLK = CCLK /2
00 PCLK = CCLK / 4
M PCLK =CCLK/8

These pairs of bits belong to the PCLKSEL® and PCLKSEL1 registers, which control the PCLK frequency
for all peripherals.

The PCLKSEL® and PCLKSEL1 Register Fields figure illustrates some of the fields of the PCLKSEL® and
PCLKSEL1 registers. Every two bits control the PCLK frequency for a specific peripheral.

eveersnee | UARTO | Timer1 | Timero| wot |

31 30 29 7 6 3 4 3 2 1 0 Bit#
PCLKSELO

o | UART2 | Timer3 | Timer2| sspo | ...

1 I I I

31 20 17 16 15 14 13 12 11 10 ....... Bit#
PCLKSELL

Figure 7. PCLKSEL® and PCLKSEL1 Register Fields

Question

Can you ignore this step? What would happen if we skip it?

o For the full list of peripherals and their corresponding two bits in PCLKSEL® or
PCLKSEL1, you can refer to Chapter 4 (section 4.7.3) in the LPC176x manual.

o This section is not specific to timers. It is about configuring the frequency of PCLK,
which is required for timers.

o You may want to refer back to this section whenever you want to use a peripheral
that requires PCLK.

5.3.5. Power Up

All microcontroller peripherals must be powered up before they can be used. This was not a
concern in earlier experiments because we were using peripherals that are powered up by default.

Powering peripherals up and down is controlled through the Power Control for Peripherals Register
(PCONP).

40



By referring to table 46 in Chapter 4 of the LPC176x manual, you can see that the reset value
(default value) is 1 for some peripherals, meaning that they are powered on by default, whereas it is
0 (OFF by default) for others.

Example 15. Powering peripherals on

LPC_SC -> PCONP |= (1 << xx);
// where xx is the bit number in PCONP that controls the
// power (ON/OFF) for a specific peripheral.

Timer 0 and Timer 1 are powered up by default. However, if you use Timer 2 or

o Timer 3, your experiment will not work without powering up the timer in your
program.
(r') To save power, you can turn the power OFF for any unused peripherals that are
- ON by default.

5.4. Tasks

1. Complete the LED blinking exercise above. Note that a for loop is not needed to implement the
delay.

2. Blink an LED without using timer interrupts.

3. Connect an output pin to two capture pins, say CAP2.0 and CAP2.1. Enable one of them to capture
the time with the rising edge and the other one with falling edge.

Now, set the output pin high then clear it immediately. Calculate the difference between (R0 and
CR1 and use printf() to display this difference.

Can you explain the result?
Try using FIOPIN instead of FIOSET and FIOCLR to control the output pin.
Try using direct assignment or bitwise OR for masking the remaining bits.

Can you explain the different results?

(o .
O Use external match actions for task 2.
-

5.5. Grading Sheet

Task Points
Use hardware timers with Interrupts 4
Use External match pins MATX.y 4

41



Task Points

Use the CAPXx.y pins with capture registers 2

Resources

= [Ipc1768-manual]

NXP Semiconductors. UM10360 — LPC176x/5x User Manual. Rev. 3.1. 4 April 2014.
https://www.waveshare.com/w/upload/0/07/LPC176x5x_User_manual_EN.pdf

6. Experiment 6: Pulse-Width Modulation

Hazem Selmi; Ahmad Khayyat; Saleh AlSaleh 212, 11 January 2022

6.1. Objectives

* Understanding and using pulse-width modulation (PWM).

6.2. Parts List

e LPC1768 mbed board
* USB A-Type to Mini-B cable
e Breadboard

RGB-LED or buzzer
* Jumper wires

¢ Servo motor

6.3. Background

6.3.1. Pulse-Width Modulation (PWM)

A pulse-width modulated (PWM) signal is a periodic square wave signal. The difference between a
PWM signal and a clock signals is the flexibility of its duty cycle.

A periodic square wave is high for some part of its period, and low for the rest of the period. Its
duty cycle is the percentage of the period for which the signal is high. Usually, a clock wave has a
duty cycle of 50%. In a PWM signal, the duty cycle is controllable. The name is derived from the
idea that the width of the high pulse is modulated according to some value.

6.3.2. PWM Applications
PWM has many useful applications in embedded systems. The main two categories are:

1. When a microcontroller does not have a DAC circuit, PWM can be used to modulate different

42


https://www.waveshare.com/w/upload/0/07/LPC176x5x_User_manual_EN.pdf

analog values.
2. Some devices are built to be used with PWM. The most famous example is servo motors.
Servo motors usually require a 50-Hz square wave (period of 20 ms). The duration of the high

pulse determines the motor’s angle. Usually, the full swing of the servo corresponds to a high

interval of 1 to 2 ms, whereas a high interval of 1.5 ms corresponds to the neutral servo position
11

6.3.3. Generating PWM with LPC1768

The LPC1768 features a pulse-width modulator peripheral. The generic steps discussed in
Experiment 5 for setting up a peripheral device apply here:

1. Power: the PWM circuit is powered on by default.

2. Peripheral Clock (PCLK): recall that the default division factor is 4.

3. Pin functions: a PWM pin must be configured for PWM use.
Additionally, generating a PWM signal in particular requires:

1. Setting the period of the PWM signal using the MR register.
2. Specifying the duty cycle using an MRx register, which would control the PWM1.x output.

3. The PWM circuit should be enabled to generate a PWM signal, otherwise it will act as a
standard timer (or counter).

4. The corresponding PWM1.x output should be enabled.

1. There is only one PWM circuit, called PWM1. That does not imply that there is a
PWM@ or PWM2.

Q

- 2. There are six PWM channels, referred to as PWM1.1 to PWM1.6.

3. You have the option of more than one pin to pin out any of the channels.

If you care about the accuracy of your PWM output voltage levels, you need to
disable the pull-up resistor to avoid affecting the PWM voltage. That can be done
o using the LPC_PINCON-PINMODEx register.

In many applications this is not required.

Exercise
Refer to chapter 8 of the LPC176x manual to determine:

1. Which pins are you going to use for PWM?
2. Which PINSELx register should you use?
3. Which PINSELx bits should you set?

4. To what value should you set those PINSELx bits?

43



5. How to disable the pull-up resistor?

MRO and MRx
To fully specify a PWM signal, you need to specify:

1. Its period (or, equivalently, its frequency)

2. Its duty cycle

The value of the MRO register (aka PWMINMRO) determines the period, while any of the MR1 to MR6
registers determine the duty cycle for the corresponding PWM1.1 to PWM1.6 outputs, as illustrated in
the following example.

Example 16. Period and Duty Cycles

If MRO is set to 80, then:

Register Value Duty Cycle PWM
Channel
MR1 40 50% 1 (PWM1.1)
MR2 20 25% 2 (PWM1.2)
MR4 60 75% 4 (PWM1.4)
MR5 72 90% 5 (PWM1.5)

The figure below shows the different PWM outputs for the same MRO.

MRO is same for all

£

MR1
- =
PWM1.1
50% Duty Cycle
MR2
< —
PWM1.2
25% Duty Cycle
MR4
=
FWM1.4
75% Duty Cycle

44



Single Edge Controlled PWM

In the example above, the periodic signal on all channels will go high at the
o beginning of the period, and each channel will be reset when matching the
number in the corresponding MR1 to MR6 register.

This PWM configuration is called single edge controlled PWM.

In summary:

1. Control the period duration of the PWM signal by setting the MR0 register.

2. Use the appropriate MRx register to control the duty cycle of PWM1.x, where x is a number
between 0 and 6.

Example 17. A PWM Period of 1 Second

LPC_PWM1->MRO = 1000000; // PWM period is (1000000*PCLK_PERIOD) second.

To have different PWM channels be set and reset at different times, some PWM channels can be
configured as double edge controlled PWM signals.

Double Edge Controlled PWM

In double edge controlled, you can control when to set or reset the pulse within the
o period, and whether to set or reset first.

The MRO register still controls the duration of the full period.
Example 18. Double Edge Controlled PWM

PWM channel 2 (PWM1.2) is set by MR1 and reset by MR2.

So, setting MR@ = 100, MR1 = 50, and MR2 = 75 will result in a signal that is low at the beginning of
the period, becomes high in the middle of the period, and goes back to low in the middle of the
second half of the period.

In contrast, setting MR@ = 100, MR1 = 75, and MR2 = 50 will result in a signal that is high at the
beginning of the period, becomes low in the middle of the period, and goes back to high in the
middle of the second half of the period.

PWM channels can be configured to be single edge controlled or double edge
controlled using the PWMSELn bits of the PWM Control Register (PWM1PCR or

o LPC_PWM1-PCRY).

For details, see Table 444 and Table 452 in the LPC176x manual.

45



PWM vs. Timers

From a hardware point of view, PWM is based on the standard timer block, and inherits all of its
features [lpc1768-manuall].

Let us review the relation between the timer counter, the prescale register, and the prescale
counter. TC is a 32-bit register that is incremented every PR + 1 cycles of PCLK, where PR is the
Prescale Register (PWM1PR or LPC_PWM1-PR in CMSIS).

o Recall that you can use the default value of the PR register (0) to simply increment
TC every PCLK pulse.

IF PR is set to a non-zero value, TC's frequency would be given by:

TC frequency in Hz = \displaystyle\frac{\textrm{System clock}}{\textrm{PCLK divisor} \times
(\textrm{PR} + 1)}

where PCLK divisor is 1, 2, 4, or 8, depending on the setting of the PCLKSELx register (default is 4).

For system clock, you can use the SystemCoreClock variable, which is set by CMSIS to the CPU clock
speed.

Example 19. Setting the Prescale Register

To set the prescale register such that TC is incremented every 1 us (frequency of 1,000,000 Hz):

LPC_PWM1->PR = SystemCoreClock / (4 * 1000000) - 1;

If MRO is set to 100, every 100 pulses of the PWM Timer Counter register (PWM1TC, or TC for short), a
new PWM period starts. That happens even if TC is not reset. This is an important operational
difference between pure timers and a PWM signals. The other crucial difference is the control of
the duty cycle, which is at the heart of the the PWM concept.

Summary of Important PWM Control Registers

o LPC_PWM1~LER is used to latch the new MRx values. You must use it every time you change any of
the MRx values.

* LPC_PWM1-PCR is used to enable PWM1 with single or double edge operation. If ignored, PWM will
act as a counter.

» LPC_PWM1~TCR is used to enable, disable, or reset counting in the TC register. You should use it at
least once to enable counting.

o LPC_PWM1-MCR is similar to the timers' MCR registers. It can be used to generate interrupts or reset
TC when matches occur if needed.

6.4. Tasks

1. Basic operation: Write a program that generates a PWM signal, and use it on an external device.

46



2. Control a servo motor: Rotate a servo motor 90 degrees to the right, move it back to the neutral
position, then rotate it 90 degrees to the left.

3. Show different colors on an RGB LED using at least two PWM signals

6.5. Grading Sheet

Task Points
Basic operation 3
Servo Control 7
Bonus: RGB +2
Resources

= [Ipc1768-manual]

NXP Semiconductors. UM10360 — LPC176x/5x User Manual. Rev. 3.1. 4 April 2014.
https://www.waveshare.com/w/upload/0/07/LPC176x5x_User_manual_EN.pdf

7. Experiment 7: Serial Communication

Hazem Selmi; Mohannad Mostafa; Ahmad Khayyat; Saleh AlSaleh 212, 14 March 2022

7.1. Objectives

* Introduction to serial communication protocols

» Using the Serial Peripheral Interface (SPI) protocol

7.2. Parts List

e LPC1768 mbed board
* USB A-Type to Mini-B cable
* Breadboard

* Jumper wires

ADXL345 Accelerometer Module

47


https://www.waveshare.com/w/upload/0/07/LPC176x5x_User_manual_EN.pdf

@0y

Figure 8. ADXL345 Accelerometer Module

7.3. Background

In this experiment, you will use one of the serial communication interfaces of the LPC1768
microncontroller, specifically the SPI interface (through the SSP controller), to interact with a
digital accelerometer.

7.3.1. SPI Communication Using the LPC1768 Microcontroller

Serial vs. Parallel Communication

Serial communication is the process of sending data one bit at a time, sequentially. In contrast,
parallel communication involves sending multiple bits at the same time, as illustrated in the
Parallel vs. Serial Communication figure below.

48



ouTe
ouT1
ouT2
ouUT3
oUT4
OUTS
oUTé
ouT/

CLK

IN@
IN1
INZ

NS ouT
IN4

ms | (CLKL MU UL LfeLk
ING
IN7
CLK

: 099999999

Serial

Figure 9. Parallel vs. Serial Communication
Some of the main differences between serial and parallel communication are:

» A parallel link requires more wires, occupying more space and resulting in higher cost.

* To keep all wires in a parallel link synchronized, the link rate is limited. In contrast, serial links
can sustain much higher clock rates.

 Parallel links are more susceptible to crosstalk interference.
» Parallel communication between ICs require more pins, increasing the IC cost.
* Parallel communication is easier to implement because it does not require data serialization

and deserialization.

Serial communication is becoming more common for transmitting data between a computer and a
peripheral device or even another computer, as improved signal integrity and transmission speeds
in newer serial technologies have begun to outweigh the parallel bus’s advantages.

Serial Communication Protocols

Example serial communication standards include USB, FireWire, Serial ATA (SATA), PCI Express
(PCle), and Ethernet. Serial protocols commonly used in embedded systems include UART, I’C, and
SPL

Serial communication protocols can be synchronous or asynchronous. An asynchronous protocol
sends a start signal prior to each code word, and a stop signal after each code word. UART is an
asynchronous serial protocol supported by UART interfaces.

A synchronous serial protocol sends a clock signal on a dedicated wire. Additional wire(s) are
required for data. I°’C and SPI are synchronous serial protocols.

LPC1768 Serial Interfaces

The LPC1768 microcontroller provides the following serial interfaces (LPC1768 Manual):

* Two Synchronous Serial Port (SSP) controllers, SSPO and SSP1, with multi-protocol capabilities.

49



They can operate as SPI, 4-wire TI SSI, or Microwire bus controllers.

» A Serial Peripheral Interface (SPI) controller. SSPO is intended to be used as an alternative for the
SPI interface. SPI is included as a legacy peripheral.

* Three enhanced Inter-Integrated Circuit (I'C) bus interfaces, one supporting the full I’C
specification, and two with standard port pins. I’C is pronounced I-squared-C.

* Four UARTs.

* A two-channel CAN controller.

» Ethernet MAC with RMII interface and dedicated DMA controller.

* USB 2.0 full-speed controller that can be configured for either device, host, or OTG operation

with an on-chip PHY for device and host functions and a dedicated DMA controller.

In this experiment, we will use the SSP interface configured for the SPI protocol.

Serial Peripheral Interface (SPI)

SPI is a four-wire, full-duplex, master-slave bus that was created by Motorola. There can be only a
single master. Multiple slaves are allowed with individual slave select (SS or SSEL) lines. The four
wires are:

1. SCLK: Serial Clock (output from master)

2. MOSI: Master Output, Slave Input (output from master)

3. MISO: Master Input, Slave Output (output from slave)

4. SSEL: Slave Select (active low, output from master) — one per slave
The microcontroller is usually the master. It uses the M0OSI pin to send data, and the MISO pin to read

data. The SCLK pin dictates the transmission rate; a bit is sent/received every clock pulse. A simple
timing diagram for writing data is shown below.

MOSI 7~ { D7 { D6 { D5 D4 § D3 D2 § D1 § DO )\~
MISO 77 D7 D6 D5 § D4 § D3 § D2 § D1 § DO )~

Figure 10. Timing diagram for writing data on a SPI bus

The slave select (SSEL) signal is used to select the slave in a data transfer. SSEL is active low: it must
be low before the transaction begins, and must stay low for the duration of the transaction.

To connect multiple slaves, you need a dedicated SSEL for each slave. All slaves can share the
remaining wires.

Even though the SSEL signal is a part of the SPI protocol, it is not uncommon to leave its control to
the software instead of the SPI/SSP controller. The LPC176x manual states that "This signal is not
directly driven by the master. It could be driven by a simple general purpose I/O under software
control." In the LPC1768 mbed Board, SSEL is connected to GPIO P0.16. It should be driven low (by

50



software) prior to placing data in the Data Register (DR), and then switched back to high when the
transmission is complete.

Using SSP/SPI in LPC1768

The section describes how to use the SSP interface of the LPC1768 microcontroller as an SPI
interface by listing the involved registers and their functions.

Data Register (DR)

The data to be sent serially must be loaded into the SSP Data Register (LPC_SSP1+DR). The serial
transfer rate is controlled by the SSP clock as described below.

The LPC_SSP1-DR register has both a transmitter FIFO and a receiver FIFO.

To transmit the value stored in X, you can use:

o LPC_SSP1-DR = x;

Similarly, to receive a new value and store in X, you can use:

x = LPC_SSP1-DR;

Every time you send data by writing to the LPC_SSP1-DR register, some data are also
received in that same register. Make sure you read that data to clear the receiver

o buffer.

Also, to be able to receive something from a slave, you need to trigger the two way
communication by putting dummy data in the DR.

SSP Control Registers

There are two control registers for the SSP1 interface (see LPC17xx.h):

1. SSP1CRO: can be accessed as LPC_SSP1-»CR0
2. SSP1CR1: can be accessed as LPC_SSP1-CR1

The CRO register has 5 fields:

1. Data size (bits 0-3): the number of bits transferred in each frame.

2. Frame Format (bits 4-5): the serial protocol to be used.

00 SPI
01 TI
10 Microwire

11  Not supported

31



3. Clock Out Polarity (bit 6): should be 1 in our application.
4. Clock Out Phase (bit 7): should be 1 in our application.

5. Serial Clock Rate (SCR) (bits 8-15): used with the Clock Prescale Register (CPSR) to control the SSP
clock. This is crucial when the SSP peripheral requires a specific value or range of frequencies.

The CR1 register has 4 fields, the most crucial of which is bit 1: SSP enable.

In addition to CR@ and CR1, there is the SSP Clock Prescale Register (CPSR). The CSPR register contains a
single field, CPSDVSR, in bits 0-7. Its remaining bits are reserved (unused).

The SSP clock frequency is calculated using the formula:

\text{SSP frequency} = \frac{\tt PCLK}{\tt CPSDVSR \; (SCR + 1)}

o The SSP’s (PSR register must be properly initialized. Otherwise, the SSP controller
will not be able to transmit data correctly.

o For details, see Tables 371, 372, and 375 in the LPC176x manual.

Exercise

What values of CPSDVSR and SCR will result in the highest SSP frequency?

Exercise

If the frequency of PCLK is 25 MHz, what would be the shortest possible amount of time to
generate eight SCLK pulses?

7.3.2. Using the ADXL345 Accelerometer

The ADXL345 chip is a system-in-package featuring a 3D digital linear acceleration sensor. It
includes both I’C and SPI interfaces. It also can be configured to generate an interrupt signal for
activity and inactivity, sensing detect the presence or lack of motion by comparing the acceleration
on any axis with user-set thresholds. The accelerometer part can be enabled or put into power-
down mode.

To be able to conveniently use the ADXL345 chip, we will be using the ADXL345 carrier
module/board.

Accelerometers

An accelerometer is an electromechanical device that will measure acceleration forces. These
forces may be static, like the constant force of gravity pulling at your feet, or they could be dynamic,
caused by moving or vibrating the accelerometer.

32



An accelerometer can help your project understand its surroundings better. Is it driving uphill? Is it
going to fall over when it takes another step? Is it flying horizontally? A good programmer can
write code to answer all of these questions using the data provided by an accelerometer. An
accelerometer can even help analyze problems in a car engine using vibration testing.

In the computing world, IBM and Apple have been using accelerometers in their laptops to protect
hard drives from damage. If you accidentally drop the laptop, the accelerometer detects the sudden
freefall, and switches the hard drive off so the heads don’t crash on the platters. In a similar
fashion, high-g accelerometers are the industry standard way of detecting car crashes and
deploying airbags at just the right time. [accelerometers]

The ADX1.345 SPI Interface

The ADXL345 chip provides an SPI interface with the device acting as a slave on the SPI bus. It
allows writing and reading the registers of the device. The serial interface interacts with the outside
world through 4 wires: CS, SCL, SDA and SDO.

e Check the ADXL345 datasheet. Read the 'SPI bus Interfaces " section to find out
how to read from and write to the registers of ADXL345.
Using the ADXL345 Accelerometer

The accelerometer measures acceleration along the three dimensions, and makes them available in
the following registers:

DATAX@ (32h) LSB, DATAX1 (33h) MSB

X-axis acceleration data. The value is expressed in 10 bits as 2’s complement (right justified).

DATAY@ (34h) LSB, DATAY1 (35h) MSB

Y-axis acceleration data. The value is expressed in 10 bits as 2’s complement (right justified).

DATAZ0 (36h) LSB, DATAZ1 (37h) MSB

Z-axis acceleration data. The value is expressed in 10 bits as 2’s complement (right justified).

The Directions of the Three Accelerometer Readings figure shows the directions corresponding to
positive values along each of the three axes, relative to the chip.

33



-"‘Ax

Figure 11. Directions of the Three Accelerometer Readings

o You must configure the POWER_CTL register in order to read the accelerometer data.

Reading data from the accelerometer device is completed in 16 clock pulses. Thus,
in order to read the data correctly from the registers, you have 2 options: send
multiple 8-bit data, or send 16-bit data. The description is as follows:

1. Send the first 8 bits, which include the read/write bit and the address bits of the
- register that you want to read. As a result of generating the clock pulses
O required to send this byte, you will receive dummy data. Then, send another 8
bits of dummy data just to generate the required clock pulses to receive the
requested 8-bit data.

2. Send 16-bit data, where the first 8 bits include the read/write bit and the
register address, and the next 8 bits contains the data to write, in case of a
write command, or dummy data if you are reading.

7.4. Tasks

1. Use the LPC1768’s SSP/SPI interface to read the accelerometer data from the ADX1.345 device.

2. Write a simple application to indicate different stationary positions. For example, indicate
whether the device is tilted to the right or to the left, tilted forward or backward, and whether
it’s facing upward or downward. Use some output device to reflect this data in real-time. The
following table summarizes the readings corresponding to each of the six stationary positions.

54



Stationary Position Ax Ay Az

Z down 0o 0 -

Zup 0 0 +

Y down 0 - 0

Y up o + 0

X down - 0 0

Xup + 0 0
7.5. Grading Sheet
Task Points
Operate a seven-segment display using the SSP/SPI interface 7
Discussion 3

Resources

= [base-board-manual]

Embedded Artists AB. 'LPCXpresso Base Board Rev B User’s Guide'. 2013-01-25.
http://www.embeddedartists.com/sites/default/files/support/xpr/base/
LPCXpresso_BaseBoard_rev_B_Users_Guide.pdf

= [Ipc1768-manual]

NXP Semiconductors. UM10360 — LPC176x/5x User Manual. Rev. 3.1. 4 April 2014.
https://www.waveshare.com/w/upload/0/07/LPC176x5x_User_manual_EN.pdf

» [accelerometers]

Dimension Engineering Inc. 'A Beginner’s Guide to Accelerometers'. Retrieved: 2015-11-7.
http://www.dimensionengineering.com/info/accelerometers

= [adx1345-manual]

Analog Devices. 'ADXL345 Digital Accelerometer Datasheet'.
https://www.analog.com/media/en/technical-documentation/data-sheets/ADXL345.pdf

8. Experiment 8: Microcontroller on an
FPGA

Mohannad Mostafa; Ahmad Khayyat; Hazem Selmi; Saleh AlSaleh 212, 11 January 2022 :highlightjs-
languages: verilog

55


http://www.embeddedartists.com/sites/default/files/support/xpr/base/LPCXpresso_BaseBoard_rev_B_Users_Guide.pdf
http://www.embeddedartists.com/sites/default/files/support/xpr/base/LPCXpresso_BaseBoard_rev_B_Users_Guide.pdf
https://www.waveshare.com/w/upload/0/07/LPC176x5x_User_manual_EN.pdf
http://www.dimensionengineering.com/info/accelerometers
https://www.analog.com/media/en/technical-documentation/data-sheets/ADXL345.pdf

8.1. Objectives

In this experiment, you will learn about the hardware of a microcontroller by:

* Building a microcontroller system on an FPGA by integrating Altera’s Nios II soft processor and
a few peripherals

» Writing software for the FPGA-based microcontroller system

8.2. Parts List

¢ Altera DEO-Nano FPGA board

* USB A-Type to Mini-B cable

8.3. Background

This experiment involves two main tasks:
1. Building the hardware for a microcontroller system using an FPGA device.

We will use Altera’s DEO-Nano FPGA development board, which incorporates a small FPGA
device and a number of peripherals. To create the microcontroller system, we will configure the
FPGA device to implement a soft processor and a number of required components for the
processor to function properly.

36



2.

To configure the FPGA, we will use Altera’s Quartus II design software. To build the soft
processor system, we will use Altera’s Qsys system integration software to implement a system
around Altera’s Nios II soft processor core.

Developing software to exercise your microcontroller system.

We will use Altera’s Eclipse-based Nios II Embedded Design Suite (EDS) software development
environment to build software for the Nios II-based hardware system.

Intel (Altera) Software

You can obtain and install all the required software for this experiment freely
from Altera’s website. You will want to download and install Quartus II Web
Edition software, which includes Qsys, the Nios II EDS, and Altera IP Library.

Intel acquired Altera in 2015. Altera Quartus II software suite has been renamed to
o Intel Quartus. Qsys has been renamed to Platform Designer.

The free version of Quartus software is now called Intel Quartus Prime Lite
Edition.

For more details on available Altera software, software licensing, download
options, and hardware and software requirements, consult the Intel® FPGA
Software Installation and Licensing document.

8.3.1. The DEO-Nano FPGA Board

The DEO-Nano is a low-cost, low-power, portable, compact board (49 mm X 75 mm) aimed at
developing embedded soft processor systems using the Nios II processor.

Board Features

Three-axis accelerometer with 13-bit resolution

Eight-channel, 12-bit resolution analog-to-digital (A/D) converter
Expansion headers: two 40-pin headers and one 26-pin header
Two-pin external power header

32-MB SDRAM

2-Kb EEPROM

Eight green LEDs

Four dual in-line package (DIP) switches

Two push-button switches

8.3.2. The Nios II Processor

Nios IT is a RISC soft processor architecture. A soft processor is a processor that can be implemented
on reconfigurable logic, e.g. an FPGA.

Nios II Processor Features

57



» Full 32-bit instruction set, data path, and address space

» 32 general-purpose registers

* 32 interrupt sources

» External interrupt controller interface for more interrupt sources

* Optional floating-point instructions for single-precision floating-point operations

» Access to a variety of on-chip peripherals, and interfaces to off-chip memories and peripherals

* Hardware-assisted debug module enabling processor start, stop, step, and trace under control of
the Nios II software development tools

* Optional memory management unit (MMU) to support operating systems that require MMUs

» Software development environment based on the GNU C/C++ tool chain and the Nios II Software
Build Tools (SBT) for Eclipse

The Nios II Processor Reference Handbook states that:

A Nios II processor system is equivalent to a microcontroller or "computer
on a chip"” that includes a processor and a combination of peripherals and
memory on a single chip. A Nios II processor system consists of a Nios II
processor core, a set of on-chip peripherals, on-chip memory, and interfaces
to off-chip memory, all implemented on a single Altera device. Like a
microcontroller family, all Nios II processor systems use a consistent
instruction set and programming model.

— Nios II Processor Reference Handbook

(r) For more information on the Nios II processor, consult its extensive
- documentation.
8.3.3. Design Flow

Unlike previous experiments, we need to create the hardware of the microcontroller system before
we can program it.

In order to create a Nios II soft processor system on the Altera DEO-Nano FPGA board, and write
software for it, you are going to use the following software tools:

System Builder

used to generate a preconfigured Quartus II project for the DE0-Nano FPGA development board.

Quartus II

used to compile all design files, including those generated by Qsys, into an FPGA configuration
file, known as an SRAM Object File (.sof), which can be downloaded into the FPGA device to
implement the designed system.

o Altera vs. Xilinx Tools

38



Quartus II is the design software used to develop hardware for Altera FPGAs. DEO-
nano is a development board that contains an Altera FPGA chip.

In contrast, for Xilinx FPGAs, ISE design suite is the design software used to
develop hardware for Xilinx FPGAs, and Spartan, for example, is a board that
contains a Xilinx FPGA chip.

Qsys (Platform Designer)

used to specify the Nios II processor core(s), memory, and other components your system
requires. Qsys automatically generates the interconnect logic to integrate the components in the
hardware system.

Nios II EDS

the Nios II Embedded Design Suite includes Nios II Software Build Tools (SBT) for Eclipse, which
is an eclipse installation preconfigured to use a set of plugins to support developing software for
the Nios II processor. To create a new Nios II C/C++ application project, the Nios II SBT for Eclipse
uses information from the files generated by Qsys to learn about the target hardware.

Here is a summary of the general flow steps; the details will come later
1. Use the System Builder utility to generate a Quartus II project preconfigured for the DEO-Nano

board. This step is specific to the DEO-Nano board.

2. Use Qsys to generate the hardware description of your processor system. In addition to the HDL
files, Qsys generates an .sopcinfo file that describes the system.

3. Use Quartus II to compile the hardware description generated by Qsys into an FPGA
configuration file (.sopcinfo), and to download the configuration file into the FPGA to
implement the system’s hardware.

4. Use Nios II SBT for Eclipse to develop the software for the configured hardware. Nios II SBT for
Eclipse learns about the hardware from the Qsys-generated .sopcinfo file, in order to compile
the software for the generated hardware.

8.3.4. Creating a Quartus II Project

The Quartus II project will eventually contain all the information required to generate and
implement the hardware of our system.

The DEO-Nano kit ships with a convenient software utility called System Builder, which creates
preconfigured Quartus II projects for the DEO-Nano board. For example, it automatically configures
the project for the FPGA device in the DEO-Nano, and configures the pin locations for the selected
peripherals.

Run the DEO-Nano’s System Builder utility, and choose the following configuration options:

* CLOCK
* LEDx8

Then, press Generate to create a Quartus II project. After that, open the generated project in
Quartus II by opening the .qpf file. In the next section, we will use Qsys from within this project.

39



o Avoid using directories with spaces in their names for your Quartus II or Nios II
EDS projects.

Since the purpose of this experiment is to understand the makeup of a

microcontroller system, it is suggested to create a minimal system by only

including the few peripherals listed above. But you are welcome to include any of
o the other available peripherals.

For example, the DEO-Nano FPGA board has a built-in accelerometer. You are free

to try to use it if you manage to complete the listed tasks in this experiment!

8.3.5. Building the Processor System Using Qsys

Qsys allows you to put together the hardware components that make up your microcontroller
system, and to create all the required connections, including the system bus.

We would like to build a Nios II system that includes the following hardware components:

Nios II/s core with 2 KB of instruction cache

20 KB of on-chip memory

e Timer

JTAG UART

Eight output-only parallel I/O (PIO) pins

System ID component

7 For more information about these and other components, refer to the Embedded
- Peripherals IP User Guide.

To build this system, run Qsys from the Tools menu in Quartus II, and follow the instructions in the
Nios II Hardware Development Tutorial, page 1-11 (Define the System in Qsys section).

Qsys Errors

While you are adding the components, connecting them, and configuring them,

o there will be error messages disappearing gradually till you correctly complete
your design. Theses error messages can be useful in reminding you of any missed
step.

Qsys Notes

1. Edit the export column for the three components: clk_in, clk_in_reset, and
external connection.

o 2. Edit the name of the memory component to use a simple short name (e.g. ram).

3. After adding the CPU core, use the name of your memory component as Reset
Vector memory and exception Vector memory.

4. Edit the IRQ numbers in the IRQ column to be 16 for the JTAG UART

60



component, and 1 for the timer.

5. Edit the PIO component name to a simple short name that you can remember.
You will need it later.

6. Generate the base addresses automatically by choosing Assign Base Addresses
from the Tools menu in Qsys.

7. Finally, use the generate button in Qsys to generate the project files and save
them in a known directory.

Qsys Components

By following the Nios II Hardware Development Tutorial, you may have some
questions about some of the components. Here are some answers for such
anticipated questions:

1. Although the tutorial asks you to set the cashe size, we don’t care about the
cache in this experiment. We can use a CPU with no cache. It makes no
difference for the purposes of this experiment.

2. JTAG UART is used by the development environment to communicate with the
o microcontroller that we are creating on the FPGA, especially to download and
debug software. JTAG is a standard created for this purpose specifically.

3. System ID is similarly used by the development tools to identify the target
hardware and determine which software to download to which hardware. You
can set the target system ID value in the IDE to match the value you may set in
the System ID hardware component, in case you use a non-default value.

4. Usually, IRQ numbers need to be configured in device drivers or system
software. The values set for the JTAG UART and the timer components are the
numbers configured in the base system software generated by the Nios II IDE.

Your completed Qsys system should look like this:

61



Uzz | Connections Name Description Export Clock Basze End RO
B clk_0 Clock Source
C clk_in Clock Input clk
CH clk_in_reset Rezet Input reset
— ¢ clk Clock Output clhk_0
. clk_rezet Rezet Output
B onchip_mem 0On-Chip Memory (RAM or ROM)
— clk1 Clock Input clk_0
—_—— 21 Avalon Memary Mappad Slave [elk1] 0:x00008000 |0x0000c£££
rezetl Rezet Input [clk1]
B cpu Nios Il Processor
clk Clock Input clk_o
rezet n Rezet Input [elk]
—T data_master Avalon Memory Mapped Master [clk] IRQ O IRQ 31—
: ingtruction_master Auwalon Memory Mapped Master [clk]
W tag_debug_module_re...|Rezet Output [clk]
itag_debug_module Ayalon Memory Mapped Slave [clk] 0200010800 |0x000L0EEE
*— cuzstom_instruction_m... (Custom Instruction Master
o jtag_uart ITAG UART
clk Clock Input clk_0
- reset Rezet Input [clk]
— avalon_jtag_slave Avalon Memory Mapped Slave [clk] 0x00011030 (0x00011037 >—E§|
B sys_clk_timer Interval Timer
clk Clock Input clk_0
————— resst Reszet Input [clk]
—— =1 Awalon Memory Mapped Slave [clk] 000011000 (0x0001101F >—ﬂ
B =ysid Syatem ID Peripheral
clk Clock Input clk_0
I E— reset Reszet Input [clk]
—_— control_slave Avalon Memory Mapped Slave [clk] 0x00011038 |0x0001103F
= led_pio PIO (Paraliel VO)
clk Clock Input clk_0
——————> reset Reset Input [clk]
———— =1 Awvalon Memory Mapped Slave [clk] 000011020 (0x0001102£
[y external_connection Conduit Endpoint led_pio_external_...

8.3.6. Integrate the Qsys System into the Quartus II Project

To integrate the Qsys system with the Quartus II project, we need to:

1. Add the Qsys system to the Quartus II project

2. Instantiate the Qsys system

3. Connect the ports of the Qsys sytem to signals in the Quartus II project.
For Quartus II to be able to recognize the Qsys system, the Qsys system, represented by its Quartus
IT IP file (.qip), must be added to the Quartus II project as follows:

1. From the Quartus II menu, select Project > Add/remove Files in project

2. Click the browse button (---) next to the File name field

3. Select the file <qsys_project_directory>/synthesis/<qsys_project_name>.qip

4. Click Add to include .qip file in the project, then click OK to close the dialog box
To instantiate the Qsys-generated Nios II system, and to connect each port of the Qsys system
instance to the appropriate signal in the top-level module of the Quartus II project, use the
following Verilog instantiation code in the top-level module of your Quartus II project, which is

typically named <quartus_project>.v, where <quartus_project> is the name of your Quartus II
project.

62



Verilog Code to Instantiate the Qsys-Generated System

<gsys_project> ud(
.clk_clk (CLOCK_50),
.reset_reset_n (1'b1),
.led_pio_external_export (LED)

);

About the Qsys-system-instantiation Verilog Code

In the Verilog code above, replace <qgsys_project> with the name of your Qsys
project.

The code creates an instance, named u@, of the Qsys system, and maps, i.e.
connects, the ports of the Qsys system (the names following the periods) to signals
declared in the module in which this code resides (the names between
parentheses). 10b1 is a single-bit constant value of 1.

The exported port names of the Qsys system are derived from the Qsys system
definition.

8.3.7. Compile and Download the Hardware Design

The Quartus II hardware compiler consists of a set of modules that perform different compilation
steps. The modules are Analysis & Synthesis, the Fitter, the Assembler, and the TimeQuest Timing
Analyzer. To obtain the downloadable .sof FPGA configuration file, we need to run the assembler.
Running the assembler will trigger all other required modules.

After compiling the Quartus II Project, connect the DEO-Nano board to your PC in order to
download the hardware design.

To download the FPGA configuration data file (.sof) to a the FPGA device, you use
Altera’s USB-Blaster download cable, which interfaces a USB port on your host
computer to the Altera FPGA.

The USB-Blaster cable requires a driver for the host computer to recognize it. For
details on using the USB-Blaster and installing its driver, refer to the USB-Blaster
Download Cable User Guide.

The driver has already been installed on the lab PCs.

To download your hardware design to the FPGA:

1. Run the programmer from the Tools menu in Quartus II

2. Click the Hardware Setup button and choose USB-Blaster if it is not selected

3. Click the Start button to start downloading the .sof file to the FPGA chip on your board.

Don’t close the OpenCore Plus Status dialog when it appears.

63



For more details on downloading your design to the FPGA, refer to the Download
(;) the Hardware Design to the Target FPGA section of the Nios II Hardware
v Development Tutorial (page 1-31).

8.3.8. Software Development Using Nios II SBT

Now, you have a Nios II hardware system running on the Altera FPGA board. To make use of this
system, we need to write some software to be executed on it.

To be able to that, you need a toolchain (compiler, assembler, debugger) that can compile code for
the Nios II CPU. We will use Altera’s Nios II SBT for Eclipse, which is already installed on lab
machines.

You can open and then edit some Nios II example programs as follows: . Select File

> New > Nios II Application and BSP from Template . In the wizard, browse to your

(;) Qsys project directory, and open the SOPC Information File (.sopcinfo) of your

et design. . Choose the program that you would like to run. . Name your software
project. . Click Finish.

We will first start with a simple program to explore the software development process. We will use
the Hello World Small template program by following the instructions on the My First Nios II
Software Tutorial, page 1-32 (Develop Software Using the Nios II SBT for Eclipse section), only use
the Hello World Small template instead of the Count Binary template.

The difference between the Hello World Small template and the Hello World
template is that the former is configured to generate an optimized-for-space
program that would fit in the small on-chip memory that was created in Qsys.

o You can use the Hello World template instead of the Hello World Small template,
but you would then need to adjust the properties of the BSP project in order to
minimize the memory footprint of the software, as described on page 1-34 of the
Nios II Hardware Development Tutorial.

To make the program slightly more interesting, replace your code with the one on page 1-9 of the
My First Nios II Software Tutorial,

In the function call IOWR_ALTERA_AVALON_PIO_DATA, replace the first argument with
o your system’s base address of the PIO peripheral. Look the address up in your
system.h file.

To understand how this program works, read the Why The LED Blinks section on page 1-10.

8.4. Tasks

8.4.1. Build and Download the Hardware Design

1. Using the System Builder program, create a Quartus II project for the DE-Nano board. Configure

64



your project to use the board’s CLOCK, LEDs, EEPROM, and SDRAM.
2. Build a Nios II system using Qsys.
3. Instantiate your Nios II system in the Quartus II project.

4. Compile and download the hardware design to the DEO-Nano board.

8.4.2. Build and Download the Software

1. Create a software project for your Nios II system using Nios II SBT for Eclipse. Use the Hello
World template.

2. Run Hello World application on your Nios II system on the DEO-Nano board.
3. Create and run another application that blinks an LED on the DEO-Nano.

4. Create a third program that blinks all eight LEDs on the DEO-Nano sequentially.

8.4.3. Discussion

* What peripherals are readily available for inclusion in this microcontroller system? (list three)
* What peripherals would you add to your microcontroller systems?
* What is the address of your PIO peripheral, which is driving the LEDs?

* How can you change it?

8.4.4. Bonus Task: Accelerometer

Create a new Quartus project using the system builder and include the accelerometer.

Add Accelerometer SPI mode peripheral in Platform Designer.

Add the necessary connections to the system.

* Export external_interface to be connected to the top level Verilog module.

Use the following Verilog instantiation code to instantiate the new Qsys project.

Verilog Code to Instantiate the Qsys-Generated System

<gsys-project> u@ (

.clk_clk (CLOCK_50),
.reset reset n (1'b1),
.led_export (LED),
.acc_spi_I2C_SDAT (I2C_SDAT),
.acc_spi_I2C_SCLK (I2C_SCLK),

.acc_spi_G_SENSOR_CS_N (G_SENSOR_CS_N),
.acc_spi_G_SENSOR_INT (G_SENSOR_INT)
);

* Develop a software to read the values of the accelerometer and display them on the screen
using printf

65



8.5. Grading Sheet

Task Points
Build the processor system using Qsys 2

Instantiate the processor system in a Quartus project

Run the Hello World program 2
Run an LED-blinking program 2
Discussion 2
Bonus Task +2
Resources

= [quartus-install]

Intel® FPGA Software Installation and Licensing. MNL-1065. 2021.12.13.

https://www.altera.com/en_US/pdfs/literature/manual/quartus_install.pdf
» [nios-ii]

Altera Corporation. 'Documentation: Nios II Processor".

https://www.altera.com/products/processors/support.html

» [nios-ii-ref]

Altera Corporation. 'Nios II Processor Reference Handbook'. NII5V1-13.1. 2016.10.28.
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/nios2/
n2cpu_nii5v1.pdf

= [periph-ip-ug]

Intel. 'Embedded Peripherals IP User Guide'. UG-01085. 2021.10.18.
https://www.altera.com/en_US/pdfs/literature/ug/ug_embedded_ip.pdf

= [nios-ii-hw-tut]

Altera Corporation. 'Nios II Hardware Development Tutorial'. TU-N2HWDV-4.0. May 2011.
https://www.ee.ryerson.ca/~courses/coe718/Data-Sheets/Nios-Lab/
tt_nios2_hardware_tutorial.pdf

Newer revision (Quartus II 14.0+):

'Nios II Gen2 Hardware Development Tutorial'. AN-717. 2014.09.22
https://www.altera.com/en_US/pdfs/literature/an/an717.pdf

= [usb-blaster]

Intel® FPGA Download Cable User Guide. UG-USB81204-2.5. 2020.030.11.
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/ug/
ug_usb_blstr.pdf

66


https://www.altera.com/en_US/pdfs/literature/manual/quartus_install.pdf
https://www.altera.com/products/processors/support.html
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/nios2/n2cpu_nii5v1.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/nios2/n2cpu_nii5v1.pdf
https://www.altera.com/en_US/pdfs/literature/ug/ug_embedded_ip.pdf
https://www.ee.ryerson.ca/~courses/coe718/Data-Sheets/Nios-Lab/tt_nios2_hardware_tutorial.pdf
https://www.ee.ryerson.ca/~courses/coe718/Data-Sheets/Nios-Lab/tt_nios2_hardware_tutorial.pdf
https://www.altera.com/en_US/pdfs/literature/an/an717.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/ug/ug_usb_blstr.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/ug/ug_usb_blstr.pdf

= [nios-ii-sw-tut]

Altera Corporation. 'My First Nios II Software Tutorial'. TU-01003-2.1. December 2012.
https://www.altera.com/en_US/pdfs/literature/tt/tt_my_first_nios_sw.pdf

9. Programming Assignment: Seven-Segment
Display and C Libraries

Hazem Selmi; Ahmad Khayyat; Saleh AlSaleh 212, 11 January 2022

9.1. Objectives

» Using seven-segment displays

* Organizing your code into libraries

9.2. Parts List

LPC1768 mbed board

USB A-Type to Mini-B cable

Breadboard

* Seven-segment displays

330-Ohm Resistors

* Jumper wires

9.3. Background

9.3.1. Seven-Segment Displays
Seven-segment displays can be useful in many types of projects as an output device.
The part number of the seven-segment display included in your kit is LTD-4608]R.

You should be able to use the data sheet to figure out how to display a number on the seven-
segment display.

This seven-segment display part can show two digits; it is actually two seven-segment displays in
one part, with common seven pins connected to them both. Simply setting the seven pins would
show the same digit on both displays.

To show a different digit on each display simultaneously, we need to employ time multiplexing.
Each display has its own common pin, which enables and disables that display. Setting the seven
pins affects enabled displays only. Alternatively enabling each display while disabling the other
allows you to set each display to show a different digit. However, leaving a display disabled will
clear any previously shown digit. Therefore, time multiplexing is required, whereby the two

67


https://www.altera.com/en_US/pdfs/literature/tt/tt_my_first_nios_sw.pdf

displays are continuously enabled alternatively.

9.3.2. Building a C Library

A C library consists of one or more c-files and h-files that can be used as part of a project to make
your code modular and more efficient.

The c file

The c file can have one or more, usually related, C functions. To make your code readable and easily
reusable, it is crucial to carefully comment your code and wisely choose the function and
parameter names.

In MCUXpresso, you can add new C source files to your project by right-clicking the src folder and
adding a new source file.

The h file

To call functions defined in a library, your source file needs to tell the compiler what the function
signatures, or prototypes, are. Instead of having to write the function prototypes every time you use
a library, libraries provide a file containing those prototypes, without the function
implementations. Such a file has the .h extension, and is called a header file.

The c files contain the full functions that the library defines. In contrast, the h files contain only the
function prototypes, without their implementations. This allows you to use libraries without
necessarily having access to their full sources, just their function prototypes and binary
implementation. Moreover, header files may contain other macros, or preprocessor directives, such
as define and include statements.

To use a library, you only need to include its header file(s) in your program. Including a file is
equivalent to inserting the contents of the included file in your program file.

o As with any source file, it is good practice to comment your library
implementation (c files) and headers (h files).

To avoid including multiple copies of the same header file, which would result in function name
collision, it is recommended to use the following template for your header files.

#ifndef LIBRARY_NAME_H
#tdefine LIBRARY_NAME_H

/* Header file statements */

ftendif /* LIBRARY_NAME_H */

Exercise

Study the above template and explain how it ensures that a header file that uses this template

68



will always be included at most once.

o The above template is automatically generated for you by MCUXpresso when you
choose the default C-header template when adding a new header file.

9.3.3. A Seven-Segment Display Library

We want to write a C library that would help us use the seven-segment display, by abstracting out
the details of decoding each digit into the actual bit pattern that will set the display to show the
required digit. The ultimate objective is to set the pins that are connected to the display to show the
digit. However, for the library to be reusable, it would be wise not to tie it to specific pins, and leave
the mapping of the bits to the actual I/O pins outside the library.

Therefore, the library would include one public function that acts as a BCD-to-seven-segment
decoder. Think of the function as a BCD-to-seven-segment decoder chip. If you use such a chip, you
still need to map each of its outputs to the seven-segment display pins.

The library function will generate the seven bits. Then, in your main program, or perhaps in a
separate function in your main program file, you assign each of these bits to one of the seven-
segment display pins. This way, you can use the library regardless of where the seven-segment
display is connected.

Modular design, which is achieved by appropriate abstraction, improves the
o reusability of your code, which makes you more productive.

In this case, the library function abstracts the decoding of a BCD digit to seven-
segment bits, and does nothing else.

It is also useful to write another library for reading and writing to GPIO pins. The prototypes for the
functions in such a library may look something like the following.

void set_gpio_pin(int port, int pin, int value); // write to an output pin
int get_gpio_pin(int port, int pin); // read an input pin

In this case you need to call the write function seven times (once per bit).

Consider using the newer 8-bit uint8_t type instead of the typically 32-bit int type
when you can guarantee that 8 bits are enough to represent the values. uint8_t is a

- part of the C99 standard, among other similarly named types, which are
Q guaranteed to have the same exact width across all platforms, unlike the plain int
type.

uint8_t is defined in inttypes.h and stdint.h.

69



9.4. Tasks

9.4.1. Display a Hard-wired Number on the Seven-Segment Display

1. Use the seven-segment display along with VDD and GND pins on the microcontroller to display a
number. You do not need to program the microcontroller. Display the same number on both
displays.

This task will help you confirm your understanding of how the seven-segment display works.

9.4.2. Display a Number on the Seven-Segment Display by Software

2. Write a program that displays different numbers on the seven-segment display. For example, a
program that counts from 0 to 9. Display the same number on both displays.

9.4.3. Write a Seven-Segment Display Library

3. Write a reusable library consisting of a c file and a corresponding header (h) file for decoding a
BCD digit to seven-segment display bits. The library should not be tied to any specific I/O pins; it
just implements a seven-segment display decoder.

4. Write a library for easily accessing GPIO pins (reading and writing).

5. Write a program to test your seven-segment display decoder library and your GPIO library.

9.4.4. Display Two Different Digits Simultaneously

6. Write a program that implements time multiplexing to show a different digit on each display.

9.5. Grading Sheet

Task Points
Display a number on the seven-segment display by software 2
Library: BCD-to-seven-segement decoder 3
Library: easy GPIO access 2
Program demonstrating the use of above libraries 1
Program showing a different digit on each seven-segment display 2

10. Mini Project: Distance Sensor

Saleh AlSaleh, Hazem Selmi and Ahmad Khayyat 212, 11 January 2022

10.1. Objectives

* Using Timers to Measure Pulse Duration

70



* Using an ultrasonic sensor to measure distance
» Using character LCD displays

* Integrating multiple devices in a small project

10.2. Parts List

* LPC1768 mbed board

* USB A-Type to Mini-B cable
* Breadboard

* Ping)))™ Ultrasonic Sensor

* 16x2 character LCD display
* Buzzer

* 5V Power Supply

* Jumper wires

e Breadboard

10.3. Background

10.3.1. Ultrasonic Waves

Ultrasonic waves are sound waves transmitted above the human-detectable frequency range,
usually above 20000 Hz. The term sonic refers to the sound waves of high amplitudes. These waves
can be used in medical diagnostics. They can also be used in the industrial to know the exact
borehole where a hole needs to be dug to extract oil or natural gas. Even though humans cannot
detect such waves, some animals can detect such as dogs or even use them such as bats. [ultrasonic-
waves]

10.3.2. Ultrasonic Sensors

71



Ultrasonic Sensors are special devices that transmits ultrasonic waves and receives the reflection of
the waves after they hit a body. As shown above the sensor has two Ultrasonic Transducer
(Receiver/Transmitter) to get a more accurate reading. Ping))) Ultrasonic sensor uses only a single
pin to send and receive data unlike other sensors where they need two pins (one for requesting and
one for receiving). This is very helpful because some microcontrollers have limited number of pins.
This ultrasonic sensor can detect the distance as low as 2 centimeters and as high as 3 meters. The
signal pin has two functrionality. The first functionality is Trigger labeled Request in the diagram
might also be refered to as Start Pulse. The microcontroller needs to send a HIGH Signal for
approximately 2-5 microseconds. Sending the Start Pulse will make the ultrasonic sensor prepare to
send ultrasonic wave. The preparation time is labeled HOLD OFF which usually takes 750
microseconds. During the HOLD OFF time, the signal pin is set LOW by the ultrasonic sensor. Then,
it needs to put to LOW. The other functionality is Echo labeled as Response where the ultrasonic
sensor sends the time it took the ultrasoic waves to be transmitted and then received (after hitting a
wall or something) by the sensor as pulse refered to as Echo Time Pulse. The HIGH pulse determines
the time and from time, we can get the distance.

Please refer to the data sheet for more information.[ping-ultrasonic-sensor]

SsignalPin ./ \ / J

Type %l( Request(5 us) X Hold off (750 us) X Response (115 us - 18.5 ms) )%

The image below shows how the ultrasonic waves propogates from the source to the object and
reflect back to the source.

72



I

' FE'"E'C EE‘& wave

Sender/ :]

Receiver \ | | |
uriﬁinal wave'
L

! distance r

10.4. Tasks

10.4.1. Read the response time of the Echo Wave

Write a program that sends a request (Start Pulse) to the ultrasonic sensor and then reads the
response (Echo Pulse) time given by the sensor using Timer Capture Pins. Refer back to Experiment
#4: Hardware Timers for reviewing Timer Capture functionality.

1. Use functions in your program to increase modularity.

(f) 2. Use a global variable to store the response time to make it easier to have a
- minimal ISR:
static double elapsedTime; // holds response (echo) time value

10.4.2. Calculating the distance from the response time

We learned from Physics that:
\displaystyle Speed = \frac{\textrm{Distance}}{\textrm{Time}}

Since the ultrasonic waves travel at the speed of sound, which is 340.29 m/s, calculate the distance
corresponding to the response time received from the sensor.

1. Remember that the response time is equal to the time it took the waves to
propagates from the source, hit an object and then bounce back to the receiver

@) (device).

w
2. Use a global variable to store the distance value, similar to what you have done
for the response time.

10.4.3. Show the Distance on the LCD Display

73



16

e
VESVODWVO RS RWE DODCN D2 DG D4 D5 D6 OF A K

The 16x2 character LCD display consists of two rows of characters, each of which contains 16
characters. These displays are widely used in embedded systems project to present information to
the user of the system.

Show the distance calculated in the previous task in the first row, while showing the status of the
alarm buzzer (more on this in the next task) in the second row as shown in the LCD Sample Output
figure below. For information on how to use the LCD, refer to the LCD datasheet [lcd-16-2-
datasheet].

[LCD Sample Output] | images/lcd_output.gif

10.4.4. Sound an Alarm Using a Buzzer Based on Distance

A buzzer is can generate sounds to alert the user. It’s widely used in alarm systems to alarm people
for an emergency. One of the applications for ultrasonic sensors is knowing whether there’s an
object at some predefined distance or not. Most modern cars have multiple ultrasonic sensors in
the back at different angles to notify the driver if he gets very close to the car behind him, or if he is
about to hit an object he could not see through the rear-view mirror.

Generate an alarm sound whenever the distance from the ultrasonic sensor to the object is 50 cm or
less.

10.5. Grading Sheet

Task Points

Read the response time of the Echo wave 4

74



Task Points

Calculate the distance from the response time 1
Display the distance on the LCD display 4
Sound the alarm using a buzzer based on distance 1
References

» [ultrasonic-waves]

Ultrasound: Definition And Application
https://byjus.com/physics/applications-ultrasound/

= [ping-ultrasonic-sensor]

Ping))) Ultrasonic Sensor Datasheet
https://www.robotshop.com/media/files/pdf/ping-documentation-v1-5-28015.pdf

= [lcd-16-2-datasheet]

Xiamen Amotec Display Co.,Ltd. 'Specifications of LCD Module. Module No: ADM1602K-NSW-
FBS/3.3v'. Version 00, 2008-10-29.
https://www.sparkfun.com/datasheets/LCD/ADM1602K-NSW-FBS-3.3v.pdf

[1] https://circuitdigest.com/article/servo-motor-basics

75


https://byjus.com/physics/applications-ultrasound/
https://www.robotshop.com/media/files/pdf/ping-documentation-v1-5-28015.pdf
https://www.sparkfun.com/datasheets/LCD/ADM1602K-NSW-FBS-3.3v.pdf
https://circuitdigest.com/article/servo-motor-basics

	Embedded Systems Lab Manual
	Table of Contents
	1. Experiment 1: Development Platform
	1.1. Objectives
	1.2. Parts List
	1.3. Background
	1.4. Tasks
	1.5. Grading Sheet
	Resources

	2. Experiment 2: General-Purpose Input/Output (GPIO)
	2.1. Objectives
	2.2. Parts List
	2.3. Background
	2.4. Tasks
	2.5. Grading Sheet
	Resources

	3. Experiment 3: Interrupts
	3.1. Objectives
	3.2. Parts List
	3.3. Background
	3.4. Tasks
	3.5. Grading Sheet
	Resources

	4. Experiment 4: Analog Input and Output
	4.1. Objectives
	4.2. Parts List
	4.3. Background
	4.4. Tasks
	4.5. Grading Sheet
	Resources

	5. Experiment 5: Hardware Timers
	5.1. Objectives
	5.2. Parts List
	5.3. Background
	5.4. Tasks
	5.5. Grading Sheet
	Resources

	6. Experiment 6: Pulse-Width Modulation
	6.1. Objectives
	6.2. Parts List
	6.3. Background
	6.4. Tasks
	6.5. Grading Sheet
	Resources

	7. Experiment 7: Serial Communication
	7.1. Objectives
	7.2. Parts List
	7.3. Background
	7.4. Tasks
	7.5. Grading Sheet
	Resources

	8. Experiment 8: Microcontroller on an FPGA
	8.1. Objectives
	8.2. Parts List
	8.3. Background
	8.4. Tasks
	8.5. Grading Sheet
	Resources

	9. Programming Assignment: Seven-Segment Display and C Libraries
	9.1. Objectives
	9.2. Parts List
	9.3. Background
	9.4. Tasks
	9.5. Grading Sheet

	10. Mini Project: Distance Sensor
	10.1. Objectives
	10.2. Parts List
	10.3. Background
	10.4. Tasks
	10.5. Grading Sheet
	References


