{ "cells": [ { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "# ICS 104 - Introduction to Programming in Python and C\n", "## Decision Structures - Lab 1 " ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "# Lab Learning Outcomes\n", "- To learn how to program simple and complex decisions. \n", "- To implement decisions using if statements\n", "- To write statements using Boolean expressions" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "# Topics: if Statement \n", "## Worked Example" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "- Problem Statement: Your task is to extract a string containing the middle character from a given string. For example, if the string is \"crate\", the result is the string \"a\". However, if the string has an even number of letters, extract the middle two characters. If the string is \"crates\", the result is \"at\"." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "- Step 1: Decide on the branching condition.\n", "- We need to take different actions for strings of odd and even length. Therefore, the condition is \n", " - \"Is the length of the string odd?\"" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "- In Python, you use the remainder of division by 2 to find out whether a value is even or odd. Then the test to determine if the length of the string is odd becomes\n", " - ```len(string) % 2 == 1```" ] }, { "cell_type": "markdown", "metadata": { "cell_style": "center", "slideshow": { "slide_type": "slide" } }, "source": [ "- Step 2: Give pseudocode for the work that needs to be done when the condition is true.\n", "- We need to find the position of the middle character. If the length is 5, the position is 2." ] }, { "attachments": { "ch03-lab-fig2.PNG": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAANwAAABtCAYAAADKzA9RAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAA37SURBVHhe7Z3/VxTlHsfvf8KBUFJRQyExLmpeLI4KCikke8JvFIqVigqWZKGZQH5N9BQcA7ttRyWummIpXlYljcxNF8MUEw0RUzuUepUU3fed2Z0HF/jArs44+8T5vM55/TKfXfrsM897vjwz1T/AMIxpcOAYxkQ4cAxjIhw4hjERDhzDmAgHjmFMhAPHMCbCgWMYE+HAMYyJcOAYxkQ4cAxjIhw4hjERDhzDmAgHjmFMhAPHMCbCgWMYE+HAMYyJdBu4b680SamAqsmg4F37MSkVUL3LoICqyaBeOHAGK6AmuwwKqN5lUEDVZFAvHDiDFVCTXQYFVO8yKKBqMqgXDpzBCqjJLoMCqncZFFA1GdQLB85gBdRkl0EB1bsMCqiaDOqFA2ewAmqyy6CA6l0GBVRNBvXCgTNYATXZZVBA9S6DAqomg3rhwBmsgJrsMiigepdBAVWTQb1w4AxWQE12GRRQvcuggKrJoF44cAYroCa7DAqo3mVQQNVkUC8cOIMVUJNdBgVU7zIooGoyqBcOnMEKqMkugwKqd988gcKcaUiwTMOc8hNEXZ8CqiaDeuHAGayAmuwyKKB6980fkG8ZiOCAgUgo+YGo61NA1WRQLxw4gxVQk10GBVTvvsmB08MTCFwjKu17kL8qG68kjcaggABl56gOxohJU5AwKQUL99cT3/NNAVXzatPXmDdQ7WU05rl6OIdd+0uwaH4KRgwMdPXZd/jziFn5DQ5R3/dBATXZe/YoFu8uReqyTMRMmYDwiL7auIUiLD4VY1eUYOEx6nuPpoDqvVvbx80XxdgSf8cHBVTNJ5vqsLV8A+ZkJGn79Gk8O34qZq4sxZafGujvPIJ6MThwP8O6KR2RgWLwtZBZUpCQMg7Purb7cYe0T5yXkVvzAz7NewWDu0yYAAzK/doPgdsDS+IA1z+/T0QMnktMQFTiRERGh2p9PYWBGUXIJr/ruwKq925tsiF3urIP1f1oSdQmciAG/StR2+bpHOQePkf/HR8UUDWvnv8Wq7PGoq86XoGRGJPi2a+ybXAaVnz/C/1dH9WLgYE7j/+UzNIm8DAkrNyKL+rOd/xM0xnsOPQ1rLUXOm5/BAVUzavtgRuH6VkpSq8RiMspRvHRWlSpdfsniFP690/g9mHW2g2YtfsAlnTYfhiZa6ejvzquT03HNFuNR+3RFVC9+6asl5SnUJwzTglbIAa/sgrFjoehP3TWhhUZ0a7QhaRuxq7mzt/1Xb0YF7hzO5Aeph5J+uP5ZRXYT33GAAVUzauel0aBY5FefrxjsBybkeC3wPXgdyUY20/t+5+Isx6iP+OjAqp335QzcLaqDxCl7tenZ2P1qYtd6tXHChHr2u8zke/oWvdVvRgUuEs4sCsLA9QfFJyG/JOP/4O8KaBqXm0PXBheKj762KHqSQE12R/bY/9G3AAOXPeeVs5uo5WeAtB/Xhl9sG/f9yMxZ+/PXes+qheDAnceW9e/5PrBwbFrsfUy9RljFFA1r7YPur77yJ4UUJPduzVYss+KaSuzMGbKOIQN0O492uXAkTYfQe6E/q4x6jt8HCZ2ua9UbF9D0Ne3XgwKXD1Kct1HmGDLZnxFfsYYBVTNq1IHrgqvF8xAmGtShCJsSjri3nkfljWrYFmViai+HLhu9bxV8GqvCNwvsK6Kd/+gCYX4UsdNqTcFVM2r0gbuOyzalOZaGOkzIgOpuw92rPMlZc9ePox3Yp9WegpExMpKHKY+Y5B6MShwjdhfPt+9khaYihX2x1+F9KaAqnlV1sAd34kp8eojgXDEFFV2rXPgvFiHj7O0Vci0z7CH/Iwx6sWgwCm2r1IGIzJzG/Y8obOcgKp5VdbAtQcqEi9+eqBrXapVylMonBep9DIAccU1RF2fAqrWvcoBf1c2wlwH/HjM31dHfMYY9WJc4Do8h+uPkfM/RonHsxC3F1HpOIzNh08+9mlfQNW8Ku0l5V6kpjyj9BWIfpPeQ8bBo+7tx2zItH6IsfFDlJra91CM3vRNp+8+mgKqd998uEDWN+YtrLd33seXcKipsdM23xVQtR699B3y09QDgTJOg1/GvM8r8dXFTn1c/AlfVpWj8PDjB1IvBgZO9WdYi9/EiPY3TdTXapK1laJkjBmuXmcb85yLqnlV2sDV4C3rIgwR4xYYjvCEeO31LiWE8XORtCAOfZRan2cT8OKCxUjdWU38He8KqN59tdqxBVMGixXUzvs43JBFCarm1V/+i9y0ke43TVzjKN426XWrlJ42osqxD6vXL8ErFvEjtR9vmYX0D4uw8WgdqsnveldA1bwqbeBUa/D27k+QNDcVw6ND0SfiBYxIW4CkonIsVt+hPLoDqXMnI2zAIITFz8CkrVXE3/CugOrddxtReawc7+XMRsL4yE4TPB0L954ivuObAqrmk011KKv4FG9lz/Lozf0a2ksZ2Vhc/CWsdY//TqVenkDgnqwCqiaDAmqyy6CA6l0GBVRNBvXCgTNYATXZZVBA9S6DAqomg3rhwBmsgJrsMiigepdBAVWTQb1w4AxWQE12GRRQvcuggKrJoF44cAYroCa7DAqo3mVQQNVkUC8cOIMVUJNdBgVU7zIooGoyqBcOnMEKqMkugwKqdxkUUDUZ1AsHzmAF1GSXQQHVuwwKqJoM6oUDZ7ACarLLoIDqXQYFVE0G9cKBM1gBNdllUED1LoMCqiaDeuHAGayAmuwyKKB6l0EBVZNBvXQbOIZhjIcDxzAmwoFjGBPhwDGMiXDgGMZEOHAMYyIcOIYxEQ4cw5gIB45hTIQDxzAmwoFjGBPhwDGMiXDgGMZEjA9c21U4dqxHVmoshgZFY1LGcpQePI9bTq0uDX+huWolxocuhe3GA22bDDjR9sdZ2D4vwILJ0QhRxjA5cxXK7L+hTfuEP3G2/ooj1gIs8ti/W2qapeiNxNkC+9opiC08ibvaJn9ibOCcv6F6eQJCxH+Jt90opJfWyhM652007v8A44OU3vrJFLj7uFX3GdKHhGJU4jSkJSqBE2MYlIiCmutKHP2H81Yttrw2GqMs2cjPexuvxmr/zwMJeqO5j5vHP8KEoH6YWHIGMuxlAwN3Hy229zAsIBzJy7bh27oGNDc3oLZyMxbFhkqzU5ytF2Fbl4VFb6fjeXWyxJegXoq8OXGvYTsykt5FmeOqdsa4hxZHqRLAINfEDkkqRf09f43gDTiK87H5uMeZtq0JtmXqATYIUXk1uK1tlgXnzWNYF6fMvYDeGDjnr9iZHolhWftwrcOcUC6RmiuQFR6MYTlVaPFn4u6cQHH2BlQ23MT9+hJMlClw906jdPq72Nv8l7ZBcAP2NRO0M8kslDXKcGH0kAeucXwG07c3yHWGUy8l12UifUZM7wyc81oF5vabhtKz1HHuNupLpiEkeCH2XpPjat89USQKnPMOfv/9NjFpH+CGbSkGqr0GWFBa36ptlwH3VU3U2NWoabmvbZMB9VJyE+ZsPIKTJRZl3CIxt+KyFAcEgwLnxF3HRrwQsxG1d+mf5QpkcCI2Om5pW/yLdIHrFo/ARRbg+9vynEdcl2zJ87Cl7k+pzm5qX+tnb4L9pnqgVwMXjRzbda3qXwwKnHtSDHmjotPlpAcPzqA0PkaaH/73CdxfaLDOkO4+yb2AEqVc5o7E1LxdqGu5p1X8jGtVMgNLbVeVg0Brbw2c+4cNXGJT7ji64zpsS2KkuZb+2wTO2YCyqc8geMhC7GyU5HKy9TS+UMPmusx1GxL3kXJG8fdlpXopuQGWbLGOwIHjwD0STtxxbMKEoCjM3n4OkpxDFNrQ2toGZ+s1nN6z3P14JSAUEwp/xB3tE/7AfYm72OPA1GsDdxeN22dhMAfOWO6dQ1l6DMYvO4DmNpnukjy5AUdhsvt5YQ/38E8c7QH3C2uOe4S+1wZOu7HvafLyPdwjcgv11jcw5rXPUHdLphXAzmgLZupY+u0lAvGAWz3T9mzI1O1o9OOxy6DAaYPew7K/e5UyFvk1f2hb/IvcgXNPoIlx+aiW5DFKT4ixDEm2osEvY/kn7EWZSF+YizVr1mBtuwXIsTynBC0U415f7tq27gu7X58FGxQ4hZvVWB4eidk7fiWWiO+huSILEfwczgfcr3fNTsqDrctDcBkRZ7hQTCw6JcX7ig/ptZeUCs6rsOXEIDg8B5WdQiVesfHfEbArcgZOfSvnAN5PL/ibhE3lf6grSkHIkCzsbZZnWcdNbw6cMlncK2pBGDp5OcpqzuDSlUbU15SjIFU9rUdjXsUl4uznH+QLnBa2qQtRXH0WzVeu4Eq7l3Hh9AnY7Xb8WH/dP2/mt7XgQu1ZXGn1HCz3+5+zwxPxfvVv0uzbh/yB7/Nie2vgFJx/oq40AxHqRO5gECLSt6PBby/edsaJ2zUFiFJ7G70O9jv+7kuduF8hW33Ju8vYeToIyUW1ynHbbB6+7RIydinKjp9Hc4MDtm15mDrSggJbk6T/eo66Mh6tjFtvDZyK8yYuHCzF8ozJGBXUD6Mmz0e+9QgudTgy+ov7aLFvw7q8JXhz5ky86tKCSYmvIWfdflzw1wFBPNxWQ6X+O2YzRG+KllgM1QLnz4fLzltnsHdtFqbGDkFIdCLSXs/BWmslaq9Q73/KQm8/wzEM0yMcOIYxEQ4cw5gIB45hTIQDxzAmwoFjGBPhwDGMiXDgGMZEOHAMYyIcOIYxEQ4cw5gIB45hTIQDxzAmwoFjGBPhwDGMiXDgGMZEOHAMYyIcOIYxEQ4cw5gIB45hTIQDxzAmwoFjGBPhwDGMiXDgGMY0gP8DaFvTWWXw6dQAAAAASUVORK5CYII=" } }, "cell_type": "markdown", "metadata": { "cell_style": "center", "slideshow": { "slide_type": "fragment" } }, "source": [ "![ch03-lab-fig2.PNG](attachment:ch03-lab-fig2.PNG)" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "- In general,\n", "- ```position = len(string)/2 (with the remainder dicarded)\n", " result = string(position)``` " ] }, { "attachments": { "ch03-lab-fig3.PNG": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAArgAAACbCAYAAACJZ+ieAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAACSMSURBVHhe7d39X1Rlwj/w73/iy7kplkIj1M2NGx/66t588ZlVUFnxOdRIy5DaoAd1W4W7IE2thW9Btngn6A2WWkK3mGKh6+yGG2xSoqKBaZHKGgY6n/ucmXMNZ4ZrnmCAi9Pn/Xp9fmiumWE4l3R95sw5Z/4PiIiIiIgshAWXiIiIiCyFBZeIiIiILIUFl4iIiIgshQWXiIiIiCyFBZeIiIiILMU6BffWZ8h9LAaTl2/BntpL6HQYtxMRERHRL4p1Cm5bBVaOGIEIZzJQ2dZtDJBautFxvRUXGv8O+5laVB/4ANW1X6DpSnsY3pRoz33tIhpPHUP1qRa+yRlyAzXXnGciIvKPBZcG1d3GQiS458mcKXih5juE3FUcP6Dxo93YsfEppMRHmZ4vHusqmrUqREMlrHPNeSYiohCw4P4SdX2DyqxZGDcxE2XnOowbB0e3PR9j3PPkmVHZNbhp3M9TF2401aDk5cWYZIvC5MffQHXzLVdB8ph3r9jSUNQwuL+fcpSfawe6Oy7j7LEKFG/dgJVJ8YiMScDizDyUHjuPDtGCOc9ERBQCFtxfIPOetajMKrQbtw+Gu/U7MME9T7GYlroca7O3oCB/G4oOfIkb3rv1ultRV7gWk23iMUZil6Kg6ht03LuK2ryFPovUmHz7L3rvntpz/QPsf17de27dMe2ddXCeiYgoeNYsuKNzceqOd1PqQmvVFqQkzMSijK2obBque3z6/3t47FmLyYd9MJuBeZ4C/GxHx1m8+3icu8T0ii0JeXXX9X2A6Lh+FW1Xf0Sn4w4ulC5132f4Fp/w/HtVe65bcThjrHuupHHPsc6K80xERAPBmgVXuph2wJ6fYCyINkzYUY+7xsjw0v/fw3HtENZFGNtqZjGa7hkDg8E8T2lluOz9PsRJq6ytR5E3z6v8xCQjp3APSrJnum+LXFyGFo/n6NZ+RIZ7fPgWn/D8e1V7rrUSX7EWUc77xGLa8ueRV1iKiooKlL+Tg7l+X7dV5pmIiAbCL7TgWqX49PX3uIO2ur3YWfAODp+7aewdGyTmeVpegTbjZjPHrdN4fUa0+3fUE5m4GYedx912oqk4tWcs6kXU3DS3H3Pxicb80m8G9/cLm3D9e1V7rtF5Dod3fwh7623Ta3Og61wJ5otDF6R/z1aZZyIiGggsuMPOMP89ApWe7mZUPhnv/v30vZfjHi9BfXuXa9zRjPLFMT3jtvU4fM28b/Mu2queM/YKxmBlxWXj9uHGAv9egym4Eo6OehSlxbp/d/mxw1aZZyIiGgghFFwHOs/txbqJ0RiT+BTerLvqscel5yPlWExLy0RucTUaRSnx4ug4j5rCDZgePwMrc3bhQP13vRfv7g583/Y9Orp7fsrdc8VIipiIRS+/h1Ntd4xbXTyONUwuxYVeu3PULwxBbZeQfg/5nDkuV2B1TDQmzXsaeRUNPWequ91Ft7HdHe2nUfT4FNeZ7Ru2+94L6LiBxn0vYW7sVKTvOI5W07x5CFR6btchd7zN/ftFznsL9R2iwDrQ1ViEWeLxeqYWotHrs/uefwvhKD6mPYXSN06hG6x5do74nesBnGddHwpu7+Oux2PdoW+lryW880xERFYSoOBqC2fTAWzOfBlFtfWo2fhYz8JjPi7O0YrqLNOYkcjE11DXbm4fehH+BJsTPT9+jrBNxbq9X6HTuJfH3pmYNOy0u/bf9CxovY9J9Ci40sVU5YIb7HbRBfo9As+Zx7bqVdquoSZbf0w0koqP4pOcKT2P1zP2ZdR4zKlOm6/aLZjsvl80pm/6RF5+TKUnMuOQ9tO8daKlIhPj9PHELahpNb2RcXyHGo/XE4Hf7vgCPxvDgroFd3DnWed7rgd4nnUB59pM2zbX9JLteVJh5Lz/jwYf3+QQ3nkmIiIrCVBwPU/k8Ej0ZtTedi0895pLsUAcLzc2E8XvZRuLYBRmFX4J935cxyVUpvecOBSZsAC/j4/o9Xyei3vP4mVerL0XfI+F3FxwHR1oOVWNA2XbsVb8LHei8P+01+e9jA+6YLZL0L9H4DnzXXp0l1G53HQIQK/EI6fmunFfw72vsSdldO/72iZiUfY7qDWXVFPp8fkmo/sKara9hWrz47QC5HFcpvP5l2FPs+eefF3P7xeOYzPDWHAHeZ6d9/I51wM8z7pg5trpDq6dKcG6ieYvcNC2j/cbHC/hnWciIrKSkApu5Jx0ZIi9T+5F1HzSj1Fo79Qhd7TrMebDBe41FWO28VwRY5/H4davTYus+dq15ssH9bPg3v0SRVO9i0JP/C+8unvoaPoUlRUVoaemSavqgQW1XYL+PQLNWZdnMeq1t9u7+NjwyIb/wpE3Uoz/7r23zOP1R6zBHvsB5ESLx3vdP+jS46XX3lvtdeUcRbuk1fj7dxK68BXcwZ1nfcN4lWCPuR7gedYFnGvjCzyyk3v+do0EKre68M4zERFZSUgFd0z+52hxXtZHWww3nsAt/S73vkLJTLHnJRUlTZ1aGbmI8jRjT4+7FJhPChEfLZsXWXPBNd8+FmsPtWq33cW1Q+sR6byt94Lms+DiJuz5s4znErFhTMJCrFy+Fq9UXdIqrD9eJSGU9CqPMsFul2B/j0Bz5q/06LyKj20JSs7dND3Gu8iY3+DYELe1Dre77SiIMR4/Yipy60zfT9anguvAT/W7MMtj763+um4b457ULLiDPc+97+O34IZ7nnUB59rrNZgSmZCFkrpWv3PHgktERL6EUHBHY3HZRTi6W3Hqv/a5P450tFYgXRQP4wsWujv+jqJ54jhDsXBLngtXUZ35qNf9NB57sRJQYNf3g3ov6L4Lbq/j/fQT1lo+RUGiKOLiOYPhVRJCSVAFN4TtEtTvEWjOvH6fAAXXdZ1Z82O8i4/5tT6GzbXt2o8wFx/T69eY9wIGXUq6GlGSbP5o3PfeW52aBXew59n7Plr8FNxwz7Mu8Fz7LriuxCG95KzkJEgXFlwiIvIlhIIr+QhSW6Jv127GQ2JBssVj7sIE96Ljilj47uFmzYsYZdzuOjv+X2ja+yQm2WwYs2QvLohdqR4LZ+gFN/BiGkrBHWghbBenQL9HoDnzV3o0d+uxM05cxSAKs4u/0l6hn+c0H44S8Ryq9ROTzPMnbjOEXko60VKWYez5FM+5FpWt8it06Hp+RmhfkHCvzY4Pex1qsr/niyWilqNgv/e4lqAORRnsedb5mesBnmdd4LkO4pvMtDL9bFWr9n+a3vo6z0REZH39LLhduFyWboz7SOxL7rOxHe1H8cJYsajaMC5tG2pazBd4N3gU3KXGiUSeP8s6BTeE7eI0wAXXY9sbe+r8PafpY2j38dbm5/Da6xlawXWgu6UC62J7Lhum762cX9zYc+KiRM/P8FX85MyvLaT02gsuN7jzrPMz1wM8z7rAc63N7/VGnKytx8X2Ttd2cHTixpUvUbMj3XklDedzj8/DKeOkObO+zjMREVlfPwuu56WMImJmYu2mN7Gnogq19kZcaNO/M964q9Nd3LK/ifkxpsISm45d3sfaeSy+Yg+w/8smeZQTaeFQt+AGvV2cwlxwva8Z7LHtjWOqPY6/9HxO83aP3VoH54fjN2uQE2U8R38KbmcDSkwX/NcTOWMX6n/qXXbM+lp8PP4NhZIgC+7gzrPOz1wP8DzrQpprD97XO56FnfW9j7fu6zwTEZH1BSi4P6GxMNlYZGSLiLl0el1WyHEDDSUZmDzvVa+zoe+io7EMWQmma4Ha5uCPJ0xfHCEtuNdRk93zDVeDV3AH/ioKLkFsF6dAv0egOfMqPd7FJOCbi0exoeqq677aa+45cUocV9qNa4cyew4p8Hr+u/U7MMEY81t6HO2wFyS7Typ0xpaM18+0e22P3sJbfEzbS1LiQjdY86zzM9cDPM+6oOfawz10thzxulaw+BTHEwsuERH5EqDgmhc82SJyG2d3iDO+zYvwHbQe3YLpzpPP5IuPo+NLlG+Y0VNgzB9DShZfxw9VyBJ7i7QMXsH1KgmhJOg9ez38bhenQL9HoDnrb8E1/0zzc7k+5nbcOo3XZ5jKiffzB3UVBe3fz6Hn8Yh4DmciMHnTcZ8nlvUwHxcejuIT7oLrMvDzrOtPwe3nPOtCvGKGo/Nb2CvysNjjkJQRiEqvQGuveQ/3PBMRkZX0s+Ca9+zEIavqKhyO22ipzkOK+BjWtgrlLfp3TbVrzzUPkbFLUXDkK9zodsDRXIr5zsfqEYusxnyZMf3j03NtqN+Z6rE3zzoFN4Tt4tT/4uOxrcJWcLXbz1zqvde1LwXX4wQokRikZOdjR34+CvILsLN4LyoPVONUS4fXnk/za1Kp4A7+POt8zvVAz7PO71w70P3jRdTXVuFARQXKi/+ElV5f9OBMbAb2nJP9rYZ7nomIyEr6WXC1Zar9ODZPNC7pFZOA3yfFmxa+aMza8Tf85LxjM8oXiwVbv67nAixK6Dm+MjKlFM3us8jvoLl0mfE82n3j43oWaSODV3AHWEjbRTeIBdd9Zryv4mP+GDoKkxKm9JqnXsXNVHrcx3J6C/BlBx6JfRqVLeZnUbTgDsE864IquAMxzzq/c23+WT4SuwbvNtzwegMjsOASEZFvAQqu+coFvhaRu+hoPtT7+/X1s8TTy9DcJZYnB7pbjyJvnuSyQJJjK3t9BKo93yOr1mC5cZiCd8G921iIBHHf4VRwQ9wugX+PwHNmPjYyIq0Ml80/wKNcitJiPt7T62fqX6u7aY7pTY0278uz8EyC2Bvnu+D63sP9I05tDVB+3BGXuBIULbhDMM86n3M90POs8zvXki/vcOdRLM6tQP016dsfAwsuERH5FqDgastQm7Yop05EpC0FO+u9vqnIxNFxHseKN2FlQiwi4xdjU0kd2ro9l2yd8zi7A7vwwvJEjLHFIyVzOw42/OBRVl20QnDNjvLcDEyPGYvpG95Hw61W4+taI5Dg/k5+g7YAn9j5lHbfaEze+Cn0ix55+gEn81djxbIkTIpdg3LJSStDKfjtEvj3CDhnnedw0Lldx2N+4ReuPexud9BW9x42aY+PmvI67M7jQh3aQ/YhKzFWssdU030V9j2bsCg+DnNz9qGx46KpnIkz9F08CpfPgutAV3MZVhvHYkbGJ2HF8mUeezz1TwsWLV+FDRvfwPv2a6ZyqGrBdRnUedb5nOuBnWdd4Ln+F5oP/cl1OJM+nxkvYmdZDc5evinZHt5YcImIyLeABVc53e24YK/D2Ta1CiqZ+d77GPhQkv4K5uoCFB7+9zIP7FxznomIyLfhV3BpGAiy4I7NwM7/3o89hdtQkL8Le46d9/m1rH7pXw5wtQ1tl5tw1n4MJRniK2WjMb/0G9PeXQqvEApuOOaa80xEREFiwaV+cqC7ox03Os1nSPkuPveaS7FAetylnqnYXPuDcc9g+f82PZ9XaqAQhTbPuvDONeeZiIiCx4JL/WNc0isy4XmUNxpnvHucwOR9kf4ONJVm9HwNqzm2mcitC7Xgaj/OfIKhV1h8wiTkedaFd645z0REFCwWXOqfe19jT4pxzWJbIta98R7KdjyJSaJ8TNmJsz97fXisnxBYsAyTExZjw8btKNl3BCcbLuJaRx8riuMqTu3OQ86aeZhki8KkpCVY+XgmNr/2JvbV/8CPrsOhL/OsC+dcc56JiChILLjUT3dx68x2H5d7Go35xY3oMu5JwxnnmYiIhg8WXAqDO2g9sb3XV6xGztgO+y2Pi7nRsMZ5JiKi4YEFl8LkHjov1+LdlxdjUsRELHr5PZzipdwsiPNMRETqY8ElIiIiIkthwSUiIiIiS2HBJSIiIiJLYcElIiIiIkthwSUiIiIiS2HBJSIiIiJLYcElIiIiIkthwSUiIiIiS2HBJSIiIiJLYcElIiIiIkthwSUiIiXVtl1RMoJsTIUIL9lPKxlBNqZCBNm2VSGCbEyFqIIFl4iIlCRbPFWIIBtTIYKsvKkQQTamQgTZtlUhgmxMhaiCBZeIiJQkWzxViCAbUyGCrLypEEE2pkIE2bZVIYJsTIWoggWXiIiUJFs8VYggG1Mhgqy8qRBBNqZCBNm2VSGCbEyFqIIFl4iIlCRbPFWIIBtTIYKsvKkQQTamQgTZtlUhgmxMhaiCBZeIiJQkWzxViCAbUyGCrLypEEE2pkIE2bZVIYJsTIWoggWXiIiUJFs8VYggG1Mhgqy8qRBBNqZCBNm2VSGCbEyFqIIFl4iIlCRbPFWIIBtTIYKsvKkQQTamQgTZtlUhgmxMhaiCBZeIiJQkWzxViCAbUyGCrLypEEE2pkIE2bZVIYJsTIWoggWXiIiUJFs8VYggG1Mhgqy8qRBBNqZCBNm2VSGCbEyFqIIFl4iIlCRbPFWIIBtTIYKsvKkQQTamQgTZtlUhgmxMhaiCBZeIiJQkWzxViCAbUyGCrLypEEE2Flw+xrJ1yYhLSkZi4ceS8f5FkG1bFSLIxlSIKlhwiYhISbLFU4UIsjEVIsjKmwoRZGPB5SBSkx5ExIgHEZd/UDLevwiybatCBNmYClEFCy4RESlJtniqEEE2pkIEWXlTIYJsLLiw4OpkYypEFSy4RESkJNniGVxaUK2VoNxXn8Wi5McwesQIrQzpeQgT5i7AnLkLkVnVJHlccBFkYwFz5SM8NUp/LY/hKedr+BoHqoqx4emFmDBqpPN13v+byZiy5WN8Knt8EBFk5c1/PsNzH5YgbdN6TFkwC2PH3W9st2g8PDMNia8UI/O07HGhRZCN+czp9zDjQTGPgfLvmFH6qfx5gogg27ZB5UoD3t//Bp5Yk2zM6a/w6+mLsXxLCd79sln+mBAiyMYCR/vbOL0fGzeuQ/L08bjfvc1cfxuzp/8OT/fjb0OPKlhwiYhISbLFM3D+idJd6Rg/0nPhnpO6EHMWTsOvnbeLcil7fOAIsrGAcRfc+dhY91e8s3URHnKXjJ6M3vjREBRcsWd0BO4bNwWPJs1BXNJsjI+PNl7Xv2HUmkI8K31s8BFkYz5zugzJKfrr0ZOIhx/Ui+NIRMUnGreZswTJ+47LnyeICLJtGzDna/FaVqKrOI4cj6kLtX93qUnuNy8RD63AK6e+kT82yAiyMf9pQVXVViS430hNw2z970LPXPFGsH9/G3pUwYJLRERKki2e/nMe/128yiiMj2DOlvexp+G8532ufIWKTz9C6dkLnreHEEE2FjDugjsNS7MWaq91HGbkFKHos7M4qo/b/4wZ2usfmoJ7BKsK3sCqDz9Btsftx7G+YCke0Lfrvy3Fkpo601joEWRjwUXVQxT+gaKcaVq5HYmHFr2Kovqv3WOfnqvBK2vincUyMu1tHGj1fmzwEWRjfvPtcbyQ8CvtNTyEGa9+hI+ueI1facLB059ib8NFz9tDjCpYcImISEmyxdNvvq5A+sP63qkHMHnTIVTJ7hOGCLKxgHEXXC0jE5G+/4xnka1/G3OGrOD6yefFSIzSX3f/Pv7XI8jGgouaBbfm6J8Qp8/rr1bjtX/0LoknTu9AgnPelyO3vu8lUpCN+Y3xbytixCK8Yu9fifUXVbDgEhGRkmSLp+9cxicHsvCgvoBHrEDuFwO/gMvGAsZdcB/G74o+63OJ9RdBVt76HPcxsCy48jSiKOcx7TWNwANPlcvfXLnnfiKeOPzP3uNBRpCN+U1LFTInRmg//wFMWJOPHcfrXZ8ahDmqYMElIiIlyRZP3zmP97f9zlkwIhIK8P63svuEJ4JsLGDcJaf/xzr6iiArb4FTh+wjpViyJQtTF0wzjnXVX68IC640rSexcdYDzm3kcWyrOe5jwEdhTvFf5c8TRATZmP9cxMED2ZjoPj59JEZPWYYntu3uOUQmDFEFCy4RESlJtnj6ThOKN7r2oEWkvo0PpPcJTwTZWMAoXXCPIiNvGR52FqBoPLwgHTNe+CNS819F6qvrEXe/fjsLrjTmQ08CZqgKrh79KgqVeGXLOkz7jX48rnhNWtmd/gT+sPckqqWPCz6qYMElIiIlyRZP3/kGpa/OdC3Ws3ZgXz9O4gkUQTYWMMoW3M+xYdcK54lk901Yg7QPj3mO8xAF/3GfwDUS47ZU47jsPmGKIBsLKc4TLivx2rbnkTLlIdffzohHMLeoFsdk9w8yqmDBJSIiJckWT99pQdX+p11n+o9Mwyv2vl8lIVAE2VjAqFpwz1RiwUy9NI7FlMLq3uMsuAHSgLeyjKskrNiNg9L7hCeCbKzPufw3vJkzw3V5s0l5KO3HIT6qYMElIiIlyRZPv3FfRSEC49fvxcEB2osryMYCRtWC6y6w4/Ef73zSe1ypqyhUY9mKsdpricJv8g5IxvsXQbZtfUd7g3XgWTzsfIM1E08faZDcJzwRZGN9j+kkzUdewW7vS4iFEFWw4BIRkZJki6f/mK+D+wAmPv0Wik3XInXlIqrrj+Pt41/0+WNkQTYWMMoeonAYaQtjtNc1ElFzX8aaY5+5bj9dg/Wl/4nEmbHamP66x+CxXR97PTa0CLKx4FKLtRunOV/PfRMysOSw95c6nMILp/t+rV5Btm395vLnyF0x3rWdHpqPp/5SjQ8utnje5+KX2Hd0P3Yc73sBFmRjvnMJhw5sQ2ZROXb/9UuvE8ou4uOTf8ETM0dprz0Cj248jP/xGA8tqmDBJSIiJckWz8D5J0qL1mKC+0xx/WtSU4wz2VMw1TixJhzXmZWNBYyyBbcOfyjdgFix3UaOxdg5M42v69VK78x1SH5mBu7TS+Wv5+A/nnkOaZUnJM8TOIJsLOgcKcDEaHGFh/sxaupM41vM9Ncc069DFwTZtg2Yb/4HG1dM7PkKXPe3mQ31VRQu4YPiZcb20jLqMUwzru4w2/2VvfoXVGxH6TdepTzEqIIFl4iIlCRbPINLC47WH8Fr27KxKFWUCi162UhdhfT/LMTOzxpwQvrYwBFkYwGjbMHVU4fnP/wzktel4Tfx0bhv3G8xYcUzSC7cj+dOa+OfVSBt3Tw8/OBoPDxzGea+f1TyHIEjyMaCT89rjZs61lm8XXOsF/PfY9ZuyXHEQUaQbdugcqUB5YfewR+eXYU5pvI4+v8m4XdrnsVzRftQ2tAsf2wQEWRj/vJpw3G89f6b+EPOOqS4y7brsmZz1mTjhdJqHLwsf2woUQULLhERKUm2eKoQQTamQgRZeVMhgmxMhQiybatCBNmYClEFCy4RESlJtniqEEE2pkIEWXlTIYJsTIUIsm2rQgTZmApRBQsuEREpSbZ4qhBBNqZCBFl5UyGCbEyFCLJtq0IE2ZgKUQULLhERKUm2eKoQQTamQgRZeVMhgmxMhQiybatCBNmYClEFCy4RESlJtniqEEE2pkIEWXlTIYJsTIUIsm2rQgTZmApRBQsuEREpSbZ4qhBBNqZCBFl5UyGCbEyFCLJtq0IE2ZgKUQULLhERKUm2eKoQQTamQgRZeVMhgmxMhQiybatCBNmYClEFCy4RESlJtniqEEE2pkIEWXlTIYJsTIUIsm2rQgTZmApRBQsuEREpSbZ4qhBBNqZCBFl5UyGCbEyFCLJtq0IE2ZgKUQULLhERKUm2eKoQQTamQgRZeVMhgmxMhQiybatCBNmYClEFCy4RESlJtniqEEE2pkIEWXlTIYJsTIUIsm2rQgTZmApRBQsuEREREVkKCy4RERERWQoLLhERERFZCgsuEREREVkKCy4RERERWQoLLhERERFZCgsuEREREVkKCy4RERERWQoLLhERERFZCgsuEREREVkKCy4RERERWQoLLhERERFZCgsuEREREVkKCy4REVlL93eor9iGrLQEjLHFY+6azSg5dh4dDmNcFd1XULNpDh7KrsFN4yY1OND94znU/CUPz8yLR6S2DVPWv4py+1V0G/cYSo7OSzhZmocNpvl9t65Vidcm5WiHvWABEnZ8gZ+Nm4ZON64dykTUiBGI8E7EWlS2dhn3G/5YcImIyDocV3Fi8xxE9lrA45BeclaZkuvovIhqrdzqr3OUUgX3LjoadiM9NhqTkpZgRZJWcMU2tCUhr+66Vn+HjqPjLN59/DFMSn0WuVufx8qEWGVem9xd3DqzHbNsUZhd/BXuGbcOnU40Faea/i5ExiKl4HO0q7cB+4wFl4iILOIu2mtexiP6Yr1pL2obmtHa2oyz1W9jQ0K0IiXoHjpbjmLb2kxkr5mqFQtVio/Oga7mMqxJfgnl9d8Ze0S70F5fohVem7MIRSaXoKlrqLbgTdQX5eLtM6Y9ycZe8MgRNsRtrcNt42ZVOG6dxusztH97yszzjzi1NRU5NdeN/7YuFlwiIrIGxyVUpo/HI1lHcM2jgznQ3XoIWWMj8EjO0SHcS+XAT/XFeK6gCs0dt409aQoV3K5GlCx9CYdb7xg3CDdhz5/lLLgRtlUobxn6D9rN7jUVY/aIGCwta1ZrD65+aMLr65G+bIo68+z4FoefXIKd9R3GDdbFgktERJbguHYI66KWoOScbD+eXiiXIDIiE4evqXC0pvioWKGC6/gJ339/W1IS7+FmzYsY5fwoOxUlTZ3G7Spw7bWPS3wNde13jdtUoB+asAtP7DyJL5zzPB7rDn079AX83lcoman9jSg1hwODBZeIiCzAgZ/rd+K3U3bi7M/yGuEswBFJiuy9UrDg+mQquOPzcOq2OvtJnYcApDyFdxtuKLX3Vn9d21bvgv2W2FMfr8ZhAbfrkBuXicrzV9HW1oa2qz+iU6UNF0YsuEREZAGuEhb75CGvwxNMnHuvpihy/OFwKrh30Fy6TLnjXF0nnMUhwjYRi7ceQEO7IlcAcF41YQ1erPlOK91intUouK43eeLEMiMx85C187A62y9MWHCJiMgCXEXC/xUJrqMme4oihXIYFVxHM8oXxyAiNhOVLYp8tN3ZiD16uTUVtcgZ22G/NdSHKeiHJryB1GfFceBqFVzX8cqmcmtKZOIW1PQ6/nr4YsElIiILYMEdGPqJcbswyxaH1WVfQ519fN3o7OyGo/MaGg9uxnSbXtKiMWvH3/CTcY+h4Dpk4jnTGwGVCq4DPzfuxcsF+11XGGlrxeWmMzjy57WY7Nx+NoxbexCtFjlkgQWXiIgs4Ge0lK0K8KUJLLgh6/oa5elTMH3TJ2jtVrX53ET9jhTX9Xr9HIM94IwvdPht/hlTyVZrD65cBxoK01zbT8GrZPQVCy4REVmAcSLUzGI0+WqLPAY3RB1oKn0SUx/fjYYOla5Q4M04wVAvaFEvoubmUGxN8YUO+p5Q/4lcXIYWxd4r9Bybm4Dcuh+NW4c3FlwiIrIAo+T4uQyYaxFXZQFXveC6CtvsGbk4ocRl1fwTx5ZGppSieUg25g3YC9cjPXMj8vPzUeBOHnJSH9XmORrTMjY7b3t9j129bwxzvvmL0l6nynuaQ8OCS0RE1nDrBDaPHY/VFZe0uuutC62HsjCO18ENguvrelcnbx0mJx2JPbjRmF34D6j1AftwOERB8/MX2DklAhHK/H30HwsuERFZg+M71ORMQcTYHFR7LdLiK1OHbg+fN1ULrv6tb5/gj+l5w+iM+n+hoXAhImOzcLhVtUtdDYeC60DXuRLMt0Vjeu5J9fYu9xELLhERWYQ449+GMfM2o7zuK1xua0FT3X7kpekfE8fjqUOXJXt3h4KKBdcot4szUXTiHFr1LwJw51tcaPw77HY7/tZ0HUOyj6+7HRfOnkNbp3lraeWsuQyrxybhjyeuKjK3Zj/i1NYERQpuF240N+CfbV7fVtfdjMonJ2Kc8sdah4YFl4iIrMNxAw0lazDO68Qe5yWQ0svQ3KVKBRLFJwJTPc66Hyp6UfwAzyZEe20374xGSuFZrZ4Ptp5vU4tMfBHlZ86jtbkeNXu3YvHEVOTVXBma0h2QfuWOeG27DX3BdbSUYal+ElzMAmwu+wxNly+hyf4RCjOSsTS/Cs0WKrc6FlwiIrIWxy1cOFaCzWvmYZItCpPmPY3c0pO47LHnb4g4vod9z3bkZj+JlcuXu5I6D3OXZ2NbVfPQXWdWfJmDXmJt8Zi7zHhtzteXgDFGwR3KL1NwdHyFwwVZWJwQi8j4JKzIyEFBaTXOeu+RVIpCe3AdN9F0+E284Py7iMW01Ay8sGMfTjS1K/rmoH9YcImIiIjIUlhwiYiIiMhSWHCJiIiIyFJYcImIiIjIUlhwiYiIiMhSWHCJiIiIyFJYcImIiIjIUlhwiYiIiMhSWHCJiIiIyFJYcImIiIjIUlhwiYiIiMhSWHCJiIiIyFJYcImIiIjIUlhwiYiIiMhSWHCJiIiIyFJYcImIiIjIUlhwiYiIiMhSWHCJiIiIyFJYcImIiIjIUlhwiYiIiMhSWHCJiIiIyFJYcImIiIjIUlhwiYiIiMhSWHCJiIiIyFJYcImIiIjIUlhwiYiIiMhSWHCJiIiIyFJYcImIiIjIUlhwiYiIiMhSWHCJiIiIyFJYcImIiIjIUlhwiYiIiMhSWHCJiIiIyFJYcImIiIjIUlhwiYiIiMhSWHCJiIiIyFJYcImIiIjIUlhwiYiIiMhSWHCJiIiIyEKA/wXBH4M7rM9oEgAAAABJRU5ErkJggg==" } }, "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "- Step 3: Give pseudocode for the work (if any) that needs to be done when the condition is *not true*.\n", "- Again, we need to find the position of the middle characters. If the length is 6, the starting position is 2, and the ending position is 3. That is, we would call\n", "![ch03-lab-fig3.PNG](attachment:ch03-lab-fig3.PNG)" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "- In general\n", "- ```position = len(string)/2-1 (with the remainder discarded)\n", " result = string[position]+[position+1]```" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "- Step 4: Double-check relational operators.\n", "- Do we really want len(string) % 2 == 1? For example, when the length is 5, 5 % 2 is the remainder of the division 5 / 2, which is 1. In general, dividing an odd number by 2 leaves a remainder of 1. Therefore, our condition is correct." ] }, { "attachments": { "ch03-lab-fig4.PNG": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoQAAADZCAYAAAC5OCFPAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAGn6SURBVHhe7b39UxRX3v99/yepmqJqiiriUmhqU1pEtGQzF/Fh4x3ExCiJrBJTqImL7FYgWZVsGahdMAZMFncDu/lCLtG9wOsOXhXI10ki2cUtJxu8lFKSoIFkMBiJMkGQgX7f3T39cLqnH4cZmGE+r6rzA01P9zmf8znnvPs8/j8gCIIgCIIg0hoShARBEARBEGkOCUKCIAiCIIg0hwQhQRAEQRBEmkOCkCAIgiAIIs0hQUgQBEEQBJHmkCAkCIIgCIJIcxZYEIYxdv4w1ng8WL65Cn/tC/JXTAh/C3/NNuT5SvBqYwcuDofASf8yZeIfqFmbjTUlR9HW+w2mbH9AEARBEARBLLAgDCFQ50PGQw9FQkkHRqX/aJlBsKsCj8j3CcHzJKrPf2suIAVGO7BL+U0ZOkct704gc5i6e48EKS/hw6EfMHo7ZJ1vBEEQBEEsKskpCO9fQv3aDPU+OaxqwOVZ6R4jkkQQcmNd2J+RiTV7T2EwbVXhFAZbd2O5kBeezajtu23fw0sQBEEQxKKQhIKQw2RfLVaJ92Qg//Cf8aeSFZH7PQdwbsxCESaFIJzDPf9reFiMgw/1gZB0fRGY+QqdFZvwyOpytF9f6HjM4k73K5Id+LCuEZcfuJWE0xjt+zP2rc7CcnHqwH+jf2xa+p8ZHKaun8L+1Znw5hahovUK7kv/cccM7g760XKoGHkeXtzvfgs9QxNLXtRy4//EsS0bsf1QCz5Og/QSBEEQEZJQEE5hsHmbdE8+avq+ZX5jI/KSQhDex0DTFikOpTg9MiNdX3hmB5rgk+yRWd6Ncen6gnHPj6pMOT82o7HfjSjlMDPUjj05Hun3keBdXYGOIXOJx419jNcLsiL3e57E6xduuRc14SD6mvZhjUd9rxhynkd991cILVWVxAXRU7FWSe/yugAN9RMEQaQJCywIx9F7WG1wjAXhPVx8I1+6ZxtaBm/HJgiX1eDi9GK03EGcK5N6NO2GuC2ZQbD7KIp8G7G97A10Drrv4QsH6iJDtkLIrkNgwVv3W+gpXynlXSZ+2XwNc9J/bOG+h79qnfhbb+EJBMZD+K7jgNjj6C1ux7BR1oaH0Lk3N/I+J3NODeBCl/HX3aukOBuEJTv8HcZYdxV+zqSVBCFBEET6sMCCcASdJdlq42ooCNl7BAE4iRutz0f+zqpG76RFU8wKwkURQDyTvajOisRhfr1ybG+qB4819MOttozMZZTssbEZg47VWLwII9ixF14pT9zYY26oFU+LPXSPo7r3h4gA49OzT7wmfChMifephHC9uQSZ4rtWobTlssuePA7h4HnUFkpiXg7ZW1DV1IaWyo3KNVNBmsJw4+fx6gptbywJQoIgiPQhBQRhmG+sBvDR2bM4F7DYpkYgCQTh3GAzfinGwWWPWBTa4fXYGmdhDt4pNNa/i3PX7y1KrxY7bJ2R34QBR6qWmTbAzj0MB1CfLTxrBfZ1BSPXRGYxcek4NoliMQvrqz/GmMvEchP/wrEN0lCzFLwF1TgnzqNjpzHwIfM1+O8tuLpOIPd4X9ukSbsQSBASBEGkD8knCGf70bhK7qlwOQ9w0QXhLMa7fyv1Uq1Fde98Zu3FQxAmAew8QqdCivsKbVsi4uxnh3sxKV1WBWE2dnWMSBeF3q3PUCvNG8zc8Tdcd7uymx1qFoMHj+xuQf+4NP+TG8LpYsZv7RY3pRqz19G+Zycq3qzGLmXOJwlCgiCIdCL5BKHS6AvBnSDUzJnb0oobUbqAHRbMwRM7ylHT3IMBueHXMItwOPIAbvxfOLl7HbzZPhQfPG7R2zaJyw1yT8vzaBsyXhHLhb6Gv+kg1uduwK6qEzjb/71Bw+tGEMora7OwvOAlvN0XWUjBjXRgT3YW8gpfRm3HVYMh1BjSyN3FwJnf4amcfJQ2fIqg9HtTZq/gZL68hZDD/FR8YBmK228q8eBG2lEsPkdYbHRPujiG3iMFkefnlKNzWD+U7IDJPtQ8qg6XegvfQX9IFnwcZgZOYpP0PzE47ulMMTRljwQhQRBEOpF8gnCab5yXyY0SL9q27cSukhKUtQ7YzqHTCEKjZ+tWUcrBW/BH9I2zTx+Dv1K4Lwubm8/jI2lxgxJWHIJfc78Ms6DEcL6jIEg/QrW8ClYOnnzsP3UNWiljJwh5ETh4FtXlh3Cytx9+drGONF/QelFJLGmcxXjvUaxR7svC+iMf2YhCNs+N5v4ZMHcNLRsz+fvZnkBmO5+M36JHjBu7EMKH1/yjxiLWlikMd5SLG6F7C47CH2SEPLO4JRIy8IuGL/BA+veSggQhQRBE2pJEgvAWL1AeVxYg6IOTxslOEKoLFfiwohzN71VK4iYTm5quQO0n1MUzKuSiyn9bupeBHe426kXivkFnqbpowet7Gs/mSr1nsoDkQhi+2IOz7cexT/6fEjLxH3w8I48NY7SjTPd/KUjPshaEMaRx7ku0FS2LvtezGtsr30UvK6QU2FXjTvdlnODF8Ab+/gz45PRy3+Hc3kfF52Tu7RLnCHJjH+I34kIIXpjWfIbx2NRgBOGoxDffQY8mDRxmrrdgK7v9jGenac9vykOCkCAIIm1JKkGoblEih0zkbS7Gdt8KR6tsrQUhuzBAEoBsb6RmiFkvljz4+cH38eFbRdLf2jlsCuPdOCiv6jUSpMqCEz6seAXngl8y75GGUzVDrNFBbaS1gtD7ZCnK5J5HURDOaAVjVHzcp1ET/4wX0RY4iyppRbWpTTQ9nU4FoSrEvDvaMBSexUTfH5AvPmMT/4x7fPLVeX/eDccRmLDzjhiI6h3kbVR13qHwnENo8BN0dnS4D/5B3moy8XqOAzSCkBHjBEEQxJIniQThLMYDp3DsaBmeUHpk5jGHUC+AlGFI4f/S0CV3E6d3SD1emh40XTw9z6Hl+j1GYBmLH3WO20PIeaMP2n4kdsGJPOzIvkdOq9GKTw+W+57BrpJ9+H33N9LKZa0gXF73Twx37OOfz4uWwxcwoe9BtBOEtmlkBbUHq/j0TWoEBDOvT0MsgpCHG0egfgu8wkfBkxuRJ68gFnsC1SHeDM82nOj/kZeQwnD8p2gU50EWROZmBr6bx3nSHO73n5BWLktBtJGyxMUGix5cu6DJq3g9xwGa/DQT+ARBEMRSZMkuKvGWdWFMui7ABTtQKjfu0qbV4dC/cbJQns/Hvksbz8i+c2zDbNxYsu+PHm5jfy8vlmB7RZn3h0P4YfgT1BfIAtZISBk8LxzExffPSEO3OiFhIwjt08jGVVpB7SivYhSEAkJ6Wg5he65wDF0xjrT0YTTM59twB/aLJ5gsQ1HT5cjcy6nLfF7qh7Nj2Y9QYmYALVvY57npHRTQ2d9NIEFIEARBLDBLVhBqBRmHyd5q/Ex+rycXTz3jU3sTxcC8S7P1jbyfoJVYiqC+X7s6NgJ7xjEvwMSVrD9h8NRe5Hk8WP7cKdzQ7MjC2spOEBrFRyck9LZ2m0Z2eF1e1MHmlbLQQw8rCB0uKrGCHSou/DOuil2Akxhsfi4y/zRjJ05+cRtTwS5UCPMLXfXqyUxhuL1M6s2V07cPncHFO4ZwQVA2/hYCCUKCIIh0Ik0E4QxG2kvV9xqFnN+pq2o1cZD3E7QTYOyQsHFjqj0NwoNHdrwJ//CkTjjKJFgQuk0ju8ejPN+SfYbpvo/scYXu8jMadqh4B05elWyibBvDLg6SezTdzoVjeyCltPECf2vzALPoaInC5jEJQoIgiLRiyQpC7bO1W7hkZG/EviNvo62jG72BAdwY/VE710wTB7lXi51DZyfAzBrTWUwE3sbWbEZs5JTiRJ/RCSxxFoT6fRldppG1rTI/kt102lQQsumYjyBkhVoWNjV8jvvSdbX3l937kclzIz8zY+oqWnbkSPGNBO+GE+i/byzblxQkCAmCINKWNBSEuu1UuLu42lKGNYV/UPefM4wD+4yVONh9K3KvghNBKDCL0EA7KnzMXoSeJ/H6hchm0ip2gvA+Bpq2SP93IAj1gs1VGtneT3k4PIyxrnJ1WNVMEDKnjpiLRgdwIzi3z2hVMWMHzVY/t+GvjNzv+AxlZSGLlCYheLbg2KVxXd44IQVXGZMgJAiCSFvSRBCyJ4iw4moawfNHsV6cN8U0gLZiKZYeOy1c6ApOH9ygio9Ha3FRs5G1nSBk45MIQci+k31WZHg56uxfM7HHvkfaMNs97AbUG1Hbd4cRaEzesnk+fQn1KyPDyM7OlOZ9oesV6R1yyMCaI5/GuL+hzv5ugsZ34/UcB5AgJAiCSFvSRBCyPVyrUNF9Cxw3ieGeWhTJw7eeF3B6WDp/Yt6CMAtbW7/S9SqN878vhDfnedR/eA13wxy4oVZsFe9n3yMzX0Gos0fcBCF//dI30T1pZoKQWajguKdOhzr30milL7NYRxGcc5jofT0i7pxuJK1ZZCOHbBRV1qGhrg71dfVobD6FzrM9uDgcctBjSIKQIAiCSB3SRBAKouJTVK+WNnzO9uHZzbmMoGHnpPGwcVBWz9oJQu1K5qhtZ7ghnC6W0y7sK/g0tvvUuWreolYMuVplHEdB6CCNs/0NeEy8nok83zr1uUowzit1M+sYNzrm7uBizcbIOzLKcPobg1XK9y+hfi2ft9L/uVAAJ8QtaFxsFWOzIbgm5LyMzmEHIjPVIEFIEASRtiywIJR6yeRGx0gQanpq3AnC2YEm+EyfPYvQUFf0OcLCat/SdgzNMKpBIw7kOLBz9owEmlaA6fdBFARjOHgetYXq0XVKMJynZicI2ZXTxo23KuL4sKMdI+wL3KZRONrtyJOMiObtVlKBX/vkvRKN8ordasdo3qUDlNNfmD0Howhj7EKNOPTvzd2I/zc3Eqeoc4kt+REX35DFsF1wOgydYjz4X5zcKJcPo62TCIIgiKXKAgtCHm4CNz5uwZFt+fjFG//AhHRZ5UdcPvUGfl2Yi8x1xxDQzKuzgRctFxpfwvrsLKw5/Inh8CQX+hofNx/BLl+OZrNjLdMY7XuPj+NqJg4cpq6fQUVBjmkPkWYI2OgsYx5u6jsEzp7AqyUFWO7JRVH5cXxw9Y62N1HkDj6r24Nf7dyMvJwXcdpg2JMb5QUmH0evpwiN/QanhExdxwc1Zbw9HsXWpi/UHlCRGNIYvoVA2xFsz12Fp6rOYCB0kxGtRnsMsquWY9yDkPsBgZMHULT7XVwOWfUvRtJTLdhVOKnk8Hu4OOqmF4/DzFA79kjbzXhzN+NXJTs1vbhCz/L2khdw8PBb+M/A2BIUS/xHy4/X4W8WNgNfh5e6RpZgGgmCIAgjFl4QLmXYbVg8B3BuzPUAaYph14vJnG4inq9M8oIgCIIgkhEShPFEc16yvNnzUsZGEDLD/97dHQiSHiQIgiCIpIQEYVxhT+XwILfuEtwMWiY3HMKhcdydYmfOWQtCbqQdxeL/YlxQQhAEQRDEgkCCMK5ozyvOWNeIyw+WSLeY1Nvn9b2C0wN3I3PLNAtT2FNCBNhV17rNwAmCIAiCSCpIEMabiQuoVs4r3oT6gMFij1Rk7ku0FQlbufDp8hRg/1vvob1hL/LEdPIhSvzOYqzrgLQqWS8WCYIgCIJIJkgQxh15C5RM5BX+Bi39P0rXU51ZTFw6jk3SJtPasAxbmwcwI90pI5zGcqaqCHnPncKNJbdHC0EQBEEsHUgQEi6YRvDCcRRLW7PIQXu2MEEQBEEQqQYJQsIlc5ga6cVfDxUjL2M1th9yu98fQRAEQRDJBglCgiAIgiCINIcEIUEQBEEQRJpDgpBIXSb+gZq12VhTchRtvd9gija+XlrM3ERPzfPIy8jHyx/cXHpnR8cC9y0+rHgc3uwteK3r66iFXEQ84TAdqMdjuTtQ1fjf6B9LlqkxyRqvRJDItKaTHZ1BgpBIXUY7sEtZ3FKGztHoE6EXhjlM3b2X5oJU2Lj8B4zeDhmcyx0Lkxhsfk7atmgdXvV/z79hMUiyvA0HUJ8t+XxJB0aly0QiCPNVTJlUvzyE5XWBOPn2fEnWeCWCRKbV7tnxrtOSHxKEROqSJIKQG+vC/oxMrNl7CoNpqQqnMNi6G8uFfPBsRm3f7fmLt8k+1DwaWc2eWbp4xx4mXd6ygnBHO0bS0d0WDBKEi89iCcIE1GkpAAnCZGDmK3RWbMIjq8vRfl13HrAT5vv7VCUpBCF7Oo3Bec4LyaL5wSzudL8SxxN6whjrKkem+Dy3m7vP4O6gHy3CKngPL+R2v4WeoYkYK/ME5e188okVhNl1CCxdJWBPwv09RQXhkmoPFksQxrtOSw1IECYBswNN8EmOl1nejXHpulPm+/uUJSkE4X0MNG2R4lCK0yOLN6trUf3gnh9VmXJebEZj/zwaIm4Ip4sjZ2S76h0MB9HXtA9r9Jun5zyP+u6vEHJdnycmb+eVTyQIFRLv76kpCJdWe7BYgpAnnnVaikCCMAkIB+oiXdNCiKrkZxDsPooi30ZsL3sDnYPRTmn9+yUMKwiX1eDi9GJ8wQVxrmxFJA6rGnA5pv257fPYCYvrB7fQU74y8u6HMvHL5msxLgLhMDNwEpvE5/hQ0+fspB8udBl/3b1Ker9BiGnYJx55G419Pln4AwlChcT7e2oKwqXVHiyiIIxbnZY6kCBMAiLzlKQCvLEZgxqvCyFQ55Oc0oPHGvqhb5esf7+EYQXhYlV8k72ozorEIfavcfs8dsLi+kEYwY690iKQ+djiR1x8I2IL75YWDM7YSTgO4eB51BZKwk0O2VtQ1dSGlsqNyjVvcTuG3SjCuORtNPb5ZOEPJAgVEu/vqSkIl1Z7sJiCMF51WuqQ5oKQw8xQF35fWYuW7gGMhxejh0lgGqN9p9BY/y7OXb+n68VgGwezAmH1+yVMEgjCucFm/FKMw3y+IJ3ksRMW1w/YoaqM/CYMxKJqJy6geoWwmORR7O/6zjYN3MS/cGxDlmI7IXgLqnFOnDc4hcHmber/Ml+D/57zHIpL3nJB9P7lLzjt/1+MTslPsMsnC38gQciQaH9PTUG4tNqDxRSEcarTUog0F4TTuNH6vOQQ+ajuvSNdTybiJRaWIIsuCGcx3v1bafHDWt5/Yv1+XCJ5zM65cSm+IjCLSdYeQ+C+TVMWHkLn3lzFbkJv2iO7W9A/Ls31Y+YiisFzAOfGnNbo8clbVVTycas877CHwaEgTKfRgEUhVQXhUmJxBeH867TUIs0FIVvxerD88ceRl+PD9rLX0Njeixsho8ZjFqGrbdi/eiWeKHkVJ84GEFS+/KPhQl/D33QQ63M3YFfVCZzt/z7K6biRDuzJzkJe4cuo7biqm/xuLxasfy/gJs6zCEs9pdz4v3By9zp4s30oPng86b42NXNltrTiRlTk2OHEHDyxoxw1zT0YkAWDhljSPYnLDZukvHkebUPGG5va+4AbQchh6vopPi+zsLzgJbzdd0uJmxM/cJVG7i4GzvwOT+Xko7ThUwTtetBnr+BkfoaUjhgW+SgCbhm2Ng/AdgkHszWNELyF76BfKbPsXEQpuPrCt8jbma/QsS8fmbnFqGY3h+Z4+86yNtIOOcn5ap9PDgVhXPchNPMrF2Vo6gpad6/lfWoHGgPj/O8+ReNuH9YUHsQJ/01McfyzRvsi56B7+PzKLUTZYZOz0Hnfu9p6APlr96BR/K10nSHu/h6FlWBwU7ewmJdf51gLGTu7OGmTBLjg/+A3a9eh6EAtWnuu4ger8u8gv1Tc2MBOtMWaDwIOBOF867QUgwQhU/Hqg7fgKPxBXWV1/xLq18oOIt23+gDart7VObXgqB+hukA7nJXhycf+U9cwJd0lYD0J2F4s2E4idhznMfgr1/L/z8Lm5vP4qGqd5jcZKw7BP548feaadBs1jlwQPRVCepg08MFb8Ef0adIRa7qZRQdZ1eid1FdrTn3ALo/5CnTwLKrLD+Fkbz/8h5k0Mb1E1n7gNo2zGO89ijXKPVlYf+QjG1E4gs4SuUduG1oGWS+3gxFwGfvQGXRSoU9huKMcj/C/iSqr3Pfwa9KYgV80fIEH0r/tschbtmdaWWzyE642PQOvZvHKOHqVvFqJg923xKu25dXKH8a7cVCeH8b7/LDYGD7KN6z7cKzD+uM0Ggd+5bgM8Yx1YZ+4wjsbu075db23a1HxX/+D5uIc5poQPPj54QuYkB4RQe97mcjbVo0zA9r6Kr7+LsN/PA/9E+e6PkZg8GsEmnYov9Hkgxu7OCy/1jiMF4+5XZy3Sexc3kjwYPnm1/B+4FZU++Msv9zYwHla3eWDgItni8ynTks9SBCygtCzAQebz+H/Nr+En4vX+Mqq4kOMKV7N7kumCznl6BxmnIX7Bp2lUoPCB6/vaTybK4kyXQNjWIC5EIYv9uBs+3Hsk3+nhEz8R9MV3rUjWFeMLuKscX6jkIsq/23p3sVHk24DQTg31Iqn5S1IVpSj+b1KqdLKxCbefqrkiDHds/1oXCX1UBn1Ptn5wE8TDvNY+yWrCYwvWfuByzTOfYm2omXR93lWY3vlu+jVfyiJ3OMbkXzpXrf79t3jy6LQI2ckECwIfwv/m++gRxMfXlxeb8FWdvsZz07THlxDrPKWWWyi2Hma/+haGbk/540+iG+au4aWjZlSHNTGxDSfnJR5Vow+eQBVO7QCy1v4Z1x1vIG2vV85L0M8Su8lLx5yV6lp1AfPJlQe3acKCJ0g4Cb+iVrdB6wYVtfiYki9Ma7+LjKLiUvHsYn1GyawgsGVXRyWX3Ocx0vA3L+ct0mahSlsyPgtenRCy1l+ObWBu7S6ywd3z44wnzot9UhvQaiZY7QMxe03I180D75A4zrJwTUF4Db/1cl+9bKBb8iqzmNc8mt17hAfVryCc8EvmQqK7XrWFRRZ2Gi6qqOD6rwmv1dwHufoSpT//8H38eFbRdLf/Jd/x4h0rxVzCA1+gs6ODvfBP8jLdGdYC0J2QYFUOUz3oWaZdL9miDnGdOt6a6IEqZ0PfPtFTHnsfbIUZfJXvlKZ2vmBuzRq4p7xItoCZ1EliyBTP2A/sFxWnsrwr9uNqA2I6h3U+7kDrPLWYGEHxzdMW+X3yfezz1C2RbLIJydlnhWEhsHNfEc7v7rvogzxsHYRQwbWVP0d/j+pvTBCePhgN+4Ezeb/ziDYsU+au5mB/Bo/vvg/8jxvNm3x9XeR+5+jUbdAiQ1qeXRTtwg4Kb8WOI6XgLld3LRJ6sbw+rAJjf2T0n0CseWXqQ1cpdVlPrh6tsw86rQUJI0FIS9a+mrVr1RNBcFWJowTML0AQsgsbsNXNzuwR670PXvRGRRcip2QLg9Vsc90IAiVHhPpuhj4L2/fM9hVsg+/7/5GWvVoUzE6jrOArhL1PIeW6/eY55sJAT26OLkJURW7OZaC0Kh3hruJ0zukXi9NIxRburmRdhRLv1F6hRSc+MCdmPJ4ed0/MSxWwnwjp/Sm2fiBqzSyFa0Hq/i0TWoa+3zU9BmJtlgrT6YXe8NJDNhuNWMFh/v9J7S9AGJa2UbMHsu8Zf1IzMcH2l54ybeMNwi2yicHZT5KEAqiqw3th2QBnIWtrV8xQ3VW2PiVqzLEoxeE4tD/fW165Z45swVh7PSWqN+zPhpPfxfgy6v/kDQyxIfVr8M/dosZ8mcEg1u72NlZussYF/ESMbOLizaJ+w7n9j4qXc9Gceu/cMGslyzG/DK2gcu0usoHt3aUIUGYJnCYuvpnFCkNB+O8mi919YtI0wsgV2zcV2jbIn91yMMQrPPLPY/sJpdOBCFPOIQfhj9BfYHs9EYOafF7HudxFtBWopF929jn6ytRM3RxchOiKnZzWEHoLevCmHRdgAt2oFTOW6l3Jhz6N04Wyulm8yC2dLPvj65M2N9b+IDrPJaeFQ7i4vtnmKFbnc1tGkjrNLLxlL7yNY09azuWGCtPpQHKxvPtQw7FjAkzA2jZIos1IfANjtveQR7rvGXtIyw4mWB2K+CDOKrwAGNdB6QFJaxIs8knO3/QC0KxER5n7G7WsBlh7VfuyhCPThBm7uXLpMbH+CCPuBgKQg6T/Ef6KvF6BvLrLuG+Jo7mAmN+/s6jEUErsKfjGz42rD+rdnVtFxs7W+IiXhHM7GIQB5M2SUif2mHwAk4PCx+uRuU61vwysYHLtLrKB9d2lImxTktR0nwOITvpW3VejaMpTsU7f281fiY5j7oEnX2GXPFr5+1FVj/+hMFTe5Hn4b/4nzuFG8pUGLMCLMNWbHZiQf97N3HmYedNPSTvvWZWwBcf80Zbl25PLp56xqf2JoqBqSxiTLf6frmCZXHjA27y2CwPbPzITRrZYRe5AWcbe4N5RBHYylOdM2eHMl8poxznxqKrZOdMYbi9TOoFkePqdIGKFuu8ZdMp9JYOaXoaMh7agpMD3zLXNvB5KvcD2eSTiIU/6AThw5V+3HPUsBlh5Vcuy5CARhDmoLRjmH+KLr3yfEFDQTiriugVVegRfYH9vQth7bZMs8P7ih+ydpWfEYNdLO1sg+N4yZjZxWl9pF0ZH5k/ywwha+bixppfJjZwlVaX+eDajjLsPc7rtFSFFpUomS07Kdu1zgdlQrmuoO1ox4jo6ewz1MqYGz+PV8UNdoXrHjyy4034hyelwsFiVoBl5iMI3cVZW6HL8z8cFORFwlwQzmCkvVSKs0nI+Z26yjCmdLN+YmwX5z6wAILQTRrZxlqeh8P+PmpITIb90NA3imZMY6h1p9ioRMRNrPDSY7gD+3NkewvB4fY1UdjlLetffKP3l1a8Jc85FkMOdr37N9TIQ2ma/cts8knEqSCUe/dNyrMtVn7lsgwJaHxMEMX3hYua9Cp5bCgIecL3cKP3DN7v/VZKAxsPNo5x9Hfed6YD9ciVnuXdLZ+fzeaDfH8MdrG0sxVu4iVjbhdn9RG7iILJLz5fRgb+jc8Hb0v5IhFTfhnZwG1a3eRDLHaUiaVOS11IEEYJQu0iDLWRMqt0tfer12cxEXgbW7OZBiqnFCf6gtoCpSkofIiakGzROIhY/d5lnDWVqPw1xM4nMys0iwMrCLUNgjbdGdkbse/I22jr6EZvYAA3Rn/U7pMVU7qdVPJOfcBNHpu9y8aPXKSRtasyf47doNVUELLpcFh5Kgu4nJ9bbMjUVbToV9xuOIF+u82tDbGzt8XKfaOgyQubfBKx8AeNIJT3R2T93c3Rh1bpdFmGBDQ+Jue/Nr1KXWMmCAW4SYxe7kHrGy+jKFceOhcCG8f4+btWXDA9RZqpQ/L9MdjF0s5WuImXjJVdnNRHrO+xPXw83DRCPxmUadf5ZWQDt2l1kw+x2FEmhjothSFBqDhVxCG0y+3Z+XVaB1QqNkunmkVooB0VPnlOAx88T+L1C+xGnLoCHNXYuhEL+t+7jLNhhc4+Q91LzZrFXmXMxpnNQx5hA9WWMqwp/IO6b11M6XZayTvxAbs8vo+Bpi3S/83eZeNHjtPI9o7Jw6W6VYdmgpCdm2p2j4Y5TPS+Hpnova4Rlx+oFnEFN45A/RZ1mEsIni04dmmcsbEb7PN2tr8Bj7Hv48PD5S34r8OPa64Jc6t8TeoWUbb5JOJQECorl9l8tPJFPVZ+5bIMCdgKQuYdbDpY0SJsI1TzjG7oTw5sHOPl7wJGadVvbC6/Owa7OCq/RriJl4ydf9nVR6zvsTaS9vzMeR5vshtJO84vOxu4TaubfIjFjhKu67TUhgSh4iiCQ3yN4fYX1IZFM9TDHnOniivNUn5lmEQLF7qC0wc3qM99tBYXla0G7ArwfAShyzjbVqJG7zdCFyc3wXAIzRhzQcieMsHGeRrB80exXpwfylQAMaWbTaNJZcJg7QN2eaz3U6N32fiR4zSyz4kMtUWdF2xWMbLvcLLhblwWk/B52vWKunpQDBlYc+RT1wtJVBzkrbIJsxyE3hT+Y4ad1yQGXWNll08iDgWh8lsn/mGE1e9cliEBQx8zsSWbDqXszjBbmHiwfHMFGltP4WS5LLLZ98XL3wXY61JvYtSGx/K7Y7BLXPLHLl4yTvzLqj4y9j1u7EP8RhpuVlfMu8kvOxu4TaubfIjFjhJu67QUhwSh4ijLsP2tP6F6tdxzJq+aktFOYo2satVtE6H0cgir/grh5b+m6j+8hrthTrfaV66gImiETVQBthMLVr93E2ceV5WoFbpKyU2IiyBke7lWoYL/yuW4SQz31KJIHi4RV89J51bElG42jbqhFRE3PhAPQaizR8wNJJsu/tqlb6J730waGVYkqY2GOdxwO54X75eH9GJAs3hADtkoqqxDQ10d6uvq0dh8Cp1ne3BxOORQdNrlLU/UeyXhFyUUS3F6RLdNsWV5F5iPINQLUCus/MplGRIw9DHWluo7WBuo03Lk02Eysb7mU4yJp+Kww33aOMbH3wXY3ivh3p8MPjLkd8dgF4flNxo38VIxtovT+shAaHGj8L8qx19eoSvgJr/sbOA2rW7yITY7iris01IdEoSKk+pCTgXO6VcnshtbZuxAzd+OYrsyvJyDne1DkbkJmg2v+S8n39PY7lPnN3mLWjHEfGlYNxDzEYQ8TuMswFaiykpSs0p08dGkWyckufFPVXGf7cOzm3MZUZOFTQ2fq2I/pnRrxbYyHC/jygcWWBDapFEdDs1Enm+d+kwlyI2HFrXnWT9MagQzn2s+X96a6Q82IedldA6zQ3lm2OStCLtlhxCk7an08VGOtlOxLu8CFv5gOJcz1jJq7VeuypBAjIJQte8EH58N4jWvrwxv1NWi+kCReO6x/vcC8fJ3YeqCOid0JZ59sRhrNKJeCOq7XdvFYfmNxl28ZAzt4rg+Yrdjy8L6ynfQfPhp9XmaI//c5JedDdyn1Xk+xGZHAXd1WupDglBxUjbkYn/HkEEjwCE8+g+cLMvX9pjwQXtkFH+fcuC29j6juU2a+UjKSmAZe0Fo/XuncebRNGZyhc5+XblpbBIPu/FvdM+icGZlV/S5nXxl+EhpO4bYzY9jTDdb8er3QXTnA3Z5bN5LwmLpB27SKMwLOvIk4y+8zUoq8GufPGHcSBBqK137uaZy74LbM4b16M9ctQpmW0tEY523Arp5lZ4DODcmNBdaoWjUq2BdXgUs/IHNR0VsmgkdO+z8ykUZEmA3ClbswcwTVVb7svZlt/XhMDPUjj2aleJs0MYxbv4uMHUdHewQKh+8BVVoOPSk9Df7bpd2cVh+DXEVrwjGdnFTH81gvP+Udp6hGPTtopv8cmAD12l1kQ8x2NF9nZb6kCCMEoQrUXzsM+b8YgO4CdzoPYX6cv5rKGM1th96DxdHo3seuKnvEDh7Aq+WFGC5JxdF5cfxwdU70UKTd9YPasqwPvtRbG36QvqqkbmDz+r24Fc7NyMv50WcNjqP1fL3Eo7iPI3RvvdwZNtqZK47hoA4p4T/Yrx+BhUF/Nek4x6WBYIXLhcaX+LTnYU1hz8x7M7nQl/j4+Yj2MV/DXtzi3GkpQ+j4tAGS2zp1gy5GJ1lzOPMB+zzmBvlK3M+fl5PERr7TTZnsfQDl2kM30Kg7Qi2567CU1VnMBC6yYgUoyFedgWnkyFgXlD11mFrwWv4MIZ9AlW0jZI3dzN+VbJT0/sh9B5sL3kBBw+/hf8MjPG/sMdJ3oo2av8Dfl2Yi0ylh0WYtP93VIv5vRm1fbej32dbXq38QXj+Gby6+VE8Unle8nnpnULerj4Mv7jHmjOc+JWzMiTAx+P6ORzbuwl5ur1WQ6Nf4nLgCkZCEUNyP36B9w8VI8+Tz4vEO+K1CGpavEJ5OfA6TnacReth/t6MAlRfYKR5PP1dIHwHVz+oR+nqlVi/9x1cCE7hQX8jfiH5gb6n2LldnNnZFJfxsrKL4zaJJ5K+Q3wdkIXlBftwrOsaQlHJc55fjmzgNq08jvPB9bPd1mmpDwlCRRAKX698wQgb1fwEYQA7fKf0iCxV7HoxmZ4xJ+ezJjtplbeEKdwkgoGzOFFVjte7v3X0MbEgJGu8EkEi02r57CVWpzkgzQUhO7zjZqiFIHg0Z2mqw2FLExtByCyyUDd+TWHSKm8JgohiqdVpDkhzQWg/P48gzGF3sfcgt+4Sogd7UxEO4dA47k6xs+2sywo30o5i8X9LZfL1Us1bgiCcsPTqNHtIEJIgJGKGnXTMh/lsrpxMSF/GXt8rOD1wNzKMopmkL5+QIcOuynWz7Ukys0TzliAIByzFOs0eEoQkCIn5MHEB1cr5oJt4H3I5YTwZmfsSbUXLImnyFGD/W++hvWEv8sQ08iFKHDGH3EeJxRRmKeYtQRAOWKJ1mg0kCEkQEvMijLELNVjvyURe4W/Q0j+P83iThllMXDqOTVF7dQlhGbY2D0C/Llg4+eBMVZFudWmqsxTzliAIJyzNOs0aWlRCi0oIwoBpBC8cR7FujzHvhuMITNCKW4IgiKVGmgtCDuHxKzjXWIntq0vTpluYIJwxh6mRXvxV2C/OYr9NgiAIIvVJc0FIEARBEARBkCAkCIIgCIJIc0gQpgoT/0DN2mysKTmKtt5vwB5BTBAEQRAEMR9IEKYKox3YpUzulw9rJ5KPMEK3g7gx8G8ELvWi5+x/o6f3Cwx+O04iPm7wNh67iYGLH6Pn4jDZlSAIIg6QIEwVSBCmBLMDTfAp+cSGdXjV/31kk2fCPdwdDPzP39Bw+CUU5cpHygkhF/s7hnSH0hMEQRBuIUGYKpAgdM7MV+is2IRHVpej/frCbiUUDtRhuZJP2vBwpR9Js7VxPGy0kHbW+L8ueHbg5FXaMoogCGI+kCBMFUgQOobtpcss78a4dH0hmO1vwGNKPuXgiW0l2Fd5FPV1b+Lk2Su4myRdhPGw0YLambuF3tpnTMX28roA9RISBEHMAxKEqQIrCJfV4OI0qyxmEOw+iiLfRmwvewOdg6naWxKfdGh66bLrEFhIpcDm00K/2wX2NrLPi4W3szA/8xZGb/2IKW4aN1qfj7ybDyQICYIg5gcJwlTBUmiEEKjzSY2jB4819CM1z5KITzq4sS7sz5BstbEZgwt57BCbTzvaMZKkkwbtbWSfF4tqZ17+jXaUSfEjQUgQBDFfSBCmCo4FYSo3jvFKxzRG+06hsf5dnLt+b2EXcrD5VNKBUemyCoeZoS78vrIWLd0DGA8vlmK0s5GTvFhEO2sEYRa2tn5FC3YIgiDmAQnCVIEEYWpgKwjZoc58VPfeka4nG8meF7MY7/4tMsX4ZWNXx4h0nSAIgogFEoQKHKaun8L+1VlYXvAS3u67xfQ4cAgHz6O2cAXf+OTgiR3lqGnuwcD4jPR/LVzoa/ibDmJ97gbsqjqBs/3fRzem4RB+GP0BIaaHaPZ6MzabnBmrma+1pRU3NN0hyS+kHNnEVTrM84sb6cCe7CzkFb6M2o6rCGlsNYuwZHNu/F84uXsdvNk+FB88bt7Lxd3FwJnf4amcfJQ2fIqgVa+erSBk0+jB8scfR16OD9vLXkNjey9uhIwGyWcRutrGp3Ulnih5FSfOBhCcMh+fdWJraxsJ2OeFnZ2dxzmGPOFRywQJQoIgiPmS5oKQFxWDZ1Fdfggne/vhP7xWaQA1c6K4IHoqmP9JwVvwR/SNsw24IBw/QnVBlvZeTz72n7qGKekuoQFUejeyd6AxEFmfqTZw0XO2NIIwSmgksyB0ahMBu3Q4yy/zxQ5j8FcKv8nC5ubz+Khqnfp7Iaw4BL8mPwX4vOo9ijXKfVlYf+Qjc1HICEJvWRf/Rj3aNOqDt+Ao/EHtxwDuX0L92gztfasPoO3qXZ1Ycm5rcxvJ2PuU5TMcxzmWPImgvp8EIUEQxHxJc0GonZiuCVnV6J2MNF1zQ6142iNdX1GO5vcqJYGQiU1NV6D0E3LfoLNU6EWM3Ov1PY1nc6VGkXmetrFVGzO2gdU3wJrGVxaEXAjDF3twtv049snvUUIm/oOPm3FTuoA4sYnjdDjLL3OhMoLOkuzo3yohF1X+29K9EnNfoq1oWfS9ntXYXvkuevXijRGExsJcJwg9G3Cw+Rz+b/NL+Ll4zYOfV3yIMUU1zeGe/zU8LN/PhpxydA4zMs+x/1nYyIVPmdvZRZxjyRMJ9f00h5AgCGK+kCBkBIb3yVKUyb0rSgM6hcHmbdI9kgCc7kPNsshv2OHbucFm/FJ6VsaKV3Au+CXT2LF7BwZxrkxuuOchCGev4GS+vtFWg7EgYZlDaPATdHZ0uA/+QV7a2OPIJo7T4SS/dKJR05uqFx+8+Dr4Pj58q0j6O7qnSRP/jBfRFjiLqiz59wY9U3aCkBvC6WI5DstQ3H4zImQefIHGdZINMn6LHqVX7Db8lbnS/frAx7/qPMZd+5+FjWLMC62dncc5ljyRsSovBEEQhDtIEDKN2vK6f2K4Yx8yhUbp8AVMCLfMXUPLRvmorG1oGZziG/WbOL1D6jVSekbYSe4Z+EXDF3igaezYBpm9vgL7uoL8tVmMdR2AV7wW3cAZCkLcQ6Buk/QcOXiw3PcMdpXsw++7v+ElnxW6Rt1N0AgAM5zaxGk6HOSXPk1WgtDzHFqu32Pu14sP9mPAg1Vv9GEyHEB9tvT7h/JR06c7e8RSEPICvK+WGX5m38fGzYf6gCS3py+hfqVHuv4QMovb8NXNDuyRt3vx7EVnUHiLG/+zslFseaF5huM4C7jNExUShARBEPGDBKHS8Ei9NeEgLr5/RhkK5IIdKJWHi6UNocOhf+NkoTxPS25oDZ6FW+gpX6m7j0fTCyM3/toG1koQauamCYtThj9BfYEsWhkxYYuuUXcTHAlCFzZxlA77/IpKk4Ug9Ba3Y5hj79eLDzaua1HdO84/nhWErMiKwPbSRYsUDlNX/4wi2Z/Y92l8YhMa+yfFy9xQK7ZKz1OGT7mv0LZF9j95SNWFrS1txOM6L7TPcB5nAbd5okKCkCAIIn6QILRseDhM9lbjZ1Kjk+HJxVPP+NSeOjHIDa123pS38B30h37C4Km9yPN4sPy5U7ghd9dpRIV7QRjd+Jn0Li06LmwiYpcOJ0LBXKhgth+Nq+Seq0z8svkaH0OLZ7JTA+RhXDbvNEO7EexFyjh6lcUw6vs0Hx6KT+n8L/M1+O8JBmOfIc+fc2NrCxspuMkL9hlu4szjNk8YVFun8mbsBEEQyQEJQsuGZwYj7aXS/01Czu+UVZDc+Hm8ukJu3Dx4ZMeb8A9PRho+Fo0gfB5tQ0LvlvZdS0MQurCJSIIFocbuUo+f1TPZLWTkuaLsM/Qra3nsBaHRgiJ2uJcP+U0YEF1Klxbl5BPjFcDObW1hI4VYBaG7OLvOEwbV1ub3EARBEM4gQWjZ8OhWhGZvxL4jb6Otoxu9gQHcGBXOVJVuFZnFROBtbM2WG2U+5JTiRF8w0vjJaBpBuTfIpMGUYIVGdAOevILQsU1EEiAI2T0bNXaX5oNq5glqn8naPOeNPoiD0vf8qMqUnhE3QahdhPFwpR+RmYlmPqG9X73u1NYWNlJwKQiVZ7iMs8s8YSFBSBAEET/SXBDex0DTFouGh23cdNtfcHdxtaUMawr/oNs3bhahgXZU+OT5UnzwPInXLzAbXRsKQrNGPkJiBGHiVxlHcGATEbt02OWXgE6osKLNVoivxMHuW5F7+TirvXbynLwwxrrK1Z48A0E429+Ax6T/6/MwQrQg1JwJrPEzE3GlmW+ot4MTW1vYSMGlIFSe4TLOrvJECwlCgiCI+JHmgjC6cdYyicsN8opLtlGcRvD8UawX53wZN0Zc6ApOH9ygrBrOeLQWF+V94AwaQe5ONyrknic+LIwg1DXqboLhMKM1ljYRsUuHXX4JzEcQsu9knxMZyuQm/oVjGxihZSSkXO1DKKThawy3v6DaRJlzJ8Aec6c+T7O9zENbcHLgfuR2BmtbJ1IQuoyzqzxhYecqkiAkCIKYLyQILQUG20u0ChXdt8BxkxjuqUWRPCzneQGnhx/w947zzyqEN+d51H94DXfDnG61pdzY8bDb1gjDZNdH0d+4TW28+bA0BKELm4jEQxDqbBUXQchfv/QNAvVbNHk0f0G4DNvf+hOqV8s9ZxnIr7sEVd5pF2hEVpfrtoVZ14jLDwSh587WpjZSsPcp42e4iTNPzIKQzR8ShARBEPOFBKGNwODGP1Ub7Gwfnt2cy4iCLGxq+DzSgGs2HBb2bXsa23050t98w1jUiiFllec0hlp3Ss/h781dpTasUlgYQZhgXNlEYAEFobJC2Fx8qMO/mcjzrYvKo2hBy8MIQmXeoQb2fbqQU4FzQd352Pc/R6PcK5mxAzV/O4rtyvByDna2D0E0oUtbJ04Q8jiNs4DLPFEhQUgQBBFP0lwQsit7zRqVWYSGuqLPhxVWcZa2Y2hGHoYTzpE9j9pC9egwJXi24NilcWYOF3+3fviRf97PX3gRJdKwsV4Qzg40wSffmyqC0KVN7NPhJL9YIccHZZWr8A92Hpss5th5ibp3hr+F/8iTzAcAn+clFfi1T96fz1oQGveimgnCXOzvGDLoUeRtOPoPnCzL1/ZO8sFb+GdcVVY1ubO1qY0U7H3K/BlO48zjNk8USBASBEHEkzQXhHzTNco3ottWw+spQmO/7tQJBi70NT5uPoJdvhx4c4txpKUPo+GoVhTc1HcInD2BV0sKsNyTi6Ly4/jg6h3jhn4sgNM1ZVifvQLrD/4nrk4E4RcP98+AT38OMS9OLjS+xN+bhTWHP4GwOYfKHXxWtwe/2rkZeTkv4rS4jU3y4Nwm9ulwlF9T1/GBaNdHsbXpC2YIdhqjfe/hCP/7zHXHEBDn1HH87WdQUZCDjJyX0Tmse2f4FgJtR7A9dxWeqjqDgdBNRijJq2JVNCLJsSBcieJjnzHnFxvATeBG7ynUlxchL2M1th96DxdHDezj1NamNpJx4FN2z3AU5xjyRIQEIUEQRDxJe0GYdITHcSPQh8sGjT2RDFj3nFkP7QuwglBYrMKLtbBG+hOOcLLinCAIgnAKCUKCcIULQbiiDI3/9Xe0Nb2J+roTaPv4a4Q49jg5s+FQwhBuCndvjWJ0ZBCXAx+jpUy2I3PyCUEQBBETJAgJwhQO4dA47k6xK1+sBeHcUCueVo6g04d8VPd+bjs3jzDC+tQg4xXdBEEQhFNIEBKEGdI5u17fKzg9cDfSA6VZBCEfO8gSwmBrGR7RCRYxeDaipu/fJAhjRLOwShdIEBIEQcwPEoQEYcbcl2grkvaL9BRg/1vvob1hL/JkIcLup8ciLACq34k1vmIcPHwcLWc+xGdXb2IsJEgW+9W7hAncLVz8Wy2qXixEnicTeZufw67d5aj+49s403+HhowJgiDmAQlCgjBlFhOXjmOT4RDwMmxtHoBu10AHkCAkCIIgkg8ShARhyTSCF46jOEc6mUYK3g3HEZiIZXUwLSohCIIgkg8ShARhyxymRnrx10PFlnsAOoNDePwKzjVWYvvqUoM5iARBEASx8JAgJAiCIAiCSHNIEBIEQRAEQaQ5qSEIJ/6BmrXZWFNyFG2934A9CpUgCIIgCIKYHwssCDmEb3+JzwMBBITQ58e59mY01h1FVdkeVDR+iqDB+cAY7cAuZUK/fAA+QRAEQRAEEQ8WWBCyKyyNQg52tg+BPRdChAQhQRAEQRBEwlhgQcjuwWYSSjowKt2tQIKQIAiCIAgiYSysIAwHUJ/NiD8leLDc9wxKy2vxfmAs+sQBEoQEQRAEQRAJYxEFYRaKTv6vswUirCBcVoOL07SqhCAIgiAIIl4soiDMxq6OEekfNrCCMLsOAeogJAiCIAiCiBuLKAjXorp3XPqHDSQICYIgCIIgEsYiCkIX57iSICQIgiAIgkgYCysI7/lRleleEIYDdVguC8ItrbhhMIWQC30Nf9NBrM/dgF1VJ3C2/3tE60YO4eB51Bau4J+Vgyd2lKOmuQcD4zPS/wmCIAiCINKPhRWEmtXCOXi28o84VleL6vIXsKukBLt2/xYnLnwbJeQ0gjBqWxpB5H2E6oIs6blS8ORj/6lrmJLuEuGC6KlYq72PD96CP6JvfFa6iSAIgiAIIr1YREFoEvKbMKDTZpaCkPsGnaVCj1/k/17f03g2NyPyd1Y1eifV7sS5oVY87ZGes6Icze9VYo34u0xsaroC6ickCIIgCCIdST5BaDBH0EoQzg0245fy/1a8gnPBL5nNr9k9C6cw2LxNui4JwOk+1CyTfmsyFE0QBEEQBLHUSQ5B6MnFUzt3Y1/lURz7Sy+CurPrzAXhLMa7f4tM8X8Z+EXDF3igOQ2FEYRz19CyMVO6vg0tg1MAdxOndyyLXKPFKgRBEARBpCmLKAiLcKL/XvSpJAawgtBb1oUx6Tr/H/6RZdLzlqG4/Sb/PPa8ZFUQcsEOlMrDxdLm1uHQv3GyUJ57SCegEARBEASRniyiIHQuwFhBuLwuwCw6mcM9/2t4WPqft/Ad9Id+wuCpvcjzeLD8uVO4IfY2cpjsrcbPpPvEHslnfGqvoxhIEBIEQRAEkZ6kuCDkpd74eby6wiM904NHdrwJ//CkrudxBiPtpdI9JiHnd/DTSmOCIAiCINKQlBOE0dvOzGIi8Da2ZsuikA85pTjRF2SEYwiBOp/6/+yN2HfkbbR1dKM3MIAboz86O1OZIAiCIAhiCbIEBKHALEID7ajwMXsRep7E6xduST2FrCDMRZX/tnhVhLuLqy1lWFP4B/iD09JFgiAIgiCI9GERBWEpTo88QDh0GyOD/bjo78Lp1r/j46GJqIUm9oIwAhe6gtMHN8Ar3/toLS6K+xBO4nLDJum97Akp0wieP4r14mKTbOzqGJGuEwRBEARBpA+LKAhNwopDUXP5zAXhOAJ1hfDmPI/6D6/hbpgDN9SKrcrz5F5IdnuaVajovgWOm8RwTy2K5KFmzws4Pfwg8liCIAiCIIg0YmEF4VgX9slbv5iGtajuHZd+EMFUEHJDOF0s7znowXLf09juy5H+fgjeolYMSXsacuOfonq1dIJJtg/Pbs5VexIfysKmhs9xP3IrQRAEQRBEWrGwglB3zJxxWIsqv7rToMDsQBN88v81PYTCOcbnUVto8EzPFhy7NM4MP88iNNQVfeaxsDK5tB1DM7SqhCAIgiCI9GRhBaEg4Eb78NdDxZF9An3PoLT8CBqa23HO34fLgyP4IWSw0CT8LS40voT12VlYc/gTaPsP+adOfYfA2RN4taQAyz25KCo/jg+u3tFsTyPDhb7Gx81HsMuXA29uMY609GE0TGKQIAiCIIj0ZYEFIUEQBEEQBJFskCAkCIIgCIJIc0gQEgRBEARBpDkkCAmCIAiCINIcEoQEQRAEQRBpDglCgiAIgiCINIcEIUEQBEEQRJpDgpAgCIIgCCLNIUFIEARBEASR5pAgJAiCIAiCSHNIEBKpy8Q/ULM2G2tKjqKt9xtM0QmES4uZm+ipeR55Gfl4+YObmJMuE0kK9y0+rHgc3uwteK3ra8xIl4l4w2E6UI/HcnegqvG/0T82LV1fbJI1XokgkWldPDuSICRSl9EO7HroIWSIoQydo0anVy8Ec5i6ey/NBSmHcOgHjN4OGZ4h7p5JDDY/B6+Yt+vwqv97/g2EShL6XDiA+mypPJZ0YFS6TMSbMF/1lUn13kNYXheIU5mbL8kar0SQyLTaPTveda0KCUIidUkSQciNdWF/RibW7D2FwbRUhVMYbN2N5UI+eDajtu/2/MXbZB9qHvWIeZtZ2oEgqUENSelzrCDc0Y4RyrMEQYJw8VksQZiAupaBBGEyMPMVOis24ZHV5Wi/HpIuumC+v09VkkIQzuGe/zU8LMbBh/rAItp/0fxgFne6X5FswId1jbj8YD7VVBhjXeXIFJ+3ibfpPem6E2Zwd9CPlkPFyPPwgmn3W+gZmkiq3kVu/J84tmUjth9qwccxxS1BPjdf/2EFYXYdAktXDViT8HKYooJwSbVTiyUI413XaiFBmATMDjTBJ2VwZnk3xqXrTpnv71OWpBCE9zHQtEWKQylOjyzezKlF9YN7flRlynmxGY3986jwuSGcLs6OpMNN72A4iL6mfVjjkeMhhZznUd/9FULJoAq5IHoq1ipxi60hSYzPzdt/SBCKJL4cpqYgXFrt1GIJQp541rU6SBAmAeFAXaQLWAhRFekMgt1HUeTbiO1lb6BzMDrzrX+/hGEF4bIaXJxejBY/iHNlKyJxWNWAy7PSZVfY57ETFtcPbqGnfGXk3Q9l4pfN12JcBMJhZuAkNonP8aGm70fpujVc6DL+unuV9H6DkIDhFfeEMdZdhZ8z8YqtIYmHz0Vj7z82fkqCUCTx5TA1BeHSaqcWURDGra6NhgRhEhCZDyQVlI3NGNTkbgiBOp+U+R481tAPff1v/fslDCsIF6uCmexFdVYkDrF/9drnsRMW1w/CCHbslRaBzMcWP+LiGxFbeLe0YHDGTsJxCAfPo7ZQEkhyyN6CqqY2tFRuVK55i9sxvIiKkBs/j1dXROZFyiGmhiQuPheNvf/Y+CkJQpHEl8PUFIRLq51aTEEYr7o2mjQXhBxmhrrw+8patHQPYDy8WK3FNEb7TqGx/l2cu35P14vBVsJmjmf1+yVMEgjCucFm/FKMw3y+1JzksRMW1w/YIaGM/CYMxKJqJy6gWhRNj2J/13e2aeAm/oVjG7IU2wnBW1CNc+LcvCkMNm9T/5f5Gvz3FqsVusfn8SZNPIUQS17Hxee4IHr/8hec9v8vRqfkJ9j5j42fkiCUSHQ5TE1BuLTaqcUUhHGqaw1Ic0E4jRutz0uGz0d17x3pejIRL7GwBFl0QTiL8e7fSosf1vL+E+t32hLJY3ZuS0zii1lMsvYYAvdtmozwEDr35ip2E3qtHtndgv5xaU4dMxdRDJ4DODcWp5rTLbPX0b5nJyrerMYuZf5PLHkdH59TRSVvs8rzDnsYXAjCdBqpWHBSVRAuJRZXEM6/rjUmzQUhW8F5sPzxx5GX48P2stfQ2N6LGyGjxmMWoatt2L96JZ4oeRUnzgYQVL6wo+FCX8PfdBDrczdgV9UJnO3/PipzuZEO7MnOQl7hy6jtuKqb/G4vFqx/L+AmzrMISz2l3Pi/cHL3OnizfSg+eDzpvuo0c1K2tOJGVOTY4cQcPLGjHDXNPRiQBYOGWNI9icsNcq/P82gbMt5A1N4H3AhCDlPXT/F5mYXlBS/h7b5bStyc+IGrNHJ3MXDmd3gqJx+lDZ8iaNeDPnsFJ/MzpHTEsMhHEXDLsLV5ALZLJZitaYTgLXwH/UqZZeciSiGOX9Ixw4omPrhvSCx8buYrdOzLR2ZuMarZjaE5Pt9n2bzTDjnJcbD3HxeCMG77EJr5u4uyPXUFrbvX8r6+A42Bcf53n6Jxtw9rCg/ihP8mpjj+WaN9+Ku4Mp33o9xClB1+DxdHDcozXyauth5A/to9aBR/K11niHs5jMJOMLip92TM6xXnWMfLzi5O2koBLvg/+M3adSg6UIvWnqv4wapecpBfKm5skIg8kHEgCOdb15pAgpCp4PTBW3AU/qCuUrh/CfVr5YyQ7lt9AG1X7+qcR3CIj1BdoB3OyvDkY/+pa5iS7hKwnmxrLxZsJ+s6jvMY/JXCCsgsbG4+j4+q1ml+k7HiEPzji92iqmjSbdQA6VZ0ysFb8Ef0adIRa7qZyf1Z1eid1FcfTn3ALo/5imrwLKrLD+Fkbz/8h5k0MT0x1n7gNo2zGO89ijXKPVlYf+QjG1E4gs4SuUduG1oGWS+3gxFwGfvQGXRScU5huKMcj/C/iSqr3Pfwa9KYgV80fIEH0r8XjXkLQgufY3vMlcUmP+Fq0zPwahbVjKNX8aGVONh9S7xqW4/Y+el4Nw7Kc8T48jgsNoiP8o3rPhzrsP5w1uLA3x2XbZ6xLuwTV55nY9cpv65XeS0q/ut/0Fycw1wTggc/P3wBE9IjIujLRCbytlXjzIC2Ho1vOZThP+qH/olzXR8jMPg1Ak07lN9E5YNj2zirV6xxHi9zuzhvK9k5xpHgwfLNr+H9wC2DcuQkv9zYIBF5IOPi2SLzqWvNIUHICkLPBhxsPof/2/yStBKQrxQqPsSY4j3s/l+6kFOOzmEmU7hv0FkqVdx88PqexrO5kijTVeSGBYULYfhiD862H8c++XdKyMR/NF3hXSiCdQXkIs4aJzMKuajy35buXXw06TYQhHNDrXha3oJkRTma36uUKodMbOLtp0qOGNM924/GVVIPlVHvk50P/DThMI+1X4yawPiStR+4TOPcl2grWhZ9n2c1tle+i179h5LIPb6yzpfudbs/njzHzqghtiD8LfxvvoMeTXx4cXm9BVvZ7Wc8O017cBeU+QpCK59jFpso+T/NfwyujNyf80YfRAvMXUPLxkwpDmpjYuo/TusiVpA+eQBVO7Qiy1v4Z1x1tIm2vb87L9s8is158ZC7Sk2jPng2ofLoPlVA6AQBN/FP1Oo+rMWwuhYXQ+qNcS2HIrOYuHQcm1h/ZoLeh5zbxlm9Yo67eJn7l/O2UrMwhQ0Zv0WPTmg5yy+nNkhUHgi4e3aE+dS15qS3INTMMVqG4vabkS+HB1+gcZ3kSBpHu81/3bFfl2zgG7Kq8xiX/Eedo8OHFa/gXPBLpiJgu3h1DikLG02XcHRQncTk9wrO4xxdWfH/P/g+PnyrSPqb/8LuGJHutWIOocFP0NnR4T74B3mZ7gxrQcguKJAK4XQfapZJ92uGmGNMt65HJEqQ2vnAt1/ElMfeJ0tRJn9NK5WWnR+4S6Mm7hkvoi1wFlWy2DD1A/YDy2UlpQz/ut2I2oCo3kG9ny8iGkGYAZ8sppxi5XPss6UGl+Mbpq2yHeT72Wco2zVZ+I/TuogVhIbB6ZxHO3+/76Js8+hEuGD3NVV/h/9Pai+MEB4+2I07QbN5yTMIduyT5m5mIL/Gjy/+jzz/nE1XfMuhyP3P0ahbOMUGrWBwU+85qVcscBUvc7u4aSvVDev1YRMa+yel+wRiyy9TGyQsD3hcPVtmHnWtBWksCHnR0lerfg1qCiJbaBljM1/bQsgsbsNXNzuwR65cPXvRGRSyjp34LQ9Vsc90IAgNVyXyX7i+Z7CrZB9+3/2NtLrQpgJyHGcBXWXleQ4t1+8xzzcTAnp0cXIToipQcywFoVEvCHcTp3dIvV6ayj62dHMj7SiWfqP0vig48YE7MeXx8rp/Ylis7PjGROlNs/EDV2lkKzQPVvFpm9Q0qvmo6TMSbbFWUkwv9oaTGLDdasYKDvf7T2i/tsW0so3FIqKxo9PypGLpc6x/i/71QDs6IPm88QbBVv7jsC6KEoSC8GpD+yFZnGdha+tXzHCdGTb+7qps8+gFoTgl4b42vXLPnNlCNXbaTdTv2XyMZzkU4OsR/yF178rVr8M/dosZ8tcJBle2cVKvmOEyXqZ2cdFWct/h3N5HpevZKG79Fy6Y9ZLFmF/GNkhkHri1owwJwjjDYerqn1GkNByMk2i+iNUvD83XtlyBcF+hbYus7uXuftbJ5J5HdjNJJ4KQJxzCD8OfoL5Adi6jjLf4PY/zOAtoK6vIvm3s8502YLo4uQlRFag5rCD0lnVhTLouwPFf+qVy3kq9IOHQv3GyUE43mwexpZt9f3ShZX9v4QOu81h6VjiIi++fYYZudTa3aYis08jGU/qa1jSqrO1YYqyklIo+G8+3DzkQDBbMDKBliyyKhMBX7MnSOygwT0Fo7XNsvgkLTiaYXRT4II52PMBY1wFpQQkr0Gz8x4mf6gWh2BCPMz5h1rjpsfZ3d2WbRycIM/fydYXG9/kgjwQZCkIOk321WCVez0B+3SXc18SRzUcbO7qtazQiaAX2dHzDx4YtZ1qburONtZ0tcRkvc7sYxMGkrRTSpnZkvIDTw8IHtVF9E2t+mdggkXng2o4yMda1NqT5HEJ2crXqJJoMVTKPd7LeavxMyiR1qTf7DLmC1c7bi6x+/AmDp/Yiz8N/WT93CjfkKQwah+SDZQViJxb0v3cTZx52ftJD8h5nZgVp8TFvHHXp9uTiqWd8am+iGJhCGWO61ffLFRmLGx9wk8dmeWDjR27SyA5vyA0l26gazNeJwFZS6tw0O5R5QRnlODcWXfU5ZwrD7WVSb4McV4cLVLgfcePzAAKBWMM1jDqZH6cscBCC+/Jk7XOs/YVe3CFNT0PGQ1twcuBb5toG3tfkfiAb/xGx8VOdIHy40o97jho3PVb+7rJsC2gEYQ5KO4b5p+jSK88XNBSEs6qIXlGFHtFH2d+7ENZu6xp2eF8pH6xN2b0o3drGys42uIqXgJldnNaT2pXxkfmzzBCyZo5wrPllYoNE5oFrO8qw9ziva+2gRSWKUWVnYLuw+aBM3NY59I52jIgexT5DrfC0pxJ48MiON+EfnpSckMWsoMjMRxC6i7O24pTnWTgoMIuEuSCcwUh7qRRnk5DzO3U1X0zpZv3E2C7OfWABBKGbNLKNojzfhf29ZsiDhf3Q0DXKpkxjqHWnWHlHBESs8E38cAf258j2FoLD7WsENPaJJThMr0Y0uS1Pdj7H+j3f6P2lFW/Jc6HFkINd7/4NNfJQmmb/Mhv/EXEjCOWRB5O6xhIrf3dZtgU0eSuI4vvCRU16Fd8zFIQ84Xu40XsG7/d+K8WfjQcbxziWQ96npwP1yJWe5d0tn+vN5gN7v1vbWNnZCrfxEjC3i7N6kl1EweQXny8jA//G54O3pXyRiCm/jGyQyDyIxY4ysdS19pAgjBKE2kUYaiNlVrFp71evz2Ii8Da2ZjMNVE4pTvQFtY6rcUg+6Cec2lXClr93GWdNZSV/dbDzycycc3FgBaG24tWmOyN7I/YdeRttHd3oDQzgxuiP2v2oYkq3k8rUqQ+4yWOzd9n4kYs0snZV5qmxG6GaCkI2HQ4rKWUBl/Nziw2ZuooW/arWDSfQb7e5tYzGPrGEhRCEdn5gsaOAUdD4iI3/iNj4qSZt8h6JbFl0eiyjVTpdlm0BTd7K+aRNr1IHmglCAW4So5d70PrGyyjKlYfOhcDGMX7lUCsumJ4izZQm9n63trHzJzPcxkvAyi5O6knW99gePh5uGqGfDMqe6/wyskEi8yAWO8rEUNc6gAShknkRw2uXtbPz67QZrVQglpk3i9BAOyp88twBPniexOsX2A0vdQUlqrF1Ixb0v3cZZ8OKk32GumeZNYu9ypiNM5uHPMJGpS1lWFP4B3XfupjS7bQydeIDdnl8HwNNW6T/m73Lxo8cp5HthZKHJXWr+8wEITs31eweDXOY6H09MqF6XSMuP1At4gpuHIH6LepwkhA8W3Ds0jhj4yQhoYKQz73+BjymPD8SHi5vwX8dflxzTZhbpV3hbFcPCbgQhMrqZdbHnKbXyt9dlm0BW0HIvINNAytahO2Nap7RDf3JgY1jvMqhgFFa9Ruus+92axsn9YoRbuMlYOdfdvUk63usjaS9SHOex5vsRtKO88vOBonMg1jsKOG6rnUGCUIlQwTDf43h9hfUhkUzpMIec6eKK82SeWU4QgsXuoLTBzeoz320FheVJf12BWU+gtBlnG0rK6P3G6GLk5tgOFRljLkgZE9zYOM8jeD5o1gvzuFiClpM6WbTaFJoGax9wC6P9X5q9C4bP3KcRvY5kSGtqPOCzSog9h1ONraNy2ISPk+7XlFX6YkhA2uOfJo8C0lYEiwItXMUhSD0pvAfWey8JjHoGis7/xFxIQiV3zvxXT1Wv3FZtgUMfd/ElmwalDplhtnCxIPlmyvQ2HoKJ8tlkc2+L17lUIC9LvUmRm14zL7brW1iyRsBt/EScOJfVvWkse9xYx/iN9Jws7pi3k1+2dkgkXkQix0l3Na1DiFBqGTIMmx/60+oXi33nMmrk2S0k0Ujq1p12zEovRzCyrpCePmvlvoPr+FumNOt9pUrgggaYRNVUOzEgtXv3cSZx1VlZYWu8LsJcRGEbC/XKlTwX5McN4nhnloUycMS4io16dyKmNLNplE3hCHixgfiIQh19oi5IWLTxV+79E1075tJZc6KEbVyNocbbsfz4v3y0FkMaCbpyyEbRZV1aKirQ31dPRqbT6HzbA8uDodiFJ1xJG6C0MjneKLsIQm/KKFYitMj2tmV1vWQwHwFoV6EmmHl7y7LtoCh77O2VN/B2kCdLiSfDpOJ9TWfYkw8rYcd7tPGMT7lUIDtvRLu/cng44d9t1vbOKtXonEbrwjGdnFaTxoILW4U/lfl+MsrdAXc5JedDRKZB7HZUcRlXesUEoSKM+hCTgXO6VcnshtIZuxAzd+OYrsyvJyDne1DkTkAmg2v+S8U39PY7lPnN3mLWjHEKHrring+gpDHaZwF2MpKWUlqVlktPpp064QkN/6pKu6zfXh2cy4jarKwqeFzVezHlG6t2FaG42Vc+cACC0KbNKrDjpnI861Tn6kEuZLWovY8O9lwmZk3NZ8vXM30B5uQ8zI6h5mhxMVgXoLQxudE2C07hCBtm6W3k3K0nYp1PSRg46eG80xjqT+s/d1V2RaIURCq9p3g47NBvOb1leGNulpUHygSzz3W/14gXuVQmFKhzgldiWdfLMYajagXgvbd7mzjrF6Jxn28BAzt4rieZLeJy8L6ynfQfPhp9XmaI//c5JedDRKZB7HZUcBdXescEoSKM7AhF/s7hgwqWw7h0X/gZFm+tseED9pjmfj7lIOttfcZzW3SzPtRVgLL2AtC6987jTOPptGQK072K8Zphb4wsBvsRvcsCmdDdkWfj8lXOo+UtmOI3fw4xnSzFZx+H0R3PmCXx+a9ESyWfuAmjcL8myNPMv7C26ykAr/2yROzjQShtnKzn2sqf8XP94xh/dmmVsFsC4cF5MH/4uRG2SeNto6xxtrnBHTzPT0HcG5MaC60QtGoV8G6HhGw8VPWxxTBaSZ2rLDzdxdlW4DdKFixBzN/VVnty9qXzRsOM0Pt2KNZwc4GbRzjVg4Fpq6jgx1C5YO3oAoNh56U/tbbx41tnNUrhriOl5ld3NSTMxjvP6WdZygGfXvtJr8c2CCReRCDHd3Xtc4hQRglCFei+NhnzPnFBnATuNF7CvXl/FdHxmpsP/QeLo5G9zxwU98hcPYEXi0pwHJPLorKj+ODq3eihSbvFB/UlGF99qPY2vSF9PUgcwef1e3Br3ZuRl7OizhtdB6r5e8lHMV5GqN97+HIttXIXHcMAXHuBv9ldv0MKgr4r7Zk6GFh4YXLhcaX+HRnYc3hTwy7zbnQ1/i4+Qh28V+d3txiHGnpw6g4hMASW7o1QxtGZxnzOPMB+zzmRvlKk4+f11OExn6TzVks/cBlGsO3EGg7gu25q/BU1RkMhG4yYsBoiJddKelkCJgXLr112FrwGj50sk+gKdrK35u7Gb8q2anpZRC+0reXvICDh9/CfwbG+F8sJnwD+ON1+JsP8bZdh5e6RlzFx4nPiXnX/gf8ujAXmUoPizBp/++oFv1wM2r7bke/17YesfNT4R1n8OrmR/FI5XmpPErvFfxu9WH4xX3W7HHi787KtgAfh+vncGzvJuTp9oANjX6Jy4ErGAlFDMn9+AXeP1SMPE8+LxLviNciqOnwCuX4wOs42XEWrYf5ezMKUH2BkebxLIcC4Tu4+kE9SlevxPq97+BCcAoP+hvxC8kPjHqKndrGUb1ihtt4WdjFcVvJE0mbUH6ysLxgH451XUMoKmnO88uRDRKYB+6f7baudQ4JQkUQCl+JvAOGjWpYgjCAHSJTeh6WKna9mEwPlJNzUInYSCufI0zhJhEMnMWJqnK83v3tIn/kMCRrvBJBItNq+ezE1bVpLgjZYRSnwxkEIaE5s1Iddlqa2A0XqosZ1A1WibiTVj5HEEQUCaxr01wQ2s/PIwhz2N3iPcitu4Towd5UhEM4NI67U+xsO+uywo20o1j8X3wnORN6lqrPEQThhETWtSQISRASMcNO7uXDfDZXTiakL1Cv7xWcHrgbGa7QTIaXT6GQYVe/Ot1ahIiNJepzBEE4ILF1LQlCEoTEfJi4gGrlHM5NvA+5nJidjMx9ibaiZZE0eQqw/6330N6wF3liGvkQJUKYw+SjxCIRd5aizxEE4YDE1rUkCEkQEvMijLELNVjvyURe4W/Q0j+P83iThllMXDqOTVF7YglhGbY2D0C/Llg4YeBMVZFuFSeRGJaizxEE4YRE1rW0qIQWlRCEAdMIXjiOYt1eXt4NxxGYoBmCBEEQS400F4QcwuNXcK6xEttXl9JQF0FomMPUSC/+KuzLZrHfJkEQBJH6pLkgJAiCIAiCIEgQEgRBEARBpDkkCFOFiX+gZm021pQcRVvvN2CPICYIgiAIgpgPJAhThdEO7FIm98uHohPJRxih20HcGPg3Apd60XP2v9HT+wUGvx0nER83eBuP3cTAxY/Rc3GY7LqokL8TMlQuUx0ShKkCCcKUYHagCT4ln9iwDq/6v49s8ky4h7uDgf/5GxoOv4SiXPnoNiHkYn/HEN8UEYsB+XuaQ+VySUGCMFUgQeicma/QWbEJj6wuR/v1hd1KKByow3Iln7Th4Uo/kmYL4XjYaCHtrPF/XfDswMmrabxlFPm7M+Zrp0W0czLAjf8Tx7ZsxPZDLfh4aCIi9qlcLilIEKYKJAgdw/ZaZJZ3YyGP/5/tb8BjSj7l4IltJdhXeRT1dW/i5NkruJskXSbxsNGC2pm7hd7aZ0zFx/K6QNr2RpC/O2O+dlpMOy86XBA9FfIZ2kx5o3K5pCBBmCqwgnBZDS5OszXtDILdR1Hk47/eyt5A52CqfpXFJx2aXovsOgQWskZi82mh3+0CexvZ58XC21mYr3YLo7d+xBQ3jRutz0fezYfUbXjm7/Pk786wtlMy+nuyEMZYdxV+LqedD9rythTLZXpCgjBVsKx4QwjU+aRC6MFjDf1IzbMk4pMObqwL+zMkW21sxuBCHqXG5tOOdowk6SQqexvZ58Wi2plvZkY7yqT4pXLDM3+fJ393hrWdkt3fFw9u/DxeVc7OjgTz8rZUymV6QoIwVXAsCJdK4zifdExjtO8UGuvfxbnr9xZ2YjubTyUdGJUuq3CYGerC7ytr0dI9gPHwYrWgdjZykheLaGdNw5OFra1fLfD740U8fD6Z/V0gFXw+2f19sbjH22WTYhdr+wgslXKZnpAgTBVIEKYGtg0kO6SSj+reO9L1ZCPZ82IW492/RaYYv2zs6hiRrqcaKe7zjgRhKvj8UqlD48zsdbTv2YmKN6uxK1PKZ0v7LJVymZ6QIFTgMHX9FPavzsLygpfwdt8t5suGQzh4HrWFK3gnz8ETO8pR09yDgfEZ6f9auNDX8DcdxPrcDdhVdQJn+7+PLjzhEH4Y/QEh5mt59nozNpucGauZv7KlFTc0n13JX5k5somrdJjnFzfSgT3ZWcgrfBm1HVcR0thqFmHJ5tz4v3By9zp4s30oPnjc/Kufu4uBM7/DUzn5KG34FEGrHg7bBpJNowfLH38ceTk+bC97DY3tvbgRMhownEXoahuf1pV4ouRVnDgbQHDKfLzKia2tbSRgnxd2dnYe5xjyhEctE/FoeJiejTjND1son7fPywT6vCNBmAo+P19/F0i8zzsj/r7MFzbUZ0v5bGIfmfiWS2IhSXNByFewg2dRXX4IJ3v74T+srqLSzBHRrbCSg7fgj+gbZyszQTh+hOqCLO29nnzsP3UNU9JdQmWgfEVl70BjILJeTS1I0XNYNIIwquJ106gsNE5tImCXDmf5pbGVpkIcg79S+E0WNjefx0dV69TfC2HFIfg1+SnA51XvUaxR7svC+iMfOWogvWVd/Bv1aNOoD96Co/AHtR8DuH8J9WsztPetPoC2q3d1DYdzW5vbSMbepyyf4TjOseRJBPX9ySYIF9bnrfMywT5v6+8CqeDz8/R3gQXweWeQICRiI80FITvfQReyqtE7GSnGc0OteNojXV9Rjub3KqXKMhObmq5A6SfkvkFnqdCLGLnX63saz+ZKFQTzPG3loxYatsLRFzhNZSQLQi6E4Ys9ONt+HPvk9yghE//Bx20+1UpccGITx+lwll/mFfcIOkuyo3+rhFxU+W9L90rMfYm2omXR93pWY3vlu+jVN2RMA2lcaeoaR88GHGw+h//b/JK0is+Dn1d8iDGlBZnDPf9reFi+nw055egcZpo8x/5nYSMXPmVuZxdxjiVPJNT3x2OuUhwb0QX2efN8EEiwz9v6u0AS+3xc/F1gYXzeGckiCGkOYapBgpCpbL1PlqJM/tJUKpMpDDZvk+6RBOB0H2qWRX7DDt/ODTbjl9KzMla8gnPBL5mCz+4dGMS5MrkSm4cgnL2Ck/n6SkwNVoU2whxCg5+gs6PDffAP8tW8PY5s4jgdTvJL14BqelP1FTHfEB18Hx++VST9Hf1Fq4l/xotoC5xFVZb8e4MvYLsGkhvC6WI5DstQ3H4zUmE++AKN6yQbZPwWPUoPwW34K3Ol+/WBj3/VeYy79j8LG8WYF1o7O49zLHkiY1Ve3MOkZ56N6ML6/IxFPggk2OedCMJk9vm4+LvAwvi8M+LnywoaQZgBHyOU9cS3XBILCQlCppAvr/snhjv2IVMooIcvYEK4Ze4aWjbKR/JsQ8sg/6XH3cTpHdIXtFLg2Mm0GfhFwxd4oCn4bOXEXl+BfV1B/tosxroOwCteiy5IhoLQcAWYB8t9z2BXyT78vvsbXvJZoavk3ISoCtEIpzZxmg4H+aVPkyaeuorY8xxart9j7tdXxOzHgAer3ujDpKZizEdN3z3pXgnLBpIX4H21zFAc+z42bj7UByS5PX0J9SvVLR8yi9vw1c0O7JG3v/DsRWdQeIsb/7OyUWx5oXmG4zgLuM0TleQUhAvt81Z5KZBgn7cVhMnu83Hwd4EF8nlnxMuXGTQ+YB0/EoSpCwlCpRBKX67hIC6+f0YZFuGCHSiVh4ulDaHDoX/jZKE8Z0WudAyehVvoKV+pu49H81UqV4TaCsdKEGrm6giLU4Y/QX2BLFqZitUWXSXnJkQ1PEa4sImjdNjnV1SaNPHUVsTe4nYMc+z9+oqOjetaVPeO849nK0a2wYnA9lhEV4Ycpq7+GUWyP7Hv0/jEJjT2T4qXuaFWbJWepwwlcV+hbYvsf/LwkgtbW9qIx3VeaJ/hPM4CbvNEJTkFoYt8iIvPm+dDhMT6vLW/C6SAz8/T3wUWyuedwTyLBCHhAhKEloWQw2RvNX4mOXeGJxdPPeNTnD0S5EpHO4fEW/gO+kM/YfDUXuR5+C/O507hhtxdpylccuWjrXCsBGF0IWMrGKPKbLFwYRMRu3Q4qTS1dtRU3LP9aFwlf8Vn4pfN1/gYWjyTnRogD2mxeacZ5opgXxmOo1dZGKC+T/PhofiUzv8yX4P/nmAw9hnyPB03trawkYKbvGCf4SbOPG7zhEG1tbsNnedGA/j/oqZB/B0tlRsj78wsQf3f9f/ng6NpEgvt8zZ5mWCfd9b4p4LPx+rvAgvn83oS68sMY13YZyTqDYi1XBKLDwlCy0I4g5H2Uun/JiHnd8qKMO2O7h48suNN+IcnI5UAi0YQPo+2IeFLX/uupSEIXdhEJMGCUGN3qffD6pnMcJgyV5R9hsHXt30DabSgiB364kN+EwZEl9KlRTkJwnhFpHNbW9hIIdYG0l2cXecJg2pr83uMYPPIVTC0UzQL6/M2eZlgn7f3d4FU8Pn5CEJ3cXadJxYk2pcVWL+wiV+s5ZJYfEgQWhZCbYHOyN6IfUfeRltHN3oDA7gxKpzdKN0qMouJwNvYmi1XUHzIKcWJvmCkIpDRVAjyl7FJ5SGhKfiuK7PFxKFNRBIgCNk9GzV2l+aDauZMaZ/J2jznjT6Ig9L3/KiSN2iNmyDUTkh/uNKPyCwtM5/Q3q9ed2prCxspuGwglWe4jLPLPGGJteHRlCU3wXEjupA+b5OXCfZ5e38XSAWfj9XfBRbO5/Uk3pclSBCmBWkuCO9joGmLhZOzBZ2dA8LD3cXVljKsKfyDbg+tWYQG2lHhk+eO8MHzJF6/wGx0bSgIzSq8CJqCHzdBmPhVxhEc2ETELh12+SWgq7jZBszQ7mwer8TB7luRe/k4qz0Y8vykMMa6ytVeDQNBONvfgMek/+vzMEJ046g5I1XjZyYNjWbuld4OTmxtYSMFlw2k8gyXcXaVJ1ri2/Aw6TG0h1sWyudt8jLBPm/v7wKp4POx+rvAwvm8M+LtyzwkCNOCNBeE0RWVlklcbpBXoLGVxDSC549ivTinwtjpudAVnD64QVk1nPFoLS7Ke2IZVAjcnW5UWBwNlBhBqKvk3AS3X5g8ljYRsUuHXX4JWFTcthUx+072OZFhHW7iXzi2gWl0jCpbpuI0biD1afgaw+0vqDZR5h8JsEd+qc/TbLXx0BacHLgfuZ3B2tZWjZtMrA2kyzi7yhMWdt5WPBoeJj3xakR5Eu/zNnmZaJ+39XeBVPD5+QjChfJ5pyTAlx0LwniXS2IhIUFoWdmyX8yrUMF/tXHcJIZ7alEkD1F4XsDp4Qf8veP8swrhzXke9R9ew90wp1t5Jhd8HnbbGmHI4Poo+hu3qRUZH/SVa2oKQhc2EYmHINTZiq0QY24c+euXvkGgfosmjwwrW1eCcBm2v/UnVK+WexEykF93CWpTp52sHlldrtsmY10jLj8QGj13tja1kYK9Txk/w02ceWJuHNn8iUfDE69GdOF93jIvE+3zrgVhsvp8rP4usFA+75R4+TKDY0EY73JJLCQkCG0qW278U7Xyyvbh2c25TAWZhU0Nn0cqM83mqx4s9z2N7b4c6W++kihqxZCy4m0aQ607pefw9+auUisaKSyMIEwwrmwisICCUFktaV4Rq8NhmcjzrYvKo+jGnYepOJU5WBrY9+lCTgXOBXXnY9//HI1yD03GDtT87Si2K0NtOdjZPgTRhC5tbd04CsyjgXQaZwGXeaKSpIJwEXzeMi8T7fO2/i6QCj4/H0HIsyA+7xQShERspLkgZFf2mjnvLEJDXdFnZfIV0COl7RiakYckhDM1z6O2UD1GSQmeLTh2aZy/QyVqKIZ/3s9feBEl0rCxXhDODjTBJ9+bKoLQpU3s0+Ekv9hGjQ/Kij/hH+ycHrlhY+do6d4Z/hb+I08yHwB8npdU4Nc+eb8ya0Fo3Itq1jjmYn/HkCbPI/A2HP0HTpbla3tq+OAt/DOuKqua3Nna1EYK9j5l/gynceZxmycKSSoIXeZDPHzeMi8T7fO2/i6QCj4/H38XWAifd0oCBOGD/8XJjXJ7Jc8vNYIEYSqT5oKQL8ajfIWybTW8niI09utOnWDgQl/j4+Yj2MV/gXpzi3GkpQ+j4egiwU19h8DZE3i1pADLPbkoKj+OD67eMa70xgI4XVOG9dkrsP7gf+LqRBB+8aBzg6OB+Ir6QuNL/L1ZWHP4EwgbFajcwWd1e/CrnZuRl/MiTovb2CQPzm1inw5H+TV1HR+Idn0UW5u+iPTgikxjtO89HOF/n7nuGALi/CKOv/0MKgpykJHzMjqHde8M30Kg7Qi2567CU1VnMBC6yTQc8gpBFU2j4VgQrkTxsc+Ys1wN4CZwo/cU6suLkJexGtsPvYeLowb2cWprUxvJOPApu2c4inMMeSKSrIIwwoL6vGU+JNbn7f1dIBV8Pg7+LpBQn3dKAgSh0F79eB3+5kO8X6zDS10j/BUjSBCmMmkvCJOO8DhuBPpw2aDiI5IB654EzbCSrSAUJu7zDVdYI/0JR9itviXih7nP2/u7APl8+kDlMpUhQUgQrnAhCFeUofG//o62pjdRX3cCbR9/jRDHHq0136GhNIObwt1boxgdGcTlwMdoKZPtyJwCQSQAh4LQ0N+Fu8jnlzRULpcMJAgJwhQO4dA47k6xqwCsBeHcUCueVo540od8VPd+bvl7wgzrU4PMV7gS7nDn8/b+foe/y7rMEKkMlculBAlCgjBDOnPU63sFpwfuRr50NRPC5WMHWUIYbC3DI7qKUQyejajp+zc1jjGiWVilC9TwxAnXPm/n7yQIlzpULpcOJAgJwoy5L9FWJO0X6SnA/rfeQ3vDXuTJFR67txiLsACofifW+Ipx8PBxtJz5EJ9dvYmxkFA1UuMYM9wtXPxbLapeLESeJxN5m5/Drt3lqP7j2zjTf4eGpuJBLD5v6e8C5PNLGiqXSwYShARhyiwmLh3HJsMhsWXY2jwA3Q5qDqDGkUhmyOcJIl0hQUgQlkwjeOE4inOYw/P54N1wHIGJWFZK0gR7ItkhnyeIdIQEIUHYMoepkV789VCx5X5ozuAQHr+Cc42V2L661GAOIkEkA+TzBJFukCAkCIIgCIJIc0gQEgRBEARBpDkkCAmCIAiCINIcEoQEQRAEQRBpDglCgiAIgiCINIcEIUEQBEEQRJpDgpAgCIIgCCLNIUFIEARBEASR1gD/P2clB8SXuZ6gAAAAAElFTkSuQmCC" } }, "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "- Step 5:Remove duplication.\n", "- Here is the statement that we have developed:\n", "![ch03-lab-fig4.PNG](attachment:ch03-lab-fig4.PNG)" ] }, { "attachments": { "ch03-lab-fig5.PNG": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAADaCAYAAAB6gTwmAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAGf2SURBVHhe7b3/UxRX2v/9/CepmqJqiiriUmhqU1pEtGQzN/HLxieI+aIkukqSQk1cZLciyapky2DtgjFisrgb2M0Hcovujd5P8K5APk4SyS5uOdngrVQkCRpMBkMiUSYIMtDv53RPd8/pnv52hoEB5npVnR9oerrPua7rnPPuc06f/n9AEARBEARBpBQSWARBEARBECmGBBZBEARBEESKIYFFEARBEASRYmZAYEUxdG4/Vvh8WLy+Cn/tDrMjNkS/QbDmSRQEtuLl+jZcGIhAUv9ly8g/ULMyFyu2HkRL19cYc/0BQRAEQRDE7DIDAiuCUG0AWffdF0tb2zCo/sfIBMLtlXhAO09OvkdRfe4be0EmM9iGbfpvynF60PHsGWQKY7fvkMBjkjga+QGD30ec/UYQBEEQGUT6BNbdi6hbmRU/T0vLjuLSpHqOFXNEYElD7diVlY0VO06gL2NV1hj6mrdjsewL33oc6v7efQSSIAiCIDKANAksCaPdh7BMOScLhfv/jD9tXRI737cbZ4ccFNacEFhTuBN8BfcreQigLhRRj6eBiS9xunIdHlhegdars52PSdzqeEm1A0ur6nHpnqjEGsdg95+xc3kOFitTxf+NnqFx9X92SBi7egK7lmfDn1+CyubLuKv+R4wJ3O4LomlfKQp8TCxvfwOd/SMLXiRKw//E4Q1rsWlfEz7MgPISBEGkgzQJrDH0NT6pnlOImu5vuN+4iKY5IbDuordhg5qHMpy8MaEen30mexsQUO2RXdGBYfX4rHEniKpszR/rUd8jIvIkTPS34rk8n/r7WPIvr0Rbv71kkoY+xKtFObHzfY/i1fM3xUVCNIzuhp1Y4YvfV0l5z6Cu40tEFqrqkMLorFypl3dxbYimdgmCIGaAGRBYw+jaH2/ArQXWHVx4rVA950k09X2fnMBaVIML4+noCcM4W66OuLlNaToygXDHQZQE1mJT+Ws43Sc+AhUN1cam6OSUW4vQrPeWN9FZsVT1XTZ+2fg5ptT/uCJ9h2DVKuW3/uJjCA1H8G3bbmVEzF/aigEr10b7cXpHfux+XtbsWSBFLuGv25epebZIC3a6M4qhjir8nCsrCSyCIIiZYQYE1g2c3pob76wsBRZ/jiyoRnGt+ZnY3znV6Bp16Np4gZUWQcEY7UJ1TiwP0xs14kf7fHjoaA9EtVpsLZhqj7WN6POsblJFFOG2HfCrPhGxx1R/Mx5XRpAeRnXXDzFBw8qzUzkmC+8x5bw4EVxt3Ips5V7LUNZ0SXCkSUI0fA6HilVxrKXcDahqaEHT3rX6MVuBN4+Rhs/h5SXG0UISWARBEDPDHBFYUdb49+KDM2dwNuSwrYPMHBBYU32N+KWSB8ERmwSM06nJdXbyGqYTqK97G2ev3knLqAs/TZlV2IBeTyqRmybm125FQ6jLla+1BDvbw7FjCpMYuXgE6xTxlYPV1R9iSLCw0si/cHiNOrWoJn9RNc4q65D4aWuWsl9B8M6sq9UZ5A6LtXWGssuJBBZBEMTMkB6BNdmD+mXak7TgOqq0C6xJDHf8Vh1FWYnqrumsekqFwJoD8OuwvAoT6Uu0bIiJnZ/t78KoejgusHKxre2GelAeffkEh9R1V9mb/4arom9u8lOLSvLhge1N6BlW189J/ThZysWt28sW843Jq2h9bgsqX6/GNn3NHAksgiCImSI9AkvvROUkJrAMa442NONaQj/LTwPl4ZHNFahp7ESv1pEamEQ0GruANPwvHN++Cv7cAEr3HHEYDRrFpaPaSMAzaOm3fuNNinyFYMMerM5fg21Vx3Cm5zuLjkxEYGlvzuVgcdELeLM7trBbutGG53JzUFD8Ig61XbGYMkuijNJt9J76HR7LK0TZ0Y8RVn9vy+RlHC/Uttzw6E89BhahtPW6ng/pRitKlevILz/cUQ8OoetAUez6eRU4PWCeOvTAaDdqHoxPj/mL30JPRBNQEiZ6j2Od+j8leR6Jm2cY6h4JLIIgiJkiPQJrnHV2i7RGnomgJ7dg29atKG/udV2DZBBYVtc2vSWlJX/RH9E9zF99CMG98nk5WN94Dh+oi631tGQfgobzNbgF7pbrxWSB9wGqtbfctOQrxK4Tn8MoDdwEFhNVfWdQXbEPx7t6EORfHlDXWzkvck+mjJMY7jqIFfp5OVh94AMXkcX73GrtlAVTn6NpbTY7nx+p4ra/yPotOpW88QuzA3glOGgtCl0Zw0BbhbKxrb/oIIJhThhzi+1jKQu/OPoZ7qn/XlCQwCIIgpgVZllg3WQd/sP6gmhz8tLYuwms+MJplpZUoPGdvapYyMa6hsuIj2OZ8pmQ8lEV/F49l4Of3rQa5ZC+xumy+CJqf+BxPJWvju5ogkyKYOBCJ860HsFO7X96ysZ/sHzGLhvFYFu56f9qUq/lLLCSKOPUF2gpWZR4rm85Nu19G128MNHh3wr1ui/YCBOXa9j5WQho5ZW+xdkdDyrXyd7Rrqyxkobex2+UhdlM6NV8guHk1FUM+dNMr7+FTkMZJExcbcJGfrsG3xbbkcl5DwksgiCIWWHWBVb8lX4tZaNgfSk2BZZ4eovOWWDxC5VVQcWPlhmmFM3iw4ef73kX779Rov5tXAOkM9yBPdpbe1YCT18Az9KSl3A2/AV3H3X6zDCllpjinZ5RYPkfLUO5NjKmCKwJowBLyI94GQ35z3oeLaEzqFLfmLS1iWEkzqvAigsb/+YW9EcnMdL9BxQq11jHrnGHFT++bsq/5ghCI27RkQQJo1fMRlXnPAq5KUT6PsLptjbxFOxjVtNI1XU8YBBYnLglCIIgUsosC6xJDIdO4PDBcjyijxhMYw2WWVDo007y/9WpKuk6Tm5WR2QMIzymfPqeRtPVO5xgsRYT8TVC9yHvtW4Yxzn4BfDaNBN/H62sVm90+bA48AS2bd2J33d8rb6ZaBRYi2v/iYG2nez6TATsP48R8wiXm8ByLSMvUH1Yxso3auiQuXVRBpIRWAxpGKG6DfDLIvvRtSjQ3hBURqriU3pZvidxrOdHJsnk6dePUa+sIyuKrW0LfTuN70FKuNtzTH0zUU2KjfQl9y44jDC6JYOvUnUdDxj8aSeYCYIgiOkyrxe5+8vbMaQel5HCbSjTOkt1E9Jo5N84Xqyth+LvZcxnbN8jvqOz7nz4+ydOr/C/1xZv86N23P2jEfww8BHqijRBaCVMLK4XDePCu6fUqTpTx+wisNzLyOdVfUPSk6+SFFgycnma9mFTvvzZm1IcaOrGYJT5baANu5Qd3hehpOFSbO3a2CXmS/P0ZTL7YalM9KJpA389kdErGZP9RRIJLIIgiAXNvBZYRoEjYbSrGj/T7uvLx2NPBOKjXUri7mXYKkLbz8pJfMSI39/49lsM/huFTNAob6r9hL4TO1Dg82Hx0ydwzbCDAW8rN4FllR9Tx2y2tWgZ+elUbZE57yt94bkZXmB5XOTuBD81WPxnXFGGqEbR1/h0bP1e1hYc/+x7jIXbUSmvzxIaddIYw0BruTraqJVvJ06H0/fZo1lB38hVTiSwCIIgZooFJLAmcKO1LH5fq5T3u/hbc4Y8aPtZuQkafgrQunMy7pbtwwObX0dwYNQkxDRmWGCJlpHfY0xbr8Zfw3bfMf7zSGL+TISfGtyM41dUm+jbLPAvK2gjbqJrifgRMrVsTDBvbOzlXoJYoPA+JoFFEAQxY8xrgWW8tnHLg6zctdh54E20tHWgK9SLa4M/GtfqGPKgjbrwa5DcBI1d5zSJkdCb2JjLdd55ZTjWbbVDfYoFlnlfMMEy8rbV15fxm4jaCiy+HNMRWLzwycG6o58i9slnfnSS33uM87lVnNkxdgVNm/PU/MaSf80x9Ny1lsELChJYBEEQs8ICFVim7Qek27jSVI4VxX+I739kmQf+Gkuxp+Nm7FwdLwJLZhKR3lZUBri9sHyP4tXzsc1B47gJrLvobdig/t+DwDILIKEy8qNz2vRnFEPtFfFpNDuBxe3Kbi/CPCDdwNmdVm8NcnYwbI3xPYJ7Y+d7/gaivrBeLZOcfBtw+OKwyTdemIdvEZLAIgiCmBUWkMDid1jnxco4wucOYrWy7oTrUFzFRzIjSkakyGWc3LMm3pk/eAgXDBuTugksPj8zIbD4e/LXik0nJny7z0488fdJ+oPT/Iaia3Go+xYneDjf8j4fv4i6pbFpQ2/fhGSx0P6Seg8tZWHFgY+T3F/LZH+RZIjdVF3HAySwCIIgZoUFJLD4EZhlqOy4CUkaxUDnIZRo03W+Z3FyQN2fe9oCKwcbm780jXoMs98Xw5/3DOre/xy3oxKk/mZsVM7n76MxXYFlskfKBBY7fvHrxJEeO4HFLZz2PJJkIr52zepNPu7lAV3ATWGk69WYWPK6Mahh0b+WclGytxZHa2tRV1uH+sYTOH2mExcGIh5GtEhgEQRBENYsIIEld9Ifo3q5uoFnbgBPrc/nBAK/pofB50F/O85NYBnfVEzYpsHwwWB5X6vHsSkQX+vjL2lGv9BbhCkUWB7KONlzFA8px7NREFgVv66erH0V35w0yY0rpVu4ULM2do+scpz82uItxLsXUbeS+Vb9vxQJ4ZiyZYPA1gouG7waUt6LOD3gQbTNN0hgEQRBzAozILDUURytEbcSWIaRBDGBNdnbgIDttScR6W9P/A6g/DZfWSv6J7he2PIDxfyaJyvBYxQ05n24ZAEW/9C0dm81Wa7zcRNY/JuR1p1hXBSxtLkVN/gbiJZR/pTMgUc5UcrstrUSvw5oe3VZ+YrfmsJq3ZoH9N3xuT2vEohi6HyNMtXrz1+L/zc/lqeE7wo68iMuvKaJS7fkddpxnnHvf3F8rVY/rLYaIQiCIFLBDAgshjSCax824cCThfjFa//AiHo4zo+4dOI1/Lo4H9mrDiOU8MFkB5gIOF//Albn5mDF/o8sp6OkyFf4sPEAtgXyDJtXGhnHYPc7LI/LuTxIGLt6CpVFebYjGIYpP6tvETKksW8ROnMML28twmJfPkoqjuC9K7eMo10Kt/BJ7XP41Zb1KMh7HictprmkQSbYWB79vhLU91jsoj52Fe/VlDN7PIiNDZ/FR+gUkihj9CZCLQewKX8ZHqs6hd7IdU4EWu1xxb+VmOQeWNIPCB3fjZLtb+NSxGn8K1aeatmu8k7u+9/BhUGRUSYJE/2teE7dnsGfvx6/2rrFMMooj3xu2vos9ux/A/8ZGlqA4oM9BPx4FcFGeXPXVXih/cYCLCNBEET6mRmBtZDhty3w7cbZIeEJsXmG2ygbt/u79jFrgiAIgshwSGCJYvjeobZ550LGRWBx073+7W0Ik74iCIIgCBJY4vC7lvuQX3sRIpNUcxsJ0cgwbo/xK4+cBVb849dJLnAnCIIgiAUICSxhjN8bzFpVj0v3FsiwjToa5Q+8hJO9t2NrcwwL5fld1GX4typNm7sSBEEQRAZDAisZRs6jWv/e4DrUhSwWn89Hpr5AS4m89QErl68Iu954B61Hd6BAKSdLCWJyEkPtu9W3Ds3iiyAIgiAyFxJYSaFtGZCNguLfoKnnR/X4fGcSIxePYJ26aagxWX8MWd6t/lRVCQqePoFrC25PA4IgCIJIDhJYhIlxhM8fQam6lYGWjN8GJAiCIAjCCRJYhAVTGLvRhb/uK0VB1nJs2ie63xRBEARBZDYksAiCIAiCIFIMCSyCIAiCIIgUQwKLmNuM/AM1K3OxYutBtHR9jTHayHRhMXEdnTXPoCCrEC++d33hffsxGaRv8H7lw/DnbsAr7V8lvFhCpBIJ46E6PJS/GVX1/42eobmyFGKu5msmmMmypteOJLCIuc1gG7bpi+3FPgyeWqYwdvtOhgs8eSPaHzD4fcTiu5rJMIq+xqfVbT5W4eXgd+wO6WCO+TYaQl2uGvNWH8snUkiUNTHlavtyHxbXhlIU29NlruZrJpjJsrpdO9VtmhESWMTcZo4ILGmoHbuysrFixwn0ZaTKGkNf83Yslv3gW49D3d9PXwyNdqPmwdjbqtll6fvM0pzzLS+wNrfiRiaG26xBAiv9pEtgzUCbZoIE1mwx8SVOV67DA8sr0HrV/MFkD0z39/OVOSGw+N37rT54PYukLQ4mcavjpRR+wSCKofYKZCvXE92sdwK3+4Jokt9y9TFhtP0NdPaPJNk4zpBvp+MnXmDl1iK0cHtWd2Y83uepwFpQ/UG6BFaq27RESGDNEpO9DQiojsyu6IDoJ6Kn+/t5y5wQWHfR27BBzUMZTt5I36qYtMbBnSCqsjVfrEd9zzQadqkfJ0tj37gUGr2KhtHdsBMrzJvh5j2Duo4vERFuH2fGt9PyEwksnZmP9/kpsBZWf5AugcVIZZtmAQmsWSIaqo0NRcopodGcQLjjIEoCa7Gp/DWc7kt0svPvFzC8wFpUgwvjqX3C8EYYZ8uXxPKw7CguJbXfqruPvZDeOLiJzoqlsXvfl41fNn6e5KJ0CRO9x7FOuU4ANd3evoQgRS7hr9uXqfe3SEkN86fCt4m4+8khHkhg6cx8vM9PgbWw+oM0CqyUtWnWkMCaJWLrPNQKsbYRfQYvRhCqDahO9uGhoz0wt/POv1/A8AIrXQ3JaBeqc2J5SP5p0d3HXkhvHEQRbtuhLkqfji1+xIXXYrbwb2hC34SbJJIQDZ/DoWJVCGkpdwOqGlrQtHetfsxf2ooBEYWVEt8m4u4nh3gggaUz8/E+PwXWwuoP0imwUtWmWZMBAos9Lfe34/d7D6GpoxfD0XSMgMiMY7D7BOrr3sbZq3dMT9l8Y2sXYE6/X8DMAYE11deIXyp5mM4TjhcfeyG9ccBPTWQVNqA3GZWofyz9Qexq/9a1DNLIv3B4TY5uOzn5i6pxVll3NYa+xifj/8t+BcE73j2UEt9KYXT95S84GfxfDI5pV3Dzk0M8kMDimOl4n58Ca2H1B+kUWClq02zIAIE1jmvNz6gGLkR11y31+FwiVZ3vAiTtAmsSwx2/VRdjr2Txk+zzzQLxMb9mQVDMxOAWt688jNBdl64h2o/TO/J1u8mjPQ9sb0LPsLpWilvLpSTfbpwd8tpCpsa3cZHG8rb3nMcnYI8CK5NGq9PCfBVYC4n0Cqzpt2n2ZIDA4hsyHxY//DAK8gLYVP4K6lu7cC1i1RhPInKlBbuWL8UjW1/GsTMhhPUn00SkyFcINuzB6vw12FZ1DGd6vktwonSjDc/l5qCg+EUcartiWozr3vk6/15GJM+TiKojedLwv3B8+yr4cwMo3XNkzj0NGdYabGjGtYTM8dNHeXhkcwVqGjvRq3XABpIp9yguHV2n+uYZtPRbb1TnHgMiAkvC2NUTzJc5WFz0At7svqnnzUscCJVRuo3eU7/DY3mFKDv6McJuI7yTl3G8MEstRxIvHeiCaBE2NvbCdUk5t5WDnPzFb6FHr7P8Wi41CT2BOvh24ku07SxEdn4pqvnNPiVm30neRsYpBs2v7n7yKLBSug+WXVwJ1KGxy2jevpLF1GbUh4bZ7z5G/fYAVhTvwbHgdYxJ7FqD3bHvmPqYv/KLUb7f5lumLPauNO9G4crnUK/8Vj3OkfJ4T8CpAxZpW3js6693nIWBm1289EkyUvh/8JuVq1Cy+xCaO6/gB6f678FfcURs4CaCkvWDjAeBNd02zYEME1iJyV90EMGwqfLfvYi6lZrB1fOW70bLldumIJEd/wGqi4zTF1m+Quw68TnG1LNknBclune+rosaPed5CMG9K9n/c7C+8Rw+qFpl+E3Wkn0IDqdwjHSaGMpt1dlIYXRWyuXhysCSv+iP6DaUI9lyc4ugc6rRNWpuJrzGgJuPWYPUdwbVFftwvKsHwf1cmbhRDOc4EC3jJIa7DmKFfk4OVh/4wEVk3cDprdqI0ZNo6uOj3A1OEGXtxOmwlwZyDANtFXiA/SahrkrfIWgoYxZ+cfQz3FP/7Y6Db/mRU33x+0+40vAE/IbF9MPo0n21FHs6bipHXeurUzwMd2CPtr6GxfyA0rk8yDqqnTjc5vywl4iHuPJchxhD7dipvMGZi20ngqbRxZWo/K//QWNpHndMTj78fP95jKiXiGGOvWwUPFmNU73G9iq18a7BHkb7/4mz7R8i1PcVQg2b9d8Y/CBiF4/11xmP+WLY28V7n8SvhYwlHxavfwXvhm4m9D/e/CViA+9lFfODjMC1FabTpjmTeQLLtwZ7Gs/i/za+gJ8rx1jlr3wfQ3qU8PvimFJeBU4PcMaXvsbpMrWBZskfeBxP5asix9RgW1YIKYKBC50403oEO7Xf6Skb/9FwmYVKDOeGRiDPhmCySvmoCn6vnpt+DOW2EFhT/c14XHtlf0kFGt/ZqzYC2VjH7BfvwpMs92QP6pepIyhWoyNuMfDTiEcfG5+0DImLJec4ECzj1BdoKVmUeJ5vOTbtfRtd5gcPhTusUS5UzxXdN+oOq4vyiJFVh+tA9BsEX38LnYb8MLF2tQkb+e0afFtsRxgtcfItt/hdt/M4e4hZGjs/77VuKHea+hxNa7PVPMQbZ1s/eanzvLh7dDeqNhsFi7/4z7jieUNU97jyXocY+uga64zzl8XLaE6+ddh7cGe8QzZ1sNLIP3HI9ECopOWHcCESPzGl8a4wiZGLR7COjxsu8R2wkF081l97vOdLxj6+vPdJhoXyfMr6LTpNwsWbv7zaQKysYn4Qu3aM6bRpzix8gWVYo7EIpa3XY4r73meoX6UGjCGgvmdPRfxTGZ9Yx1B1DsNqnMTXXrC05CWcDX/BVXh+qNEUeJpQMAxNJqZ4MNj8Xsd7nhMbJfb/Pe/i/TdK1L/Zk2nbDfVcJ6YQ6fsIp9vaxFOwj8lebzgLLH6Bs1rZxrtRs0g93zClmGS5TaMJCQLPLQa++SwpH/sfLUO59hSqN05ucSBWRkPes55HS+gMqjRRYRsH/AOLYGOkT/eJbixqQcLolTnOPeDkW4uF5hJr6Ddq99PO56+hbyPi4CcvdZ4XWJZJZL2YW1zdFahDDN4uSsrCiqq/I/in+CiBnO7f04FbYbv1kxMIt+1U175lobAmiM/+j7ZOli9bauNd4e6nqDe9MMGneH0UaVtkvNRfBzznS8beLiJ9UnyjX3Nah/qeUfU8meT8ZWsDobIK+kHo2hrTaNNcWOACi4mA7kPxpyhDheMrJ2dU7ilVTtmlLfjyehue0xpR3w6cDssu4hfIalMT/DU9CCz9iV49riT2ZBh4Atu27sTvO75W32pyaWg851nG1Cj5nkbT1Tvc9e06VjOmPImkhIbSHkeBZTV6IF3Hyc3qqIyhUU+u3NKNVpSqv9FHLXS8xMCtpHy8uPafGFAaNdZp6KM9LnEgVEa+4fJhGSvbqKHzLERNt5UISrYx4kZZ1xxHr+vWDE5IuNtzzPiUqpSV7xTccfQtH0eKH+8ZR4nV2LLe8NHJTx7qfILAkkVMC1r3aYIyBxubv+SmZpxwiSuhOsQwCyxlqveusbzayJHdCyr8coaE3/Mxmsp4l2H1NbhPnblgafmrCA7d5KZ4uQ5Y1C5udlbPskYgXwp2dhHok6RvcXbHg+rxXJQ2/wvn7UZxkvSXtQ0EyyrkB1E7apDAShIJY1f+jBK9IeaCwfAkGVfshqdUraGQvkTLBk0Va8POfDBpI2P8pmVeBBYjGsEPAx+hrkgLIisHO/ye4T3PMsZGKbZvEH99c6NkhylPIimhobSHF1j+8nYMqcdlJPaEXKb5Vh09iEb+jePFWrl5HyRXbv7+iZWT/71DDAj7WL1WNIwL757ipupMNnfpcJzLyOdTfQo1dJ687XiSbIz0Bj0Xz7T2exQHNkz0ommDJn7kxBpw0dErhrNvefvIC+BHuLeRWVJGve9hqH23usCdFz0ufnKLB7PAUjq1Yc7udh2FFc5xJVaHGCaBlb2D1UlDjLGkzQhYCiwJo+yhd5lyPAuFtRdx15BH+w57evHOMIiKJXiu7WuWGz6e43YVtouLnR0RyFcMO7tY5MGmT5LLF38AfxYnB+QHQat6nay/bGwgWFYhPwjbUSPJNs0DGbAGi1+EGg8Gg+N0J7Fg6qrGz1RnxF/Z5K+hNaTGdU+xt5t+Qt+JHSjwsSfSp0/gmr6UwK5CaPANhVvna/69SJ4Z/LqT+7S9f+wqTPqx7wRN5fbl47EnAvHRLiVxlS/JcsfvrzVYPCIxIOJjOx+4xJFIGflhdq1D5DtPi3UYMfjGKL7myA19vUdWBc4OJTZx3hnDQGu5+pSu5dXrgnkjzr7lyymP5vUbnoSz7tuA473fcMfWMJ9q4xQuflJwiAeTwLp/bxB3PHUUVjjFlWAdkjEIrDyUtQ2wq5jKq623shRYk3FRuqQKnUos8L8XEKqidZqfztXjkLerdo0k7OJoZxc850vDzi5e2yPjm6+x9YfclKFhLWOy/rKxgVBZBf0gbEcN/hzvbZoXMmyRu+Z0fiiVJX2Bqylw9S/Z89eIN27S8Dm8rGyYKB/34YHNryM4MKoGG49dhdCYjsASy7OxgdTmzz1UjDRhL7AmcKO1TM2zTcr7XfwtoqTKzceJtV28x8AsCCyRMvKdn7aOgf99whSIBi/czZ2MHePob96iNNIxsZAsrCsfaMOuPM3ecvK43UMCbr7l44t1In9pxhvamk0l5WHb239DjTZ1Ytg/x8VPCl4Fljb6bFOfXXGKK8E6JGOIMVlk3pUPGsqr+9hSYDGid3Ct6xTe7fpGLQOfDz6PKYx3FjvjoTrkq9fyb9e+f8n7QTs/Cbs42tkJkXxp2NvFW3vEL+rm/MX8cqP33/i073vVLypJ+cvKBqJlFfFDMnbUSKZN80aGCizjovB4o2/XiBnPjx+fxEjoTWzM5Rr8vDIc6w4bA9QQeCwlLJB0aGwVnH4vmGdDo6SpdX49jl0QpgdeYBkbWGO5s3LXYueBN9HS1oGuUC+uDf5o3KclqXJ7aTS9xoCIj+3u5RJHAmXk7aqvP+I33LMVWHw5PDZG+gsl3r87aMnYFTSZ36hbcww9bpuVWuJmb4c3c62SwRcuflJwiAeDwNL25+LjXeRTS07lFKxDMoYY0/xvLK/e1tgJLBlpFIOXOtH82osoydemSuXE5zF18W7srLmRDMNSEe38JOziaGcnRPKl4WQXL+0RH3v8CBRDGkfkJ4s6LewvKxuIllXED8nYUSOJNs0jGSmwjK+n8uuTjA7VGwpHJ00i0tuKyoA2J8yS71G8ep7fWM1UIRI6L5HO1/x7wTxbNpD8NeJ7+TiT7rcI+TzzPmTIG+I1lWNF8R/i+yYlVW6vjaaXGHDz8V30NmxQ/293L5c48lxGfvRGmx4zvVVkJ7D4tX125xiYwkjXq7GFp6vqcele3CJCSMMI1W2IT2vIybcBhy8OczYWwd23kz1H8RB/P5bur2jCf+1/2HBMXpsSaIhvqeLqJwWPAkt/M5H3o1MsmnGKK8E6JOMqsLh78OXgRYC87UbNE6apHi3xeUxVvMtYldW8Ua127yTs4qn+WiGSLw23+HJrj/jY422k7jmX9wxe5zcG9ewvNxuIllXED8nYUUW4TfNOBgqsrzDQ+my8oTYM7fOf1YmLFcOrr/qwuBEpchkn96yJX/fBQ7igv5rrViGmI7AE8+zaKFnd3wpTnkSS5ZSJNfYCi9+Fm8/zOMLnDmK1sr6Oq1BJlZsvo03l5HCOATcfm+PU6l4uceS5jPx1YlMrCd/7s2to+Ht42UAxJYvbmU/bX4q/HaSkLKw48LHwwvY4Hnyrb6qpJflpnz0c8OtClGRq/N38pOBRYOm/9RIfVjj9TrAOyVjGmI0t+XLodXeCe+Xfh8XrK1HffALHKzTRyt8vVfEuwx9XR7sSNrDU7p2EXVLiH7d8aXiJL6f2yDr2pKH38Rt1ejH+RqyIv9xsIFpWET8kY0cV0TZNgAwTWIuw6Y0/oXq5NrKjvRWhYVxUF3trzfRatf4ULr/VUww/U/t173+O21HJ9DafVuFjGIRCQoVw63ydfi+SZ4ZQo+SEqZKLpJQILH4UZhkq2VOYJI1ioPMQSrThceXtGHVf76TKzZfRNJSuIBIDqRBYJnsk3eHw5WLHLn6dODpk02jzosPLl+elgVY8o5yvTeEkgWExs5ZyUbK3Fkdra1FXW4f6xhM4faYTFwYiHkWcm28ZCfdVhVSC8CrDyRumbScd67vMdASWWdA54RRXgnVIxjLGeFvG78HbIL4MQ9s9Pxuraz7GkPLVAH56x5jH1MS7DD+6Ip/7k4Vo1+6dhF081t9ERPIVx9ouXtsjC+EiDSL4spZ/7Q08GRF/udlAtKwifkjOjgqCbZoIGSawTCmvEmfNbx/xG5VlbUbN3w5ikz6dmIct7ClcEbiGDUyZsg88jk2B+PoQf0kz+jkl7NzgTkdgMbzmWYZvlPQ3xewapfRjKLdJmEnDH8fFcm4AT63P50RCDtYd/TQunpMqt1G86tOvGkIxMMsCy6WM8emvbBQEVsWvqSetMTYSHxk1T4tZwa2Hmc6ToWG62yXlvYjTA/zUjR0uvlXgX3GXk7qdizk/+qd04jjXdxmHeLBcC5dsHXWOK6E6JJOkwIrbd4TlZ41yzB8ox2u1h1C9u0T5bqH59zKpind5qjq+pm4pnnq+FCsMIllO8XsL28Vj/U1ELF8alnbx3B7x2xflYPXet9C4//H49QyfGBLxl5sNxMvq3Q/J2VFGrE0TI4MFVj52tfVbNKoSooP/wPHyQuMTPUvGT1Sw8/QPUBrPs1obYljPob/pp+EusJx/7zXPDEPnoDWQvPoXabxnHn4jx8SRL/mbU+2J391ijcsDZa3o5zezTLLcfENm3odLLAbcfGz/FM/jGAciZZTXVRx4lIsXZrOtlfh1QFvAaiWwjI2Y+1o97elX9BuBZszfTHNKdq9iJ+LsWxnTujTfbpwdkptfo/Cyeup1rq8yDvHA+1EXb3bCwQ23uBKoQzL8xo+6Pbh1dvrbfLx9+W0wJEz0t+I5w5ugfDLmMWXxLjN2FW38lBlL/qIqHN33qPo3f29Bu3isv5YI5SuGtV1E2qMJDPecMK7TUpK5XxTxlwcbCJdVwA9J2FG8TRMjQwXWUpQe/oT7/qAF0giudZ1AXQVT61nLsWmf9RfhpbFvETpzDC9vLcJiXz5KKo7gvSu3EoUbc/57NeVYnfsgNjZ8pqpujVv4pPY5/GrLehTkPY+TVt9Tc/y9iqc8j2Ow+x0ceHI5slcdRkiZk2dPNFdPobKIPe14HgGYJZgQOF//Ait3Dlbs/8hy+Fb+cvyHjQewjT2t+fNLcaCpG4PKUDZPcuU2DLFbfYuQ4S0G3H0sDbLGkeXP7ytBfY/NZgaOcSBYxuhNhFoOYFP+MjxWdQq9ketcp281pce/oeVlyo8JlK5abCx6Be8nsU9VHGMj789fj19t3WJ4OpefbjdtfRZ79r+B/wwNsV+448W3io1a/4BfF+cjWx8BkBcR/x3Vir/5Dz9zuNZXp3iQr38KL69/EA/sPafGvHpP2bfL9yOo7PHjDS9x5a0OybB8XD2LwzvWocC0119k8AtcCl3GjUjMkNKPn+HdfaUo8BUy0XVLORYjXha/XF92v4rjbWfQvJ+dm1WE6vOc1E1lvMtEb+HKe3UoW74Uq3e8hfPhMdzrqccv1Dgwj2R6t4s3O9simC8nu3jukxix8u1jbUBO7GPi7Z8jklA87/7yZAPRsjI8+0H42qJtmhgZJrDkpysWaFGrlpQgLOCna/Qn9oWK2ygbN3Lj5ftqc52M8i1hizSKcOgMjlVV4NWObzyJ81lhruZrJpjJsjpee2bbtAwQWPxwvsjQOkEwDN/Cik9/LExcBBa36Du+kd88JqN8SxBEAjPcpmWAwHJf30QQ9vC7/PqQX3sRiZN78xEJ0cgwbo/xq5Wc60r848ipXwyaHhaqbwmC8MJMt2kksAjCEX4RJEvT2SxzLqE+ufkDL+Fk7+3YsLlh0bC2g7gG/9adyDYBc5kF6luCIDww820aCSyCcGPkPKr173utYzEkuIB1LjL1BVpKFsXK5CvCrjfeQevRHShQyshSgtjgPvqaIL7mMQvRtwRBeGDm2zQSWAThShRD52uw2peNguLfoKlnGt/TmzNMYuTiEaxL2CtGTtYfUJZ3hj5VVWJ6e2y+sxB9SxCEF2a6TaNF7gSRsYwjfP4ISk173PjXHEFohN6oIwiCmA4ZILAkRIcv42z9XmxaXrZwpjYIIiVMYexGF/4q71fksN8bQRAEIUYGCCyCIAiCIIjZhQQWQRAEQRBEiiGBNZcY+QdqVuZixdaDaOn6GvwnBAmCIAiCmD+QwJpLDLZhm77Y2Opju8TcIIrI92Fc6/03Qhe70Hnmv9HZ9Rn6vhkmUZwymI2HrqP3wofovDBAdiUIYt5BAmsuQQJrXjDZ24CA7ic+rcLLwe9im3YS4ki30Ps/f8PR/S+gJF/7hI2czF/4JwiCmPuQwJpLkMDyzsSXOF25Dg8sr0Dr1dndeiMaqsVi3U/GdP/eIObMVpWpsNFs2tkQ/6bk24zjV2iLFYIg5g8ksOYSJLA8w48iZVd0YDY/0zvZcxQP6X7KwyNPbsXOvQdRV/s6jp+5jNtzZAgrFTaaVTtLN9F16Alb8bq4NkSjWARBzBtIYM0leIG1qAYXxvmeegLhjoMoCazFpvLXcLpvvj7Np6YchlGk3FqEZrPn5f002/cWwN1G7r6YfTvL69tuYvDmjxiTxnGt+ZnYvVkigUUQxHyCBNZcwrHjjiBUG1A7Gx8eOtqT8i9/zw6pKYc01I5dWaqt1jaibzY/3cL7aXMrbszRRVfuNnL3RVrtzOTUYFu5mj8SWARBzC9IYM0lPAus+dzZpKoc4xjsPoH6urdx9uqd2V1YzvtpaxsG1cNxJEz0t+P3ew+hqaMXw9F0KTA3G3nxRRrtbBBYOdjY/CW9QEAQxLyBBNZcggTW/MBVYPFTW4Wo7rqlHp9rzHVfTGK447fIVvKXi21tN9TjBEEQc58ME1gSxq6ewK7lOVhc9ALe7L7JPRFLiIbP4VDxEtaY5+GRzRWoaexE7/CE+n8jUuQrBBv2YHX+GmyrOoYzPd8ldk7RCH4Y/AERbgRj8moj1tt8882w3mVDM64ZHtfnvjDxZBOhctj7S7rRhudyc1BQ/CIOtV1BxGCrSURVm0vD/8Lx7avgzw2gdM8R+1EY6TZ6T/0Oj+UVouzoxwg7jTq5Ciy+jD4sfvhhFOQFsKn8FdS3duFaxGpSdBKRKy2srEvxyNaXcexMCOEx+/k4L7Z2tpGMuy/c7Ow9z0n4hBGvEySwCIKYX2SAwGKddN8ZVFfsw/GuHgT3r9Q7FMOaEimMzkruf2ryF/0R3cN8hygLsQ9QXZRjPNdXiF0nPseYepbcoehP37mbUR+KvX8V7zAS17wYBFZCxz2XBZZXm8i4lcObv+wXXw8huFf+TQ7WN57DB1Wr4r+X05J9CBr8KcN81XUQK/TzcrD6wAf2IosTWP7ydnZHM8YympO/6CCCYdMHle9eRN3KLON5y3ej5cptk/jwbmt7G2m4x5TjNTznORmfxIjfnwQWQRDziwwQWMaFsoaUU42u0VhXMNXfjMd96vElFWh8Z6/a4WZjXcNl6ONY0tc4XSaPcsXO9Qcex1P5aifDXc/YecU7B77DMndohs5ME1hSBAMXOnGm9Qh2avfRUzb+g+XNumuaRbzYxHM5vPnLvuO/gdNbcxN/q6d8VAW/V89VmfoCLSWLEs/1LcemvW+jyyyGOIFlLXRNAsu3Bnsaz+L/Nr6AnyvHfPh55fsY0lXIFO4EX8H92vl8yqvA6QFONnmOPwcbCcSUvZ0F8pyMT1Ti96c1WARBzC8yTmD5Hy1Dufb0r3dIY+hrfFI9RxVU492oWRT7DT9dN9XXiF+q18pa8hLOhr/gOg9+76owzpZrHeE0BNbkZRwvNHeC8WTdwfNMIdL3EU63tYmnYB+TCu54sonncnjxl0mEGUb7zJ05EzN73sX7b5SofyeOhBjyn/U8WkJnUJWj/d5i5MRNYEn9OFmq5WERSluvx4TBvc9Qv0q1QdZv0amP2nyP4N589XxzYvmvOodh4fhzsFGSvjDa2Xuek/GJhlN9IQiCmMtknMBaXPtPDLTtRLbcyO8/jxH5lKnP0bRW+zTHk2jqY0/f0nWc3KyOauhP7vyi2yz84uhnuGfoPPgOjj++BDvbw+zYJIbad8OvHEvsMCwFFu4gVLtOvY6WfFgceALbtu7E7zu+ZhLKCVMnKZIMHaodXm3itRwe/GUuk5PA8j2Npqt3uPPNnTkvrn1Y9lo3RqMh1OWqv7+vEDXdpr3ZHQUWE7Tdh7jpRv5+fN4CqAup8nX8IuqW+tTj9yG7tAVfXm/Dc9r2CL4dOB2W7yISf042Ss4Xhmt4zrOMqE/ikMAiCGK+kmECSx1NiIZx4d1T+tSPFG5DmTY9qG7wGY38G8eLtXUuWsdlcS3cRGfFUtN5DMMogdaZGjssJ4FlWNsjL5Yf+Ah1RZoI5DpnV0ydpEjyJLAEbOKpHO7+SiiTg8Dyl7ZiQOLPN3fmfF5XorprmF2eF1i8aInBjyIldvoSxq78GSVaPPH3M8TEOtT3jCqHpf5mbFSvp0+XSV+iZYMWf9oUmoCtHW3EEPaF8Rre8ywj6pM4JLAIgpivZJjAsmrIJYx2VeNnaiOe5cvHY08E4iNJStI6LuO6E3/xW+iJ/IS+EztQ4PNh8dMncE0bTjJ00uICK7EzsRn9SDsCNlFwK4eXjte+48dkD+qXaSMr2fhl4+cshw7X5KeCtWk73neGqbwY7p3+MLr0xfnx+xmEvB5TpvjLfgXBO7LB+Gto649EbO1gIx0RX/DXEMkzQ9QnHHFbz+fNdQmCyERIYGECN1rL1P/bpLzf6W85ScPn8PISrbPw4YHNryM4MBrrSHgMAusZtPTLoy/Gey0MgSVgE4UZFlgGu6sjUk7X5Ldc0Nba8dcwvznHcBdYVi848NN7LBU2oFcJKVNZ9J3hrd/w825rBxvpJCuwxPIs7BOOuK3tzyEIgpiLkMAyv/GVuxY7D7yJlrYOdIV6cW1Q/iaaeqrCJEZCb2JjrtbJsZRXhmPd4VhnomHoVLTRCpsOSIXvuBM7xLkrsDzbRGEGBBa/Z5jB7up6OsM6K+M1eZvnvdYNZRLyThBV2eo1UiawjIvC798bRGxll11MGM+PH/dqawcb6QgKLP0agnkW9AkPCSyCIOYrGSCw7qK3YYNDQ853FqbXxaXbuNJUjhXFfzDtWzSJSG8rKgPaehOWfI/i1fPcxqWWAsuu04wxMwJr5t8ijOHBJgpu5XDzl4yp4+dFkKuwXYo9HTdj57I8x0eVtDVNUQy1V8RHmiwE1mTPUTyk/t/swxiJAsvwTT9DnNmIFcN6LbMdvNjawUY6ggJLv4ZgnoV8YoQEFkEQ85UMEFiJnZ2RUVw6qr1RxXcy4wifO4jVypoZ68ZdilzGyT1r9LcCsx48hAvaPkQWnYp0qwOV2sgIS7MjsEydpEiynFZyxtEmCm7lcPOXzHQEFn9P/jqxqStp5F84vIYTLlbCRGgfLLkMX2Gg9dm4TfQ1SzL8Z3Xi1zNsx3DfBhzvvRs7ncPZ1jMpsATzLOQTHn6tFwksgiDmFySwDKMYy1DJnqQlaRQDnYdQok3D+J7FyYF77Nxhdq1i+POeQd37n+N2VDK9TaV1Hgx+mwd5WuTqIHrqn4x3hiwtDIElYBOFVAgsk61SIrDY8YtfI1S3weCj6QusRdj0xp9QvVwb2clCYe1FxOWSccF47O1R0zYKq+px6Z4snMRsbWsjHfeYsr6GSJ4ZSQss3j8ksAiCmF+QwGJIwx/HO8DcAJ5an891sjlYd/TTWIdo2EBS3jfocWwK5Kl/s46mpBn9+ltc4+hv3qJeh52bvyzeUalpdgTWDCNkE5lZFFj6G4D2nXl8ui8bBYFVCT5KFIgMTmDp67YM8PczpbxKnA2bvm9591PUa6NmWZtR87eD2KRPJ+ZhS2s/FBMK2nrmBBbDa55lBH0ShwQWQRDzlwwQWPybe3aN9CQi/e2J33eT39Iqa0X/hDbtIn8HTvsgNH8eS74NOHxxmFsDw842Tzex6/382eexVZ0mNAusyd4GBLRz54vAErSJezm8+IsXRizpb7HJ/+DXAWniiF/XZbpn9BsEDzzKCWrm862V+HVA2x/KWWBZj/LZCax87GrrtxjxYjYc/AeOlxcaR89Y8hf/GVf0tyzEbG1rIx33mLK/htc8M0R9okMCiyCI+UsGCCzWFQyyTunJ5fD7SlDfY9qVm0OKfIUPGw9gWyAP/vxSHGjqxqDFB3+lsW8ROnMML28twmJfPkoqjuC9K7esO86hEE7WlGN17hKs3vOfuDISRlD52G0WAubvCLLO/nz9C+zcHKzY/xFin4fWuIVPap/Dr7asR0He8zipbPswd/BuE/dyePLX2FW8p9j1QWxs+IybchvHYPc7OMB+n73qMELKmiSJnX4KlUV5yMp7EacHTPeM3kSo5QA25S/DY1Wn0Bu5zgkP7a23OAbR4VlgLUXp4U+47w9aII3gWtcJ1FWUoCBrOTbtewcXBi3s49XWtjbS8BBTbtfwlOckfKJAAosgiPlLRgisOUd0GNdC3bhk0XkScwHnkR3nqVwZXmDJi+eZ+IkapDThCS9vlBIEQcxNSGARRAICAmtJOer/6+9oaXgddbXH0PLhV4hI/Odr7Ka/CEukMdy+OYjBG324FPoQTeWaHbmd4QmCIOYBJLCIDEdCNDKM22P8SnxngTXV34zH9U/emFMhqrs+dV3bRFjh/FUF6zc2CYIg5iYksIjMRv1Onj/wEk723o6NkBgWZWufOeKJoK+5HA+YBICSfGtR0/1vElhJYnjRw5RIYBEEMZ8ggUVkNlNfoKVE3a/MV4Rdb7yD1qM7UKB17Px+TjzyCwl1W7AiUIo9+4+g6dT7+OTKdQxFZAng/nYeYYN0Exf+dghVzxejwJeNgvVPY9v2ClT/8U2c6rlFU4QEQcwbSGARGc4kRi4ewTrLKb9F2NjYC9OuVR4ggUUQBJHpkMAiCIwjfP4ISvO4Dyiz5F9zBKGRZN7+o0XuBEEQmQ4JLIJQmMLYjS78dV+p4x5U3pAQHb6Ms/V7sWl5mcUaLoIgCGKhQwKLIAiCIAgixZDAIgiCIAiCSDFzR2CN/AM1K3OxYutBtHR9Df5TZgRBEARBEPOJGRBYEqLff4FPQyGE5NQdxNnWRtTXHkRV+XOorP8YYYvv+xk+oGv1gV2CIAiCIIh5wgwILP4NKquUhy2t/eD3zVYggUUQBEEQxAJhBgQWvweQTbL6QC4JLIIgCIIgFgipF1jREOpyOTGlJx8WB55AWcUhvBsaStyRmQQWQRAEQRALhBkWWDkoOf6/3has8wJrUQ0ujNMqd4IgCIIg5iczLLBysa3thvoPF3iBlVuLEA1gEQRBEAQxT5lhgbUS1V3D6j9cIIFFEARBEMQCYYYFlsB32EhgEQRBEASxQEi9wLoTRFW2uMCKhmqxWBNYG5pxzWIJlhT5CsGGPVidvwbbqo7hTM93SNRhEqLhczhUvIRdKw+PbK5ATWMneocn1P8TBEEQBEHMLKkXWIa3AfPw1N4/4nDtIVRXPIttW7di2/bf4tj5bxKEkUFgJWzjIIumD1BdlKNeV02+Quw68TnG1LMUpDA6K1caz2PJX/RHdA9PqicRBEEQBEHMHDMssGxSYQN6TVrHUWBJX+N0mTwiFfu/P/A4nsrPiv2dU42u0fhw11R/Mx73qddZUoHGd/ZihfK7bKxruAwaxyIIgiAIYqZJj8CyWGPlJLCm+hrxS+1/S17C2fAX3Gam/J5ZY+hrfFI9rgqq8W7ULFJ/azP1SBAEQRAEkUpmT2D58vHYlu3YufcgDv+lC2HTt3LsBdYkhjt+i2zlf1n4xdHPcM+wWzwnsKY+R9PabPX4k2jqGwOk6zi5eVHsGC2eJwiCIAhiFphhgVWCYz13Endtt4AXWP7ydgypx9l/2CXL1estQmnrdXY9/nuHcYElhdtQpk0PqpuVRiP/xvFibe0W7RBPEARBEMTMM8MCy7ug4QXW4toQtwh+CneCr+B+9X/+4rfQE/kJfSd2oMDnw+KnT+CaMhomYbSrGj9Tz1NGzJ4IxEfFlEQCiyAIgiCImWceCCwmnYbP4eUlPvWaPjyw+XUEB0ZNI2MTuNFapp5jk/J+hyC9SUgQBEEQxAwzJwVW4jYNkxgJvYmNuZrIYimvDMe6w5wQiyBUG4j/P3ctdh54Ey1tHegK9eLa4I/evolIEARBEAQxTeaJwJKZRKS3FZUBbi8s36N49fxNdSSLF1j5qAp+rxxVkG7jSlM5VhT/AcHwuHqQIAiCIAhiZphhgVWGkzfuIRr5Hjf6enAh2I6TzX/Hh/0jCQvf3QVWDClyGSf3rIFfO/fBQ7ig7IM1iktH16n35XeQH0f43EGsVha/C3x8miAIgiAIIklmWGDZpCX7EtZC2QusYYRqi+HPewZ173+O21EJUn8zNurX00bJ+O0clqGy4yYkaRQDnYdQok0t+p7FyYF7scsSBEEQBEHMEKkXWEPt2KltlWCbVqK6a1j9QQxbgSX142SptueVD4sDj2NTIE/9+z74S5rRr+6pJQ1/jOrl6g7vuQE8tT4/PtJ1Xw7WHf0Ud2OnEgRBEARBzBipF1imz9pYp5WoCsZ3upKZ7G1AQPu/YQSL/3gzfw2WfBtw+OIwN904iUh/e+I3C+U3D8ta0T9Bq9wJgiAIgph5Ui+wZEE02I2/7iuN7VMVeAJlFQdwtLEVZ4PduNR3Az9ELBa+R7/B+foXsDo3Byv2fwTj+Ba76ti3CJ05hpe3FmGxLx8lFUfw3pVbCR+NlpEiX+HDxgPYFsiDP78UB5q6MRglcUUQBEEQxOwwAwKLIAiCIAgisyGBRRAEQRAEkWJIYBEEQRAEQaQYElgEQRAEQRAphgQWQRAEQRBEiiGBRRAEQRAEkWJIYBEEQRAEQaQYElgEQRAEQRAphgQWQRAEQRBEiiGBRRAEQRAEkWJIYBFzm5F/oGZlLlZsPYiWrq8xRl88WlhMXEdnzTMoyCrEi+9dh/rd9sxG+gbvVz4Mf+4GvNL+FSbUw8RMIGE8VIeH8jejqv6/0TM0rh5PN3M1XzPBTJY1vXYkgUXMbQbbsE3/aHc5Tg9afX1yNpjC2O07GS7wJEQjP2Dw+4jlN0DFGUVf49PwK75dhZeD37E7pIM55ttoCHW5aswbPnxPpJ4oa2LK1fblPiyuDaUotqfLXM3XTDCTZXW7dqrbNCMksIi5zRwRWNJQO3ZlZWPFjhPoy0iVNYa+5u1YLPvBtx6Hur+fvhga7UbNgz7Ft9llbQinyaxzzre8wNrcihuZGG6zBgms9JMugTUDbZoJElizxcSXOF25Dg8sr0Dr1Yh6UIDp/n6+MicE1hTuBF/B/UoeAqgLpdH+aYuDSdzqeEm1AUur6nHp3nSaoyiG2iuQrVxvHbPpHfW4FyZwuy+Ipn2lKPAxYbT9DXT2jyTZOM6Qb6fjJ15g5dYitHB7VndmPN7nqcBaUP1BugRWqtu0REhgzRKTvQ0IqI7MrujAsHrcK9P9/bxlTgisu+ht2KDmoQwnb6RvVUxa4+BOEFXZmi/Wo75nGg271I+TpbmxcoiMXkXD6G7YiRU+LR9qynsGdR1fIiLcPs6Mb6flJxJYOjMf7/NTYC2s/iBdAouRyjbNAhJYs0Q0VBsbipRTQqM5gXDHQZQE1mJT+Ws43ZfoZOffL2B4gbWoBhfGU/uE4Y0wzpYvieVh2VFcmlQPC+HuYy+kNw5uorNiaeze92Xjl42fJ7koXcJE73GsU64TQE33j+pxZ6TIJfx1+zL1/hYpqWH+VPg2EXc/OcQDCSydmY/3+SmwFlZ/kEaBlbI2zRoSWLNEbJ2HWiHWNqLP4MUIQrUB1ck+PHS0B+Z23vn3CxheYKWrIRntQnVOLA/JPy26+9gL6Y2DKMJtO9RF6dOxxY+48FrMFv4NTeibcJNEEqLhczhUrAohLeVuQFVDC5r2rtWP+UtbMSCisFLi20Tc/eQQDySwdGY+3uenwFpY/UE6BVaq2jRrMkBgsafl/nb8fu8hNHX0YjiajhEQmXEMdp9Afd3bOHv1jukpm29s7QLM6fcLmDkgsKb6GvFLJQ/TecLx4mMvpDcO+KmJrMIG9CajEkfOo3qJvLj9Qexq/9a1DNLIv3B4TY5uOzn5i6pxVll3NYa+xifj/8t+BcE73j2UEt9KYXT95S84GfxfDI5pV3Dzk0M8kMDimOl4n58Ca2H1B+kUWClq02zIAIE1jmvNz6gGLkR11y31+FwiVZ3vAiTtAmsSwx2/VRdjr2Txk+zzzQLxMb9mQVDMxOAWt688jNBdl64h2o/TO/J1u8mjPQ9sb0LPsLpWilvLpSTfbpwd8tpCpsa3cZHG8rb3nMcnYI8CK5NGq9PCfBVYC4n0Cqzpt2n2ZIDA4hsyHxY//DAK8gLYVP4K6lu7cC1i1RhPInKlBbuWL8UjW1/GsTMhhPUn00SkyFcINuzB6vw12FZ1DGd6vktwonSjDc/l5qCg+EUcartiWozr3vk6/15GJM+TiKojedLwv3B8+yr4cwMo3XNkzj0NGdYabGjGtYTM8dNHeXhkcwVqGjvRq3XABpIp9yguHV2n+uYZtPRbb1TnHgMiAkvC2NUTzJc5WFz0At7svqnnzUscCJVRuo3eU7/DY3mFKDv6McJuI7yTl3G8MEstRxIvHeiCaBE2NvbCdUk5t5WDnPzFb6FHr7P8Wi41CT2BOvh24ku07SxEdn4pqvnNPiVm30neRsYpBs2v7n7yKLBSug+WXVwJ1KGxy2jevpLF1GbUh4bZ7z5G/fYAVhTvwbHgdYxJ7FqD3fir8oYn81d+Mcr3v4MLgxb1hsXelebdKFz5HOqV36rHOVIe7wk4dcAibQuPff31jrMwcLOLlz5JRgr/D36zchVKdh9Cc+cV/OBU/z34K46IDdxEULJ+kPEgsKbbpjmQYQIrMfmLDiIYNlX+uxdRt1IzuHre8t1ouXLbFCSy4z9AdZFx+iLLV4hdJz7HmHqWjPOiRPfO13VRo+c8DyG4dyX7fw7WN57DB1WrDL/JWrIPweEUjpFOE0O5rTobKYzOSrk8XBlY8hf9Ed2GciRbbm4RdE41ukbNzYTXGHDzMWuQ+s6gumIfjnf1ILifKxM3iuEcB6JlnMRw10Gs0M/JweoDH7iIrBs4vVUbMXoSTX18lLvBCaKsnTgd9tJAjmGgrQIPsN8k1FXpOwQNZczCL45+hnvqv91x8C0/cqovfv8JVxqegN+wmH4YXbqvlmJPx03lqGt9dYqH4Q7s0dbXsJgfUDqXB1lHtROH25wf9hLxEFee6xBjqB07lTc4c7HtRNA0urgSlf/1P2gszeOOycmHn+8/jxH1EjHMsZeNgiercarX2F6lNt412MNo/z9xtv1DhPq+Qqhhs/4bgx9E7OKx/jrjMV8Me7t475P4tZCx5MPi9a/g3dDNhP7Hm79EbOC9rGJ+kBG4tsJ02jRnMk9g+dZgT+NZ/N/GF/Bz5Rir/JXvY0iPEn5fHFPKq8DpAc740tc4XaY20Cz5A4/jqXxV5JgabMsKIUUwcKETZ1qPYKf2Oz1l4z8aLrNQieHc0Ajk2RBMVikfVcHv1XPTj6HcFgJrqr8Zj2uv7C+pQOM7e9VGIBvrmP3iXXiS5Z7sQf0ydQTFanTELQZ+GvHoY+OTliFxseQcB4JlnPoCLSWLEs/zLcemvW+jy/zgoXCHNcqF6rmi+0bdYXVRHjGy6nAdiH6D4OtvodOQHybWrjZhI79dg2+L7QijJU6+5Ra/63YeZw8xS2Pn573WDeVOU5+jaW22mod442zrJy91nhd3j+5G1WajYPEX/xlXPG+I6h5X3usQQx9dY51x/rJ4Gc3Jtw57D+6Md8imDlYa+ScOmR4IlbT8EC5E4iemNN4VJjFy8QjW8XHDJb4DFrKLx/prj/d8ydjHl/c+ybBQnk9Zv0WnSbh485dXG4iVVcwPYteOMZ02zZmFL7AMazQWobT1ekxx3/sM9avUgDEE1PfsqYh/KuMT6xiqzmFYjZP42guWlryEs+EvuArPDzWaAk8TCoahycQUDwab3+t4z3Nio8T+v+ddvP9Gifo3ezJtu6Ge68QUIn0f4XRbm3gK9jHZ6w1ngcUvcFYr23g3ahap5xumFJMst2k0IUHgucXAN58l5WP/o2Uo155C9cbJLQ7EymjIe9bzaAmdQZUmKmzjgH9gEWyM9Ok+0Y1FLUgYvTLHuQecfGux0FxiDf1G7X7a+fw19G1EHPzkpc7zAssyiawXc4uruwJ1iMHbRUlZWFH1dwT/FB8lkNP9ezpwK2y3fnIC4bad6tq3LBTWBPHZ/9HWyfJlS228K9z9FPWmFyb4FK+PIm2LjJf664DnfMnY20WkT4pv9GtO61DfM6qeJ5Ocv2xtIFRWQT8IXVtjGm2aCwtcYDER0H0o/hRlqHB85eSMyj2lyim7tAVfXm/Dc1oj6tuB02HZRfwCWW1qgr+mB4GlP9Grx5XEngwDT2Db1p34fcfX6ltNLg2N5zzLmBol39NounqHu75dx2rGlCeRlNBQ2uMosKxGD6TrOLlZHZUxNOrJlVu60YpS9Tf6qIWOlxi4lZSPF9f+EwNKo8Y6DX20xyUOhMrIN1w+LGNlGzV0noWo6bYSQck2Rtwo65rj6HXdmsEJCXd7jhmfUpWy8p2CO46+5eNI8eM94yixGlvWGz46+clDnU8QWLKIaUHrPk1Q5mBj85fc1IwTLnElVIcYZoGlTPXeNZZXGzmye0GFX86Q8Hs+RlMZ7zKsvgb3qTMXLC1/FcGhm9wUL9cBi9rFzc7qWdYI5EvBzi4CfZL0Lc7ueFA9novS5n/hvN0oTpL+sraBYFmF/CBqRw0SWEkiYezKn1GiN8RcMBieJOOK3fCUqjUU0pdo2aCpYm3YmQ8mbWSM37TMi8BiRCP4YeAj1BVpQWTlYIffM7znWcbYKMX2DeKvb26U7DDlSSQlNJT28ALLX96OIfW4jMSekMs036qjB9HIv3G8WCs374Pkys3fP7Fy8r93iAFhH6vXioZx4d1T3FSdyeYuHY5zGfl8qk+hhs6Ttx1Pko2R3qDn4pnWfo/iwIaJXjRt0MSPnFgDLjp6xXD2LW8feQH8CPc2MkvKqPc9DLXvVhe486LHxU9u8WAWWEqnNszZ3a6jsMI5rsTqEMMksLJ3sDppiDGWtBkBS4ElYZQ99C5TjmehsPYi7hryaN9hTy/eGQZRsQTPtX3NcsPHc9yuwnZxsbMjAvmKYWcXizzY9Ely+eIP4M/i5ID8IGhVr5P1l40NBMsq5AdhO2ok2aZ5IAPWYPGLUOPBYHCc7iQWTF3V+JnqjPgrm/w1tIbUuO4p9nbTT+g7sQMFPvZE+vQJXNOXEthVCA2+oXDrfM2/F8kzg193cp+2949dhUk/9p2gqdy+fDz2RCA+2qUkrvIlWe74/bUGi0ckBkR8bOcDlzgSKSM/zK51iHznabEOIwbfGMXXHLmhr/fIqsDZocQmzjtjGGgtV5/Stbx6XTBvxNm3fDnl0bx+w5Nw1n0bcLz3G+7YGuZTbZzCxU8KDvFgElj37w3ijqeOwgqnuBKsQzIGgZWHsrYBdhVTebX1VpYCazIuSpdUoVOJBf73AkJVtE7z07l6HPJ21a6RhF0c7eyC53xp2NnFa3tkfPM1tv6QmzI0rGVM1l82NhAqq6AfhO2owZ/jvU3zQoYtcteczg+lsqQvcDUFrv4le/4a8cZNGj6Hl5UNE+XjPjyw+XUEB0bVYOOxqxAa0xFYYnk2NpDa/LmHipEm7AXWBG60lql5tkl5v4u/RZRUufk4sbaL9xiYBYElUka+89PWMfC/T5gC0eCFu7mTsWMc/c1blEY6JhaShXXlA23YlafZW04et3tIwM23fHyxTuQvzXhDW7OppDxse/tvqNGmTgz757j4ScGrwNJGn23qsytOcSVYh2QMMSaLzLvyQUN5dR9bCixG9A6udZ3Cu13fqGXg88HnMYXxzmJnPFSHfPVa/u3a9y95P2jnJ2EXRzs7IZIvDXu7eGuP+EXdnL+YX270/huf9n2v+kUlKX9Z2UC0rCJ+SMaOGsm0ad7IUIFlXBQeb/TtGjHj+fHjkxgJvYmNuVyDn1eGY91hY4AaAo+lhAWSDo2tgtPvBfNsaJQ0tc6vx7ELwvTACyxjA2ssd1buWuw88CZa2jrQFerFtcEfjfu0JFVuL42m1xgQ8bHdvVziSKCMvF319Uf8hnu2Aosvh8fGSH+hxPt3By0Zu4Im8xt1a46hx22zUkvc7O3wZq5VMvjCxU8KDvFgEFja/lx8vIt8asmpnIJ1SMYQY5r/jeXV2xo7gSUjjWLwUieaX3sRJfnaVKmc+DymLt6NnTU3kmFYKqKdn4RdHO3shEi+NJzs4qU94mOPH4FiSOOI/GRRp4X9ZWUD0bKK+CEZO2ok0aZ5JCMFlvH1VH59ktGhekPh6KRJRHpbURnQ5oRZ8j2KV8/zG6uZKkRC5yXS+Zp/L5hnywaSv0Z8Lx9n0v0WIZ9n3ocMeUO8pnKsKP5DfN+kpMrttdH0EgNuPr6L3oYN6v/t7uUSR57LyI/eaNNjpreK7AQWv7bP7hwDUxjpejW28HRVPS7di1tECGkYoboN8WkNOfk24PDFYc7GIrj7drLnKB7i78fS/RVN+K/9DxuOyWtTAg3xLVVc/aTgUWDpbybyfnSKRTNOcSVYh2RcBRZ3D74cvAiQt92oecI01aMlPo+pincZq7KaN6rV7p2EXTzVXytE8qXhFl9u7REfe7yN1D3n8p7B6/zGoJ795WYD0bKK+CEZO6oIt2neyUCB9RUGWp+NN9SGoX3+szpxsWJ49VUfFjciRS7j5J418es+eAgX9Fdz3SrEdASWYJ5dGyWr+1thypNIspwyscZeYPG7cPN5Hkf43EGsVtbXcRUqqXLzZbSpnBzOMeDmY3OcWt3LJY48l5G/TmxqJeF7f3YNDX8PLxsopmRxO/Np+0vxt4OUlIUVBz4WXtgex4Nv9U01tSQ/7bOHA35diJJMjb+bnxQ8Ciz9t17iwwqn3wnWIRnLGLOxJV8Ove5OcK/8+7B4fSXqm0/geIUmWvn7pSreZfjj6mhXwgaW2r2TsEtK/OOWLw0v8eXUHlnHnjT0Pn6jTi/G34gV8ZebDUTLKuKHZOyoItqmCZBhAmsRNr3xJ1Qv10Z2tLciNIyL6mJvrZleq9afwuW3eorhZ2q/7v3PcTsqmd7m0yp8DINQSKgQbp2v0+9F8swQapScMFVykZQSgcWPwixDJXsKk6RRDHQeQok2PK68HaPu651UufkymobSFURiIBUCy2SPpDscvlzs2MWvE0eHbBptXnR4+fK8NNCKZ5TztSmcJDAsZtZSLkr21uJobS3qautQ33gCp8904sJAxKOIc/MtI+G+qpBKEF5lOHnDtO2kY32XmY7AMgs6J5ziSrAOyVjGGG/L+D14G8SXYWi752djdc3HGFK+GsBP7xjzmJp4l+FHV+Rzf7IQ7dq9k7CLx/qbiEi+4ljbxWt7ZCFcpEEEX9byr72BJyPiLzcbiJZVxA/J2VFBsE0TIcMElinlVeKs+e0jfqOyrM2o+dtBbNKnE/OwhT2FKwLXsIEpU/aBx7EpEF8f4i9pRj+nhJ0b3OkILIbXPMvwjZL+pphdo5R+DOU2CTNp+OO4WM4N4Kn1+ZxIyMG6o5/GxXNS5TaKV336VUMoBmZZYLmUMT79lY2CwKr4NfWkNcZG4iOj5mkxK7j1MNN5MjRMd7ukvBdxeoCfurHDxbcK/CvuclK3czHnR/+UThzn+i7jEA+Wa+GSraPOcSVUh2SSFFhx+46w/KxRjvkD5Xit9hCqd5co3y00/14mVfEuT1XH19QtxVPPl2KFQSTLKX5vYbt4rL+JiOVLw9IuntsjfvuiHKze+xYa9z8ev57hE0Mi/nKzgXhZvfshOTvKiLVpYmSwwMrHrrZ+i0ZVQnTwHzheXmh8omfJ+IkKdp7+AUrjeVZrQwzrOfQ3/TTcBZbz773mmWHoHLQGklf/Io33zMNv5Jg48iV/c6o98btbrHF5oKwV/fxmlkmWm2/IzPtwicWAm4/tn+J5HONApIzyuooDj3Lxwmy2tRK/DmgLWK0ElrERc1+rpz39in4j0Iz5m2lOye5V7EScfStjWpfm242zQ3LzaxReVk+9zvVVxiEeeD/q4s1OOLjhFlcCdUiG3/hRtwe3zk5/m4+3L78NhoSJ/lY8Z3gTlE/GPKYs3mXGrqKNnzJjyV9UhaP7HlX/5u8taBeP9dcSoXzFsLaLSHs0geGeE8Z1Wkoy94si/vJgA+GyCvghCTuKt2liZKjAWorSw59w3x+0QBrBta4TqKtgaj1rOTbts/4ivDT2LUJnjuHlrUVY7MtHScURvHflVqJwY85/r6Ycq3MfxMaGz1TVrXELn9Q+h19tWY+CvOdx0up7ao6/V/GU53EMdr+DA08uR/aqwwgpc/LsiebqKVQWsacdzyMAswQTAufrX2DlzsGK/R9ZDt/KX47/sPEAtrGnNX9+KQ40dWNQGcrmSa7chiF2q28RMrzFgLuPpUHWOLL8+X0lqO+x2czAMQ4Eyxi9iVDLAWzKX4bHqk6hN3Kd6/StpvT4N7S8TPkxgdJVi41Fr+D9JPapimNs5P356/GrrVsMT+fy0+2mrc9iz/438J+hIfYLd7z4VrFR6x/w6+J8ZOsjAPIi4r+jWvE3/+FnDtf66hQP8vVP4eX1D+KBvefUmFfvKft2+X4ElT1+vOElrrzVIRmWj6tncXjHOhSY9vqLDH6BS6HLuBGJGVL68TO8u68UBb5CJrpuKcdixMvil+vL7ldxvO0Mmvezc7OKUH2ek7qpjHeZ6C1cea8OZcuXYvWOt3A+PIZ7PfX4hRoH5pFM73bxZmdbBPPlZBfPfRIjVr59rA3IiX1MvP1zRBKK591fnmwgWlaGZz8IX1u0TRMjwwSW/HTFAi1q1ZIShAX8dI3+xL5QcRtl40ZuvHxfba6TUb4lbJFGEQ6dwbGqCrza8Y0ncT4rzNV8zQQzWVbHa89sm5YBAosfzhcZWicIhuFbWPHpj4WJi8DiFn3HN/Kbx2SUbwmCSGCG27QMEFju65sIwh5+l18f8msvInFybz4iIRoZxu0xfrWSc12Jfxw59YtB08NC9S1BEF6Y6TaNBBZBOMIvgmRpOptlziXUJzd/4CWc7L0dGzY3LBrWdhDX4N+6E9kmYC6zQH1LEIQHZr5NI4FFEG6MnEe1/n2vdSyGBBewzkWmvkBLyaJYmXxF2PXGO2g9ugMFShlZShAb3EdfE8TXPGYh+pYgCA/MfJtGAosgXIli6HwNVvuyUVD8GzT1TON7enOGSYxcPIJ1CXvFyMn6A8ryztCnqkpMb4/NdxaibwmC8MJMt2m0yJ0gMpZxhM8fQalpjxv/miMIjdAbdQRBENMhAwSWhOjwZZyt34tNy8sWztQGQaSEKYzd6MJf5f2KHPZ7IwiCIMTIAIFFEARBEAQxu5DAIgiCIAiCSDEksOYSI/9AzcpcrNh6EC1dX4P/hCBBEARBEPMHElhzicE2bNMXG1t9bJeYG0QR+T6Ma73/RuhiFzrP/Dc6uz5D3zfDJIoXPMz3Q9fRe+FDdF4YIH+nHaqLMw/FfLKQwJpLkMCaF0z2NiCg+4lPq/By8LvYpp3EwkG6hd7/+RuO7n8BJfnap3XklI9dbf2s+yHSBdXFGYJiPiWQwJpLkMDyzsSXOF25Dg8sr0Dr1dndeiMaqsVi3U/GdP/eIObMVpWpsFEa7ZwOpOF/4vCGtdi0rwkf9o/EOmhDvTQl32Ycv5LBW7+kOT4ypi7Otp0p5lMCCay5BAksz/BPrtkVHZjNz/RO9hzFQ7qf8vDIk1uxc+9B1NW+juNnLuP2HHlsToWN0mnnWUcKo7NS+zbhfVhcG4o9qUs30XXoCduOXD8vA0l3fGRKXZx1O1PMpwQSWHMJXmAtqsGFcb51mEC44yBKAuzpuvw1nO6br08QqSmH4ck1txah2aztvJ9m+94CuNvI3RdptfOsEsVQRxV+rpWVJWMnIq/1uYnBmz9iTBrHteZnbM6bT0y/LqY9PhZEXZyr9XAhxvzsQgJrLuHYWEQQqg2oAe7DQ0d7Uv7l79khNeWQhtqxK0u11dpG9M3mp1t4P21uxY05utDD3UbuvkirnWcRafgcXta/SRhL9p1IlIVAuYfz5jrTr4tpj48FURfnQz1cKDE/u5DAmkt4FlgLpVGfTjnGMdh9AvV1b+Ps1Tuzu5iV99PWNgyqh+NImOhvx+/3HkJTRy+Go+lq9d1s5MUXabTzrHGH2WGdbgdne8jwnU0ONjZ/OU/tkoq6mOb4WBB1cT7Uw4US87MLCay5BAms+YFro84PpxeiuuuWenyusVBiappMXkXrc1tQ+Xo1tmWrfnW0xySGO36LbOW8XGxru6Een29QXZwbzAc/LJSYn10yTGBJGLt6AruW52Bx0Qt4s/smp8IlRMPncKh4CQugPDyyuQI1jZ3oHZ5Q/29EinyFYMMerM5fg21Vx3Cm57vEShGN4IfBHxDhnpomrzZivc033wzz7Buacc3wiDD3K6EnmwiVw95f0o02PJebg4LiF3Go7QoiBltNIqraXBr+F45vXwV/bgCle47YP/1Jt9F76nd4LK8QZUc/RtjpSde1UefL6MPihx9GQV4Am8pfQX1rF65FrCZiJhG50sLKuhSPbH0Zx86EEB6znwfwYmtnG8m4+8LNzt7znIRPZptoCHW5ql9t7KERr6up6Gy40YEUra+ZrbroHmNUF2Wc7TTdeigz83UxtTGfGWSAwGINQ98ZVFfsw/GuHgT3x98SMsxlm94g0pK/6I/oHuYroSzEPkB1UY7xXF8hdp34HGPqWXIQ64o/dzPqQ7H3PuJBmjjXbhBYCY2FSGM423i1iYxbObz5y2ArQ6c0hOBe+Tc5WN94Dh9UrYr/Xk5L9iFo8KcM81XXQazQz8vB6gMf2DfsXKPuL29ndzRjLKM5+YsOIhg2fVD57kXUrcwynrd8N1qu3DY1eN5tbW8jDfeYcryG5zwn45M0sCAE1uzWRecYo7qo4WynadZDmVmoi6mN+cwgAwSWcXGeIeVUo2s0Fn5T/c143KceX1KBxnf2qpU8G+saLkMfx5K+xukyeZQrdq4/8DieylcDm7uesdLEA5KvKOaKZKhEmsCSIhi40IkzrUewU7uPnrLxHyxvae+avNjEczm8+cu+wbmB01tzE3+rp3xUBb9Xz1WZ+gItJYsSz/Utx6a9b6PL3ABzjbp1J2xq1H1rsKfxLP5v4wvqW2o+/LzyfQzpLd8U7gRfwf3a+XzKq8DpAa6p9hx/DjYSiCl7OwvkORmfpIOkBFYq1qOkUGDNcl20jw8ZqosalnZKST2UmZ26mNqYzwwyTmD5Hy1DufbEoVeCMfQ1Pqmeowqq8W7ULIr9hp+um+prxC/Va2UteQlnw19wAcvvXRXG2XKt8k1DYE1exvFCc+WLJ6dOIMYUIn0f4XRbm3gK9rHmyR1PNvFcDi/+MjX8htE+cwPCGtA97+L9N0rUvxOfvgz5z3oeLaEzqMrRfm/xtObWqEv9OFmq5WERSluvxxqje5+hfpVqg6zfolN/UvyePVXmq+ebE8t/1TkMC8efg42S9IXRzt7znIxP0oJBYGUhwHVwZpzqsTicnacpsGa3Lk44xIcM1cUYNvUoJfVQZnbqYmpjPjPIOIG1uPafGGjbiWw5sPafx4h8ytTnaFqrfQ7gSTT1McUvXcfJzeqTlN7o8Qv9svCLo5/hniFg+UrFH1+Cne1hdmwSQ+274VeOJQappcCyfMPJh8WBJ7Bt6078vuNrJqGcMFVOkZRQka3wahOv5fDgL3OZDPk0NSC+p9F09Q53vrkB4cW1D8te68aooaMtRE33HfVcFcdGnQna7kPcFAd/Pz5vAdSFVPk6fhF1S+NbBGSXtuDL6214Tnst27cDp8PyXUTiz8lGyfnCcA3PeZYR9UmaMPjdOU9zU2DNdl10ijEZqosx7OyUgnooM0t1kQSWOBkmsNQnmGgYF949pQ83S+E2lGnTg+oGn9HIv3G8WJtb1yqLxbVwE50VS03nMQxPJ1oFNlYUJ4FlWE8gL5Yf+Ah1RZoI5BoEV0yVUyQlNJhWCNjEUznc/ZVQJkM+jQ2Iv7QVAxJ/vrkB4fO6EtVdw+zyfKPON5Qx+CfXxIZGwtiVP6NEiyf+foaYWIf6nlHlsNTfjI3q9fQheulLtGzQ4k8bthewtaONGMK+MF7De55lRH2SJua9wBKIj5TURfv4iEF1MYaDnaZZD2Vmqy6SwBInwwSWVfBIGO2qxs/UwMny5eOxJwJ6IMWSVlmMc93+4rfQE/kJfSd2oMDHnjyePoFr2nCSoWHQKo2xojgJrMQA5iuGVSVMFwI2UXArh5fK7tDgTPagfpn2NJeNXzZ+znLocE1+KlibKuB9Z5g+iOHe0AyjS18QHL+fQcjrMWWKv+xXELwjG4y/hrbmQcTWDjbSEfEFfw2RPDNEfWJG+hHXPg0hFEo2fY7BMX2OxJ6hduy06owtiMeA2AadU4Mh/H8J0/F/R9PetbH7Zm9F3d/N/2fJ03T9bNdFlxijuqjiYqek66HM7NXFZGM+kyGBhQncaC1T/2+T8n6nv1lh3PHZhwc2v47gwGgseHkMAusZtPTLT3zGey0MgSVgE4UZFlgGu6tPwU7X5KYY9LV2/DUsRhTcG3WrFxz4KQWWChvQq4SUqSz6btTWbxZ5t7WDjXSSbdjF8izsEzOG3yeTEkc+LOFjwSVP8RhwybsJPnaEkqX/EpnduugSY1QXVVzsNC2BJZZnYZ9wJBvzmQwJLFMgZuWuxc4Db6KlrQNdoV5cG5S/w6SeqjCJkdCb2JirVSyW8spwrDscC2ANQyBrDbxN0KsYGl/hSphOPNpEYQYEFr9nmMHu6no6w9oO4zV5m+e91g1lEvJOEFXahpMpa9SNC1HjX/q3iwnj+fHjXm3tYCMdwYZdv4ZgngV9koDh98mkzBFYs1sXXWKM6qKKW11Mth7KzF5dTDbmM5kMEFh30duwwSF4+ADl56oZ0m1caSrHiuI/mPZKmUSktxWVAW2OmyXfo3j1PLdxqSGQtQberqLGMDS+KRNYM/8WYQwPNlFwK4ebv2RMDQ7f8FranffxUuzpuBk7l+U5/iSrraOIYqi9Iv50a9Go81/wN/swRmKjbviWmCHObBpIwxoRsx282NrBRjqCDbt+DcE8C/kkjcyCwLKGs7Oln0SZrbroEmNUF1Xc6mKy9VBm9uoiCSxxMkBgJVYwI6O4dFR7k4MP7nGEzx3EamWe3jqgpMhlnNyzRn8rMOvBQ7ig7X1iEcjSrQ5UOnyKY2YElqlyiiTPT81xHG2i4FYON3/JODQ4rg0If0/+OrHhcmnkXzi8hmssLRp19iO9I/bWqH+FgdZn4zbR10nIWH+l3vAK+H0bcLz3bux0DmdbuzXqMsk27IJ5FvJJGvEssPh1L07neYWzs6WfkmPm66JLjFFdVP/rVhenI7Bmqy6mOuYzAxJYhienZahk6l2SRjHQeQgl2tCv71mcHLjHzh1m1yqGP+8Z1L3/OW5HJdMbHFrAMvhtHuSh2KuD6Kl/Ml4BWTI3CPNTYAnYRCEVAstkK77BSbpRZ8cvfo1Q3QaDj6bfqC/Cpjf+hOrl2tNkFgprLyLeRBsXqcbeHjW9vr2qHpfuyY21mK1tbaTjHlPW1xDJM2PBCSw+blLR2XDXs/STV2a/LjrGGNXF2GUZznUx2XooM1t1MdUxnxmQwGJIwx/HK11uAE+tz+cqdg7WHf00VgkNm9b5sDjwODYF8tS/WXCXNKNff3NkHP3NW9TrsHPzl8UriJpmR2DNMEI2kZlFgaW/dWTfgMSnGLJREFiV4KPETonBNer6WhED/P1MKa8SZ8Om71ve/RT12pN61mbU/O0gNulTGHnY0toPxYSCtnZu1GWm0bB7zbOMoE/SxnwXWGmoi44xRnVRx7kuTkdgMWalLpLASoYMEFj8m3t2gTGJSH974jelWMV5oKwV/RPaUK/87Sntg9D8eSz5NuDwxWF2RpyEIW52vZ8/+zy2qtOEZoE12duAgHbufBFYgjZxL4cXf/GNMUv6mzPyP/i1B1qDzK8lMd0z+g2CBx7lBDXz+dZK/Dqg7Uvj3Khbj/LZNer52NXWb/B5DGbDwX/geHmh8YmdJX/xn3FFf8tCzNa2NtJxjyn7a3jNM0PUJ+ni3v/i+FqtvmrrgKyYowJLMD5SURcdY4zqoo5zXZxOPZSZjbpIAisZMkBgsfAbZBXhyeXw+0pQ32PaCZhD/ir6h40HsI09ifjzS3GgqRuDUUMkK0hj3yJ05hhe3lqExb58lFQcwXtXbllX1qEQTtaUY3XuEqze85+4MhJGUPnApsWnOFgDc77+BXZuDlbs/wjyC7RxbuGT2ufwqy3rUZD3PE4q2z7MHbzbxL0cnvw1dhXvKXZ9EBsbPouNMCqMY7D7HRxgv89edRghZR2ExE4/hcoi9oSZ9yJOD5juGb2JUMsBbMpfhseqTqE3cp1r8LQ3beIYGjvPjfpSlB7+hPvmmQXSCK51nUBdRQkKspZj0753cGHQwj5ebW1rIw0PMeV2DU95TsInaYHV1x+vIti4j8XCKrzQfoMdsWKuCqwYs1oXHeOD6qKOo51SUA9lZrQuksBKhowQWHOO6DCuhbpxyaLCEnMB5ydKw3C9a6MuL9hlDW7UIKWJeY3b23VE6qC6ODegmE8GElgEkYBAo76kHPX/9Xe0NLyOutpjaPnwK0Qk/pMZdkPuxLxCGsPtm4MYvNGHS6EP0VSu+ZfbJZuYAagupg2K+WlDAovIcCREI8O4Pcav/nVu1Kf6m/G4/pkNcypkT8mfOv6emG84f+3B+u01Qhyqi3MHivlUQAKLyGzUb3P5Ay/hZO/t2FOZYSGo9pkjngj6msvxgKnRUZJvLWq6/02N+gLD8AKKKVFnkyKoLs4pKOanDwksIrOZ+gItJep+Zb4i7HrjHbQe3YECrTHh95DhkV9IqNuCFYFS7Nl/BE2n3scnV65jKCI3O85P3cQ8RLqJC387hKrni1Hgy0bB+qexbXsFqv/4Jk713KLpklRAdXFuQTE/bUhgERnOJEYuHsE6y2mGRdjY2AvTTjkeoEadIMShukgsLEhgEQTGET5/BKV53EdbWfKvOYLQSDJvHNHCWoJIDqqLxMKBBBZBKExh7EYX/rqv1HHfG29IiA5fxtn6vdi0vMxi3QhBEPZQXSQWBiSwCIIgCIIgUgwJLIIgCIIgiBRDAosgCIIgCCLFkMAiCIIgCIJIMSSwCIIgCIIgUgwJLIIgCIIgiBRDAosgCIIgCCLFkMAiCIIgCIJIMSSwCIIgCIIgUgwJLIIgCIIgiBRDAosgCIIgCCLFkMAiCIIgCIJIKcD/D1nCF5wKddVWAAAAAElFTkSuQmCC" } }, "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "- The first statement in each branch is almost identical. Could we make them the same? We can, if we adjust the position in the second branch:\n", "![ch03-lab-fig5.PNG](attachment:ch03-lab-fig5.PNG)" ] }, { "attachments": { "ch03-lab-fig6.PNG": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi0AAAC2CAYAAAAV173bAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAE3SSURBVHhe7b3/UxRXvv//+U9SNUXVFFXEpdBUUlqsaMlmLvHLxncQE6MkskqSQk2yyKYiZlWyZaB2wRgwu7A3sJsP5IruBe87eCuQ6ySR7OKWkwSvUEoSVEgGg5Eoswgy0M/36Z7untM9Pf1lGGaY8fWoOj/Q9HSf83qdL88+X/8/EARBEARBpAAkWgiCIAiCSAlItBAEQRAEkRKQaCEIgiAIIiUg0ZLuTP4d1WuzsabkKNp6b2BakK8T6cPsdfRUP4+8jHy88uF1zMuXH1iE7/BRxeNwZ2/BG13fYla+TCwGAmZ8dfh57g5UNvwX+sdn5OvJZqnGazFYzLQuPTuSaEl3xjqw66GHkCGFMnSOBeV/JJp5TN+5+4CLJgHBwI8YuxVA/LwwhaHm5+CW/LsOB70/sLckmiXm26APddlyni/pwJh8mVgMgqyKKZPrl4ewvNYXx7y9EJZqvBaDxUyr1bMXo04zh0RLurNERIsw3oV9GZlYs+ckhh5I5TKNodbdWC76wbUZNX234iMupvpQ/ZhL8m9maQf8STDtkvMtL1p2tGP0QcxuCYNES/JJlmhZpDrNgtQRLbPfoLNiEx5ZXY72qwH5ogMW+vtUZUmIlnnc9b6Bh6U4eFDnS6L9k5YP5nC7+3XZBiysa8Cl+wst4kGMd5UjU3rmJmbXu/J1K2ZxZ8iLlkPFyHMxsbH7HfQMT8ZY4SySbxfiJ160ZNfCl76tlTWLnt9TVLSkVXuQLNGyGHWaNSkjWuYGG+GRjZNZ3o0J+bpdFvr7lGVJiJZ7GGzcIsehFKdGkzfLIKn54K4XlZmKLzajoX+BlaUwjFPF2aG02O1lCfrR17gXa1xKPOSQ8zzqur9BwHGdszi+XZCfSLSoLH5+T03Rkl7tQbJECyPedZoNUka0BH21oW4oMURURLPwdx9FkWcjtpe9hc6hSMOZ/z6N4UXLsmpcmFl8JRyJH2fLVoTisKoel+bky46x9rMVyc0HN9FTvjL07ocy8cvmKwuYNCtgdrAJm6RneVDd95N8PTpC4BL+snuV/H6DEFMXb7x8q8XaTyZ5gUSLyuLn99QULenVHiRRtMS1TrNHyoiW0Li5nMk2NmNIY5kAfLUe2XAu/Ly+H/q60/z3aQwvWpJVOKd6UZUVisPCvmqs/WxFcvNBEP6OPfKk2YXa4idceCtkC/eWFgzNmkkNAUH/OdQUyuJCCdlbUNnYhpYDG9Vr7uJ2jDhRLXHzrRZrP5nkBRItKouf31NTtKRXe5BM0RLPOs0eNkQL+6Ib7sLvDtSgpXsQE8FkfKmLzGCs7yQa6t7D2at3dV+DfAUWzWlmv09jloBomR9qxi+lOCxUidvxsxXJzQd8t3RGfiMGY+2ZmDyPqhXiBNzHsK/re9N0CJP/xLENWardxOAuqMJZaR7LNIaat4X/l/kGvHfteyguvhX86P33f8cp7/9ibFp5gpWfTPICiRaOxc7vqSla0qs9SKZoiWOdZhMbomUG11qflyOdj6re2/L1pUQ8GrM0JemiZQ4T3a/Jk0XXsvyzEB2eBn7mx4AdCoQw3ATctcfgu2dS5QaH0bknV7WZ2CvxyO4W9E/Ic0+4eTFScL2Ks+N2a534+DYsfFjcDpyz+aVmU7Q8SL2qSSFVRUs6kVzREp86zT42RAtfObiw/PHHkZfjwfayN9DQ3otrAaMKbg6BgTbsW70ST5QcxIkzPvjVL6hIhMC38Dbux/rcDdhVeQJn+n+IMIww2oEXs7OQV/gKajoGdBMGrRsz89+LOInzHIJyj5Mw8U807V4Hd7YHxfuPLznVrhm73dKKaxGR44cOcvDEjnJUN/dgUGnUNMSS7ilcqt8k++Z5tA0bb05kJw/YFy0Cpq+eZL7MwvKCl/Fu3001bnbygaM0CncwePq3eConH6X1n8Fv1RM5dxlN+RlyGmKcGK0KjWXY2jwI06mv3JJoMbgL/4h+tczy82Lk4OhLycS3s9+gY28+MnOLUcVv8CYw+87xNtJ2Lys+tfaTTdES131aouUrB2Vo+jJad69leWoHGnwT7HefoWG3B2sK9+OE9zqmBfassT78RVrZxfyVW4iyw+/jwphBuWF5b6D1VeSvfREN0m/l6xxxz+8RmDVqTuoWnujl1z7mja2VXezVR+w+/3/jN2vXoejVGrT2DOBHs/Jvw19hnNjASljE6gcRG6IlHnWaAxyKlsjgLjgKr19XoO5dRN1aJRHyfatfRdvAHZ3hRWN+jKoCbdd1hisf+05ewbR8l4j5xCnrxsxy4pXtOI/De2At+38WNjefw8eV6zS/yVhxCN6JRe4fc4Am3UYVuOBHT4WYHi4NLLgL/oA+TTpiTTc3UTOrCr1T+qJnPw+Y+5kV8qEzqCo/hKbefngPc2nivrbN84HTNM5hovco1qj3ZGH9kY8thMsoOkuUno1taBnSptAaTmhk7EWn36rimcZIRzkeYfdHlFXhB3g1aczAL+q/wn3539aY+Jbv4VMn6P4LA43PwK2Z8DuBXtVXK7G/+6Z01bK8muWFiW7sV+YrsDw/IlXYj7HKfy+OdZh/QEViI1/ZLkOM8S7slVZuZWPXSa+uF2wtKv7zv9FcnMNdE4MLjx4+j0n5ESH0eS8TeduqcHpQW1/FN78rsA+84X/gbNcn8A19C1/jDvU3Gj84sYvN8muOzXgxotvFSX0UnlcWCuyjfvMb+MB3M6L9secvJzawn1ZnfhBx8GyJhdZpznAuWlwbsL/5LP6n+WU8Kl1jBariI4yrluf3bdCFnHJ0jnAJEm6gs1Su9Fhwe57Gs7mycNBVgoaZTAhg5EIPzrQfx17ld2rIxL81XmbmD2FeeB3EWeMgo5CLSu8t+d7ko0m3gWiZH27F08ry1xXlaH7/gFywMrGJ2S/cJMaY7rl+NKySv/SNvuLt5AFbftZ+EWgCl5fM84HDNM5/jbaiZZH3uVZj+4H30KsX8xJ3WUWXL98by74md1l5FHs3jBqyKAS/g/ftP6JHEx8mfq62YCu/9Nm1M2pPmCFmvuUm6Kp2nmEfBitD9+e81QfpTfNX0LIxU45DuMKL6ic7eYEXTE++isodWhHgLvwzBmxvgmedr+yXIYbaC8QauNxV4TTqg2sTDhzdG27kdI2WMPkP1Og+sqSwugYXAuEb45rfJeYwefE4NvH5hgt8o+bILjbLb3Tsx0skev6y3yZpJvPyIeM19OjEgD1/2bWBs7Q684OzZ4dYaJ3mDGvRohnzXobi9ushZXj/KzSsk52gcdItpt75rwc+sIq28hwmZNuHx7JZWPE6zvq/5goR382kc6bS+Gq6pSJD2MBRfq9iP86RBZ39f/8H+OidIvlv9gXVMSrfa8Y8AkOforOjw3nwDjEpaQ9z0cJPwpQz8EwfqpfJ92uGk2JMt+6rN0I02ckDtvys9bH7yVKUKV9LaoG3ygfO0qiJe8ZLaPOdQaXSUEfNB/xHQAwFXB3ucbKZnAERvSz6fG4DM98aTIYVWOW5VXmfcj//DHVJvomf7OQFXrQYBifzb6zy1T0HZYjB20UKGVhT+Td4/xT+mhXDw/u7cdsfbT7aLPwde+W5RBnIr/biq/9fmXfIpy2++V3i3hdo0E3q5kO4znVSt4jYKb8m2I6XSHS7OGmTwhs76sMmNPRPyfeJxOavqDZwlFaHfnD0bIUF1mkOsRAtrGHtqwmrfU0m5jM8F1Hua0oMmcVt+OZ6B15UKibXHnT6xWTzk/iUbmn+mTZEi/rVKV+XAvuC8TyDXSV78bvuG/JqBovCazvOIrqC7noOLVfvcs+P1ljp0cXJSYiofKJjKlqMvnKF6zi1Q+490FSUsaVbGG1Hsfwb9etaxW4esONnrT2X1/4DI1JFwSpitUfCIh84SiNfGbiwiqVtStMg5aO6z0hULKSAcz2CG5owaLrM2QwB9/pPaL+mpLTyFa01pr7l85Hkx/va3kw5bxlv8mXmJxt5IUK0iMKgDe2HFJGWha2t33Dd8mZY5CtHZYihFy3SEN89bXqVHo5ok+j5oeyI3/N5NJ75XYSVV+8huYedhdVvwjt+kxve4xo1p3axsrN8lzEO4iURzS4O2iThe5zd85h8PRvFrf/E+Wi9DTH6y9gGDtPqyA9O7aiwpESLgOmBP6NIrdw4A2u+eMLKUvM1pRQ+4Ru0bVHUm9LlyDtI6cHhN6qxI1oYwQB+HPkUdQWKY4yMZvJ7hv04i2gLemhfC/75+oIeDV2cnISIyic6vGhxl3VhXL4uIrAvuVLFt/JXbjDwJZoKlXTzPogt3fz7IzM8/3uLPGDpZ4NnBf248MFpbphGZ3OLStw8jXw85a8lTYPE245nAQVcrSiz8Xz7sM1G14DZQbRsUQSFGFil6LSXhWHuW94+4iTdSW4VIgtS7+x99rX6qjwJlxcSFn6yygt60SI1FBOc3aNVvkaY5ytnZYihEy2Ze1iZ1OQxFpSea0PRImCKfUiukq6zr/bai7iniWP0RnBh+Z2haahX4MWOGyw2fH4O29WxXSzsbIqDeIWIZheDOESpj8T0hT9qX8CpkdtRynWs/opiA4dpdeQHx3ZUWECdFgM25rTwE+XCBtYYQ004c1BvFX4mJzC8/Il/hlI5aeeRhFY1/AtDJ/cgz8W+nJ47iWvq0Gy0TKbAFz4jo5n93kmcGfw4/kPK3hTRMmHyid6w6NLtysVTz3jCvTJS4DJ0jOkOv1+pBHic5AERMz/b8YFFPnKSRr6LVWlk+AbJYFw7BF/Aw3M47KCOoWeU4+x4ZNVhj2mMtJfJX5NKXO1M6I3E3Ld8OsVep2HNF1vGQ1vQNPgdd20D86fyPW3hJwmTvKATLQ8f8OKurcrXCLN85bAMiWhESw5KO0bYU3TpVeavGIqWubDQW1GJHikf8L93IP6clml+KE/Ng7xdlWfEYBdTO1tgO14K0exitz7SrngLzefihos0c8Ni9VcUGzhKq0M/OLajAn+PszotFhxOxFUMyXejsaBOwtNlBvWEVf4Z4QpDmDiHg9IGWeJ1Fx7Z8Ta8I1OyA3miZTKFhYgWZ3HWVjrKeKSNzJYkoouWWYy2l8pxjhJyfhtePRBTuvl8YmwX+3lAZJFFi5M08g2KMi7M/z6i+1uBF8P6ituMGQy37pQqv1AjHAuseRzpwL4cxd5isLFs2hAr3/L5i1XM/96Kd5Q5cFLIwa73/opqpdtcs7+DhZ8k7IoWpZc0Snm2xCxfOSxDIpo8Jgq3e+JFTXpV/xqKFkbwLq71nsYHvd/JaeDjwccxjvmd5Z0ZXx1y5We5dytnXfF+UO6PwS6mdjbDSbwUotvFXn3ETzzl/MX8Mjr4Jb4YuiX7RSYmfxnZwGlanfghFjsqxFqnxUaMokU7cTVciUarGLT3h6/PYdL3LrZmc5VoTilO9Pm1Ttc4k4WISVwmFZiE2e8dxllT0BVVyc9viObY5MCLFm2lpU13RvZG7D3yLto6utHrG8S1sZ+0+wjElG47FZHdPCBi5mc777LIRw7SyNtVnc/Bb7IUVbTwaXBQwNWJ7/bOGTJkegAt+pU0G06g32xzuqhY2dtkRZ5R0PjCwk8SJnlBI1qU/WP4/O7kCAizdDosQyKaPKb4X5teta6JJlpEhCmMXepB61uvoChXGSYTAx/H+OV3bQPIfXFrpgko98dgF1M7m+EkXgpmdrFTH/F5j+8pYQgzCPzLoEw79peRDZym1YkfYrGjQox1WozEJFq0S734+R5aI6mFzzThcwgMtqPCo4yxseB6Em+e5zfT0WWyiAbBrDETMfu9wzgbVjr8M8J7TZiT7NVDfJx5HzLETZBayrCm8PfhfT1iSrfdishOHhAx8zN/2nC0d1nkI9tp5HsZlKER3WqCaKKFnysV7Z4I5jHZ+2Zoglysx78LE/DVbQl3aYvBtQXHLk7obGwXa9/O9dfj5/z7WHi4vAX/efhxzTVxrN/TGN6ewNJPEjZFi7oiifejWV7UY5avHJYhEUvRwr2DTwffsIpL2Kuf0XXzK4GPY7zyu4hRWvWbEyrvjsEutsqvEU7ipWCVv6zqIz7v8TaS90TKeR5v85vB2faXlQ2cptWJH2Kxo0xMdVrsxCBavsVI+wvhyk/Trctv+R8WAJplZGqXqBYhcBmn9m8IP/exGlxQl7lZZbKFiBaHcbYs6EbvN0IXJyfBsLvcmOiihd/NlI/zDPznjmK9NF+Jy6QxpZtPY5QMz2GeB0TM/KzPp0bvsshHttPIPyfUrR5xvk+0wsu/w+6mWQuegMt82vV6eFWAFDKw5shnjiffhrHhW3UjNSWIX6VMcPPj7FLQVahWfpKwKVrU39rJH0aY/c5hGRIxzGNRbMmnQy27s9zyWReWb65AQ+tJNJUrQpB/X7zyuwh/Xe6Vidi0THl3DHaJi3+s4qVgJ3+Z1UfGeU8Y/wi/kYeWwivhnPjLygZO0+rED7HYUSaWOm0BOBQty7D9nT+harXSA6HMhlbQTvwJrVbRLVFUvxTF2fyFcDNVWvfRFdwJCrpVPEohCqFpfCMymZVoMfu9kzgzHBV0M3QFx0mIi2jhewtWoYJ9LQjCFEZ6alCkdI1Ks+Ll/VFjSjefRl03qoSzPLBw0aKzR8yVOJ8udu3ijchejCgVId+Q2z0RVRhpx/PSb5QufIdoJlwqIRtFB2pRX1uLuto6NDSfROeZHlwYCdgURVa+ZUS8VxYnEWKmFKdGdVuNmZZ3kYWIFr1IMsMsXzksQyKGeYy3ZfgdvA3CQ/DKLsSZWF/9Gcal3Zf5rn1tHOOT30X4XgDx3n8ZCGHl3THYxWb5jcRJvMIY28VufWQgBoQxeA8q8VdW3og48ZeVDZym1YkfYrOjRAx12kJwKFp0IacCZ/WrDvjNaTJ2oPqvR7FdHUrKwU72pSgJMc2mdUyBep7Gdk94vN1d1IphTrGZV2ILES0Mu3EW4Qu6ukIkWkFPPpp068SOMPFZWIBme/Ds5lyu4c3CpvovwoI0pnRrBaE69KbgMA8kVLRYpDE89JGJPM+68DPVoFRwWsI9ePohkWhwcwxi/YrRDHVahJxX0DnCd9tHw8K3EvxyUTHIWyPo46Nu8x/GvLyLmOQFw7lFsZZR83zlqAyJxChawvadZPHZIF1ze8rwVm0Nql4tks4p0v9eJF75XRyiDM9RWolnXyrGGo3wFEP43Y7tYrP8RuIsXgqGdrFdH/FbgWRh/YE/ovnw0+HnaY4/cOIvKxs4T6t9P8RmRxHnddrCWIBoycW+jmGDikpAcOzvaCrL1355sqDdPpvdpx7ipL3PaKxdMz6urvBRsBYt5r+3G2eGpsJVKh1epTqpEBcfzbHhET004hkTXZHnbLAC+0hpO4b5zctiTDdfOej3iXGaB8z9HP1rk8c0HzhJozhOfeRJLr8wm5VU4NceZZKdkWjRVgz25j4pX2pOzwXi0Z+RYhaiLWuMxNy3Irp5PuoJ0loxY/R1Zl5eRUzyAu9HVRBFa4ytsMpXDsqQCL/Zl2oPbs6SuoqHty+/pFzA7HA7XtSsAOODNo5xy+8i01fRwQ+XsOAuqET9oSflv/l3O7SLzfJriKN4hTC2i5P6aBYT/Se1816koG8XnfjLhg0cp9WBH2KwY2x12sKIUbSsRPGxz7nzhgwQJnGt9yTqypmqzFiN7YeMTyoVpr+H78wJHCwpwHJXLorKj+PDgduRYogZ9MPqMqzPfgxbG7+S1aHCbXxe+yJ+tXMz8nJewimj81NMfy9jK84zGOt7H0e2rUbmumPwSWOcTHlfPY2KAqbKbX+pJgjWuJ5veJmlOwtrDn9q2HUnnmj6SfMR7GJfFe7cYhxp6cOY1I3JE1u6Nd2rUU4Qtp0HLPwsjLEKh8XP7SpiX/RRFgWb5gOHaQzehK/tCLbnrsJTlacxGLjONaRGQzn8ygy7Qz2s4e+txdaCN/BRDHuphNBWnO7czfhVyU7NV6T4Fba95AXsP/wO/sM3zn5hjR3fSjZq/z1+XZiLTPVLVZzo+DdUSf7mD0/ksCyvZnlBfP5pHNz8GB45cE7O8/I7Rd+uPgyvtAeFPezkK3tlSITF4+pZHNuzCXm6vagCY1/jku8yRuVTuIWfvsIH0mnP+UzI3JauhQinxS2Wl1ffRFPHGbQeZvdmFKDqPCcf45nfRYK3MfBhHUpXr8T6PX/Eef807vc34BdyPtD3uNm3iz07R8VhvMzsYr8+UtJ3iNUB4mnMe3Gs64rhSdp2/WXLBk7TyrDtB8fPjqVOWxgORYv4FcCcFzSqnQjCAL6rXv2yTFesevy4HgY756ksdR4o3xJREabg953BicpyvNn9nS3BmxCWarwWg8VMq+mzE1+n2RAtfFeuk25VgmBozr4Id32nJxaihZuYGt68KYV5oHxLEEQESajTbIgW6/kiBBEdfrdEF3JrLyJyECkVERAMTODOND/7w7yshA8YTMyEtcUnXX1LEIQdklGnkWghFhl+ohYLsW6OttSQvzDcntdxavBOqMtUM7FR2YlVgV9t42TJ7VImTX1LEIQNklOnkWghFp/J86hSz/PYxPKQw0l2S5H5r9FWJJ+U7CrAvnfeR3v9HuRJaWQhogHnDk6LEDQpTDr6liAIGySnTiPRQiSAIMbPV2O9KxN5hb9BS3+MZ+csKeYwefE4NkXsZSAG40MIxR02T1cW6VaNpDrp6FuCIOyQjDqNJuISRMzMwH/+OIp1ezC4NxyHb5JW0hAEQcQbG6JFQHDiMs42HMD21aXp061NEHFhHtOjvfiLuJ+GyX5EBEEQxMKxIVoIgiAIgiCSD4kWgiAIgiBSApuiJYjxc4exxiUerV2Jv/T5I7YJVhHPZKnehjxPCQ42dNg7NXby76hem401JUfR1nsD/FE/BEEQBEEQIjZFi+78oYiD9xRm4e+qwCPcpMQM15OoOvdddJEjwh8lb3jQXKKYx/SduySaxHlMgR8xditg7jeCIAiCSCDxFS33LqJurbK5FhcMjp7XsEREizDehX0ZmViz5ySGHljlMo2h1t2h02WjHWZHEARBEEkgjqJFwFRfDVZJ92Qg//Cf8acS+Yhvq8PUloRo4Xf3TPLS7tlv0FmxCY+sLkf71UTHYw63u19f4C6n4umxf8be1VlYLg0T/hf6x61W1Iiny57EvtWZcOcWoaL1svFJ3JbM4s6QFy3S6bhMgO5+Bz3Dk2kvvISJf+DYlo3YfqgFnzwA6SUI4sEkjqKFP6I6H9V933G/sRAiS0K03MNg4xY5DqU4NarfGixxzA02wiPbI7O8Wz5aP4Hwp/c+tBkN/U6Ek4DZ4Xa8qN+7ZHUFOoajyxBh/BO8WZAVut/1JN48f9N5wxv0o69xL9boN3zLeR513d8YHBmfJgh+9FQoZwAZH01PEASRDtgULfzBaCwYipa7uPBWvnzPNrQM3YpNtCyrxoWZZLQufpwtk3uGrIazTJmFv/soijzsq7fsLXQOOe8pCfpqQ8MzYsiuhS/hLRC/oWAmftl8BbY3OxR+gLdynfRbd+EJ+CYC+L7jVannxl3cjhEj1waH0bknN/Q+O3OgDBACl/CX3avkOBuEtB3qCmK8uxKPcmkl0UIQRLpiU7TwW/mzYCha+HtEkTKFa63Ph/7OqkLvlElzwYuWpDTSjKleVGWF4rCw3g2+V8qFn9f3Oz75MjS3RrbHxmYMJXzL9yD8HXvkMyWc2WN+uBVPSz0dj6Oq98eQSGDp2StdE8XstHRfmACuNpcgU3rXKpS2XHLYIyIg6D+HmkJZcCohewsqG9vQcmCjei2qaEphhIlzOKie/RMKJFoIgkhXFlG0BFmFOoiPz5zBWZ/JEmmRJSBa5oea8UspDg57FiLQDqXF1oCIc0JOoqHuPZy9ejcpvQP8EFVGfiMGbSkvboiQnwsT9KEuW3zWCuzt8oeuSfDn92RhfdUnGHeYWGHynzi2QR5WkoO7oApnpXkd/JAlC5lvwHs3bQ79YdxleW2TJu1iINFCEES6Ej/RIh/VH7rH4byUpIuWOUx0vyZ/7a9FVe9CZpHEQ7QsAfh5LXYbe+EbtG0JCYifHe7FlHw5LFqysatjVL4o9hJ8jhp5Hkvmjr/iqtMVW/ywkhRceGR3C/on5PlIwjBOFXP51mpCeKoxdxXtL+5ExdtV2KXOQSLRQhBE+hI/0aI2TGJwJlo0czi2tOJaRNvFDwHk4Ikd5ahu7sGg0jhpmEMwGHqAMPFPNO1eB3e2B8X7j5v0WkzhUr3yxRr9iG0h8C28jfuxPncDdlWewJn+HwwaByeiRVkxk4XlBS/j3b7Q5FNhtAMvZmchr/AV1HQMGAyXxJBG4Q4GT/8WT+Xko7T+M/jl30dl7jKa8pXl6zb9qeaBZShuv67GQxhtR7H0HHGC9l354jh6jxSEnp9Tjs4R/bCRDab6UP1YeGjEXfhH9AcUUSJgdrAJm+T/ScF2j1GKoSl7JFoIgkhf4idaZlgDskypOJmw2LYTu0pKUNY6aDmnQyNajJ6tWx2hBHfBH9A3wT99HN4D4n1Z2Nx8Dh/LE0LVsOIQvJr7FbhJuIbzb0TR9DGqlNUtSnDlY9/JK9A2t1aihQmVoTOoKj+Ept5+ePkJzvL8FfOJuLGkcQ4TvUexRr0vC+uPfGwhXHifG81FMWD+Clo2ZrL7+R4Vbil5xmvokeLGTx714A3vmLHQsmQaIx3l0maG7oKj8Po5sclNCA6FDPyi/ivcl/+dVpBoIQjiASEOouUma0QfVydt6oOdCtRKtIQnd7KwohzN7x+QG+BMbGq8jHB/iy6eESEXld5b8r0c/NCW0de4cAOdpeGJnm7P03g2V+6FUESOEMDIhR6caT+Ovcr/1JCJf2PxDD02iLGOMt3/5SA/y1y0xJDG+a/RVrQs8l7Xamw/8B56+cZehV8NZnffmkkm2Daw+zPgUdIrfI+zex6TnpO5p0uasyKMf4TfSJNHmXiq/hwTsSmWEOKxEW//ET2aNAiYvdqCrfzSZ9fO9D2hnEQLQRAPCHERLeHlsUrIRN7mYmz3rLC1esZctPCTKWWRwvfqaIaT9A26C4/u/wAfvVMk/62dU6Ey0Y39ymodI9GkTtJlYcXrOOv/mnuPPHSiGU6JDOGGRCta3E+WokzpwZFEy6xW1ETEx3kaNfHPeAltvjOolFdKRbWJpsfIrmgJiwX3jjYMB+cw2fd75EvP2MSecZclPzwPxb3hOHyTVrkjBiJ6WZiNKs/ZFEfzCAx9is6ODufBO8SsphCv59hAI1o4wUgQBJFmxEG0zGHCdxLHjpbhCfXLdgFzWvSNtDrkIP5fHqYQruPUDrnnQNMToYun6zm0XL3LiQDjBjo85+Ih5LzVB+33OD9JVxli4N+jpNVoJYcLyz3PYFfJXvyu+4a8IkkrWpbX/gMjHXvZ81nDevg8JvU9MVaixTKNvOhzYRVL35SmkePmmWiIRbQwhAn46rbALQrXJzciT1kZJPWohIdzMlzbcKL/JyZzxKG3z9AgzcspCM0V8n2/gPOfBNzrPyGvSJKDZCN1WrAFJj1hVkHjq3g9xwYaf0YToQRBEKnPkpuI6y7rwrh8XUTwd6BUaYDkjeeCgS/RVKjML+HfpY1naF8OvvEwrtD590d2rfO/VyaY8r1L3PuDAfw48inqChSRZdTYGzwv6MeFD07LwzS6xs5CtFinkY+rvDLKlq9iFC0iYnpaDmF7rrglfzGOtPRhLMj8NtKBfdJOuctQ1HgpNBdo+hLzpX7oKpb9WmRmB9GyhX+ek14WEZ39nQQSLQRBEIvKkhMtWtEgYKq3Cj9T3uvKxVPPeMK9MlLg3qVZdq3st2LWoIcIv1+76iUEfyYREwnSCpV/YejkHuS5XFj+3Elc06wG5m1lJVqM4qNr7PS2dppGfihNmQjL+0qdHKuHFy02J+KawQ8LFf4ZA1JXyhSGmp8LzYfK2Immr25h2t+FCnG+i6PeEYVpjLSXyb1iSvr2otOfvCMZEoK6eZ8YSLQQBJG+LHHRMovR9tLwe41Czm/Dq2U0cVD2W7ESCfzwj3GFr9111IVHdrwN78iUTtwoLLJocZpGfg8cZf4P/4yo++LwRzc482ck/LDQDjQNyDZRlyzzE6qVniGnczP4nhw5bUyEbm0e5CZqpym8j0m0EASRxiw50aJ9tnb5cEb2Ruw98i7aOrrR6xvEtbGftHMfNHFQegf4OR1WIiFahT+HSd+72JrNNYg5pTjRZ7TTb5xFi37fGodp5G2rztfhN46LKlr4dCxEtPBiIgub6r+QT2/me9H4vXE4nxvls2hMD6BlR44c31BwbziB/nvG0jKtINFCEMQDQgqJFt1SXuEOBlrKsKbw9+H9OQzjwD9jJfZ33wzdq2JHtIjMITDYjgoPt1eL4WnEVqKFP03ahmjRiwpHaeR7kZShryDGu8rDQyjRRAu3u210YWMDYRRn9xqtFuLsoFlmfgveA6H7bZ95pE7+ldMkBtcWHLs4ofONHVJw9RCJFoIgHhCWuGjhd6rlBcAM/OeOYr00js9V0pYNeiw9H1qEwGWc2r8h3EA+VoMLms3orEQLH5/FEC38O/lnhYaSIs7qiSZI+PfEfGgjv4ncRtT03eZEBOdb3uczF1G3MjRkZO8MKJYXul7XnHIsDi2tOfJZjPu/6OzvJGjybryeYwMSLQRBPCAscdHC9xSsQkX3TQjCFEZ6alCkDNW4XsCpEXmf0wWLlixsbf1G93XOvuJrC+HOeR51H13BnaAAYbgVW6X7+fcoLFS06OwRN9HCrl+8EdkjEU20cJM7Yz31OjwXyGgFDzfBWRVF85jsfTMkQOxuBqeZmKyEbBQdqEV9bS3qauvQ0HwSnWd6cGEkYKPnhUQLQRDEUmWJixax4fsMVavlTduyPXh2cy7X6PJzJBh8HNRVMVaiRbtCKWLJs+bQPXHflaex3ROeO+EuasWwo9VDcRQtNtI411+Pn0vXM5HnWRd+rhqMfRXekC7GzcqE27hQvTH0jowynLphsPro3kXUrWW+lf8vBHw4IS1/drBM2WJTP03IeQWdIzaEUKpBooUgiAcEm6JF7m1QKkYj0aL54nUmWuYGG+GJ+uw5BIa7Is/9EVfxlLZjeJZr2QwP+ePnkBiJCK1I0O8TI4qa8GGNyrvlYDhvwkq08CuijBuYsNBgYUc7RvkXOE2juM39kSc5ocfsVlKBX3uUvWSMfMUv8zaaB2QDdZdhbk+WCIIYP18tDfO5czfi/+SG4hRxjpApP+HCW4pgswp2h5xSjPv/i6aNSvkwWrZPEASRHtgULQxhEtc+acGRbfn4xVt/x6R8OcxPuHTyLfy6MBeZ647BF3HooAmsYT3f8DLWZ2dhzeFPDYcixBOWP2k+gl2eHM2GZVpmMNb3Povjai4O4knKp1FRkBP1S1sz3BPlJGBh+nv4zpzAwZICLHfloqj8OD4cuK3tlZG4jc9rX8Svdm5GXs5LOGUwxCGMMRHE4uh2FaGh32A32umr+LC6jNnjMWxt/CrckyQRQxqDN+FrO4LtuavwVOVpDAauc8LKaA8WfjVSjHu0CD/C1/Qqina/h0vqyctGhNJTJdpV3BH38Pu4MOakN0TA7HA7XpSXOrtzN+NXJTs1vWFiD932khew//A7+A/feBo26ExY/3QV3mZxQ791eLlrNA3TSBAE4US0pDP8EmDXqzg77ngwJMWw6g3idtE1PPWaIAiCIBIPiRYRzflGyoZt6YyFaOGG+ty7O+AnzUIQBEEsAUi0SPC7v7qQW3sRTgYoljYCgoEJ3JnmZ3KYi5bwAZJ0YjBBEASxdCDRIqE9XyhjXQMu3U+T7gW518TteR2nBu+E5jpoJvPyu9GK8KupdBv6EQRBEEQSIdGiMHkeVer5QptQ5zOYIJuKzH+NtiL51GNXAfa98z7a6/cgT0onCxECbQ7jXa/Kq430goYgCIIgkgeJFhVl+W0m8gp/g5b+n+Trqc4cJi8exyb1FGA+GB8oKO76e7qyCHkRJ1gTBEEQRPIg0fJAMAP/+eMo1pyA/JDuLCCCIAiCWNqQaHlgmMf0aC/+cqgYeRmrsf2Q0/1QCIIgCCK5kGghCIIgCCIlINFCEARBEERKQKJlsZn8O6rXZmNNyVG09d7ANG3URhAEQRAxQaJlsdGcwOvsIEkikQQRuOXHtcEv4bvYi54z/4We3q8w9N0ECc24wWw8fh2DFz5Bz4URsitBEI4h0bLYkGhJCTQnjWvCOhz0/kAHEMaKcBuD//1X1B9+GUXyKd6hkIt9HcMGB44SBEFEh0TLYkOixT6z36CzYhMeWV2O9qv6QxwXl6CvFstVP2nDwwe8WDJbDcbDRom0syb/64JrB5oGEutngiBSGxItiw2JFtvwvR2Z5d1I5LGVc/31+Lnqpxw8sa0Eew8cRV3t22g6cxl3lkhXSzxslFA7CzfRW/NMVEG4vNZHvS0EQdiGRMtiw4uWZdW4MMO3frPwdx9FkWcjtpe9hc6hVP3qjE86NL0d2bXwJbI14/2U6Hc7wNpG1r5IvJ3F+UI3MXbzJ0wLM7jW+nzo3SyQaCEIwgkkWhYb08YwAF+tR67AXfh5fX+Knqgcn3QI413YlyHbamMzhhJ5hADvpx3tGF2ik1isbWTti6TamUmUsY4yOX4kWgiCcAaJlsXGtmhJ5Qo8XumYwVjfSTTUvYezV+8mdvIr76eSDozJl8MImB3uwu8O1KClexATwWSpGisb2fFFEu2sES1Z2Nr6DU1yJgjCNiRaFhsSLamBpWjhhzXyUdV7W76+1FjqvpjDRPdryJTil41dHaPydYIgCGvSQLQImL56EvtWZ2F5wct4t+8m9+UmIOg/h5rCFayCzMETO8pR3dyDwQn9ucYhhMC38Dbux/rcDdhVeQJn+n+IrPCDAfw49iMC3Jf23NVmbI5yno9m/sCWVlzTfFYu/cbelk0cpSO6v4TRDryYnYW8wldQ0zGAgMZWcwjKNhcm/omm3evgzvageP/x6L0Fwh0Mnv4tnsrJR2n9Z/Cb9Y5YihY+jS4sf/xx5OV4sL3sDTS09+JawGhAbA6BgTaW1pV4ouQgTpzxwT8dfSzGjq3NbSRi7QsrO9uPcww+YYTLBIkWgiCckaKihTV8Q2dQVX4ITb398B5eq1bSmjF6wY+eCu5/cnAX/AF9E3wjI4qbj1FVkKW915WPfSevYFq+S6yk1a/E7B1o8IXWXYQr4cg5BBrREtEYLmXRYtcmIlbpsOev6BNEx+E9IP4mC5ubz+HjynXh34thxSF4Nf4UYb7qPYo16n1ZWH/k4+jChRMt7rIu9kY92jTqg7vgKLx+3QGU9y6ibm2G9r7Vr6Jt4I6uQbdv6+g2UrDOU6bPsB3nWHwSIvx+Ei0EQTgjRUWLdjKfJmRVoXcqVL3OD7fiaZd8fUU5mt8/IDdimdjUeBlqf4twA52lYm9M6F6352k8mytX3NzztA1CuMLlGwF9I6FpIBTRIgQwcqEHZ9qPY6/yHjVk4t9Y3Iyr+wRixya202HPX9Eb01F0lmRH/lYNuaj03pLvlZn/Gm1FyyLvda3G9gPvoVcvMDjRYiwedaLFtQH7m8/if5pfxqPSNRcerfgI42rLPo+73jfwsHI/H3LK0TnCSRHb+c/ERg7yVHQ7O4hzLD6RCb+f5rQQBOGMtBAt7idLUaZ8paqV/DSGmrfJ98giZaYP1ctCv+GHauaHmvFL+VkZK17HWf/XXIXM763ix9kypXFZgGiZu4ymfH3DEg7GjSbPPAJDn6Kzo8N58A6x5tcaWzaxnQ47/tIJG02vlL6BZAJh/wf46J0i+e/IL3ZN/DNeQpvvDCqzlN8bfOFbiRZhGKeKlTgsQ3H79VBje/8rNKyTbZDxGnrU3oVb8B7Ile/XBxb/ynOYcJz/TGwUoy+0drYf51h8omBWXgiCIMxIC9GyvPYfGOnYi0yx4jx8HpPiLfNX0LJR2TZ8G1qG2FeicB2ndshf3+oXJj8xMAO/qP8K9zUVMt9o8NdXYG+Xn12bw3jXq3BL1yIrYUPRgrvsq32T/BwluLDc8wx2lezF77pvMFlihq7hcRI0jVQ07NrEbjps+EufJjPR4noOLVfvcvfrG0hesLqw6q0+TAV9qMuWf/9QPqr7dHvcmooWJhL7arihJv59fNw8qPPJknDmIupWuuTrDyGzuA3fXO/Ai8pSY9cedPrFtzjJf2Y2is0XmmfYjrOIU5+EIdFCEESspIFokb96g35c+OC02u0v+DtQqgwNyZu6BQNfoqlQmTegNAYGz8JN9JSv1N3H0HzNKg2UthEwEy2auRLihN6RT1FXoAgrrsGzRNfwOAm2RIsDm9hKh7W/ItJkIlrcxe0YEfj79Q0kH9e1qOqdYI/nRQsvBELwvR2RDamA6YE/o0jJT/z7NHliExr6p6TLwnArtsrPU4dKhG/QtkXJf8rwiQNbm9qI4dgX2mfYj7OIU5+EIdFCEESspIFoMaocBUz1VuFncsWY4crFU894wj0eUlAaA+04vrvwj+gP/AtDJ/cgz8W+VJ87iWtKt4em4XMuWiIr6Chf6UnHgU0krNJhpzGL3phirh8Nq5QegEz8svkKi6HJM/lhQGXIhvedZhgnhHVDOoFedQJx+H0acazmKV3+y3wD3ruiwfhnKPM5nNjaxEYqTnzBP8NJnBlOfcIRtnUqb6hIEEQySFPRMovR9lL5/1FCzm/V1Q3CxDkcXKFUwC48suNteEemQpUzj0a0PI+2YbGXQPuu9BAtDmwisciiRWN3uefE7Jn88mVl7hL/DP2KGYa1aDGahM0P7bCQ34hBKUvp0qLusGu8sse+rU1spBKraHEWZ8c+4QjbOvo9BEEQRqSpaNGt9MjeiL1H3kVbRzd6fYO4NiaegSLfKjGHSd+72JqtNBws5JTiRJ8/VEEraCpq5as6SqUuwzeGkY3M0hUttm0isQiihd/TRmN3eX6SZt6K9pm8zXPe6oM0AHXXi8pM+RlxEy3aiavh06Cj5Qnt/eHrdm1tYiMVh6JFfYbDODv0CQ+JFoIgYiVFRcs9DDZuMakc+QpYt/RSuIOBljKsKfy9bl+NOQQG21HhUcbvWXA9iTfPc5vVGYqWaA1RiMURLYu/eiiEDZtIWKXDyl8iusaUFxaWYnEl9nffDN3L4hzu/VDmiAQx3lUe7hExEC38Kc96H4aIFC2aM3w0+SyKANDMf9HbwY6tTWyk4lC0qM9wGGdHPtFCooUgiFhJUdES2YBomcKlemUlBV9xz8B/7ijWS3MQjCtMIXAZp/ZvUFcDZTxWgwvKPhkGFbVwuxsVyhc8C4kRLbqGx0kwHFIwx9QmElbpsPKXyEJEC/9O/jmhYQth8p84toETA0aNvaN9WsQ0fIuR9hfCNlHngIgYn2SsWdr80BY0Dd4L3c5hbuvFFC0O4+zIJzz83BkSLQRBOCNNRQv/tb0KFeyLTxCmMNJTgyKlC971Ak6N3Gf3TrBnFcKd8zzqPrqCO0FBt4pCqZAZ/JJpsUv86hj6G7aFGxgW0kO0OLCJRDxEi85WcREt7PrFG/DVbdH4aOGiZRm2v/MnVK1WeiAykF97EWEJop3UGlo1pluSvK4Bl+6LYsSZraPaSMU6Txk/w0mcGTGLFt4/JFoIgnBGmooWVgVPfBZuVLI9eHZzLtdwZWFT/RehRkazaZi4r8XT2O7Jkf9mlXdRK4bV1RszGG7dKT+H3Zu7Klz5yyExomWRcWQTkQSKFnXlT/QGMjzUk4k8z7oIH0WKLgYnWtR5MBr49+lCTgXO+nXnWd37Ag1K707GDlT/9Si2q0NJOdjZPgzJhA5tvXiihWE3ziIOfRKGRAtBELGToqKFX7ETreKbQ2C4K/I8F3F1Rmk7hmeVLnfx3BflUEX+PhZcW3Ds4gQ3p4DdrR9qYM979IWXUCIPEelFy9xgIzzKvakiWhzaxDoddvzFiw0W1NUr4j/4eRWK4ODnyejeGfwO3iNPciKV+bykAr/2KPuXmIsW496oaKIlF/s6hg16ZpgNx/6OprJ8bS8PC+7CP2NAnQnuzNZRbaRinaeiP8NunBlOfaJCooUgiNhJUdHCqtcxVtFvWw23qwgN/brdTTnEk3M/aT6CXezr1Z1bjCMtfRgzODRPmP4evjMncLCkAMtduSgqP44PB24bN0bjPpyqLsP67BVYv/8/MDDph1c6MC4DHv25QawBPd/wMrs3C2sOf4rQEYsKt/F57Yv41c7NyMt5CaekJdRLB/s2sU6HLX9NX8WHkl0fw9bGr7jhlhmM9b2PI+z3meuOwSfN8RBPiz6NioIcZOS8gs4R3TuDN+FrO4LtuavwVOVpDAauc425stoljKYhty1aVqL42OfceUMGCJO41nsSdeVFyItyEriIbVtHtZGCjTxl9QxbcY7BJxIkWgiCiJ2UFS1LjuAErvn6cMmgQSKWAuY9EObDeCK8aBEn+DJBEdTIU8IWdlaSEQRBGEOihXhAcCBaVpSh4T//hrbGt1FXewJtn3yLgMBvrR9t6IMwRJjGnZtjGBsdwiXfJ2gpU+xIpzwTBOEMEi1EGiIgGJjAnWl+trC5aJkfbsXT6nb8+pCPqt4vLOeKEEaY705tvFKLIAjCGBItRPohn4vj9ryOU4N3Ql/ymomjyhEMPAEMtZbhEV2jKgXXRlT3fUmiJUY0k9F1gUQLQRBOINFCpB/zX6OtSN5Px1WAfe+8j/b6PchTGkt+vxEecdJ03U6s8RRj/+HjaDn9ET4fuI7xgNisWq/KIaIg3MSFv9ag8qVC5Lkykbf5OezaXY6qP7yL0/23aXiIIAjbkGgh0pA5TF48jk2Gwz3LsLV5ELpdVWxAooUgCCLZkGgh0pQZ+M8fR3EOdwghC+4Nx+GbjGXVD03EJQiCSDYkWog0Zh7To734y6Fi0z1S7CEgOHEZZxsOYPvqUoM5MQRBEMRiQ6KFIAiCIIiUgEQLQRAEQRApweKKlsm/o3ptNtaUHEVb7w3wR5cQBEEQBEE4waZoERC89TW+8PngE0OfF2fbm9FQexSVZS+iouEz+A3O89EcQmd0SB1BEARBEIRNbIoWfuWEUdAdW69AooUgCIIgiDhhU7Twe1RECUaHzJFoIQiCIAgiTtgTLUEf6rI5gaIGF5Z7nkFpeQ0+8I1H7mxJooUgCIIgiDgRg2jJQlHT/9qbVMuLlmXVuDBDM3EJgiAIgoiNGERLNnZ1jMr/sIAXLdm18FFHC0EQBEEQMRKDaFmLqt4J+R8WkGghCIIgCCJOxCBaHJy7QqKFIAiCIIg4YU+03PWiMtO5aAn6arFcES1bWnHNYEqLEPgW3sb9WJ+7AbsqT+BM/w+I1DYCgv5zqClcwZ6Vgyd2lKO6uQeDE87P6iUIgiAIIjWxJ1o0q4By8OyBP+BYbQ2qyl/ArpIS7Nr9Gk6c/y5CbGhES8SSaFGIfIyqgiz5uXJw5WPfySuYlu+SEPzoqVirvY8Fd8Ef0DcRy4m9BEEQBEGkGjGIlighvxGDOv1gKlqEG+gsFXtOQv93e57Gs7kZob+zqtA7Fe6WmR9uxdMu+TkrytH8/gGskX6XiU2Nl0H9LQRBEASR/sRPtBjMWTETLfNDzfil8r8Vr+Os/2tuAzt+T5dpDDVvk6/LImWmD9XL5N9GGXYiCIIgCCK9WJhoceXiqZ27sffAURz79174dfv4Rxctc5jofg2Z0v8y8Iv6r3Bfs+suJ1rmr6BlY6Z8fRtahqYB4TpO7VgWukYTfAmCIAjigSAG0VKEE/13I3e/NYAXLe6yLozL19l/2CPL5OctQ3H7dfY8/nyjsGgR/B0oVYaG5A3qgoEv0VSozIWhnXYJgiAI4kEgBtFiXyTwomV5rY+bqDuPu9438LD8P3fhH9Ef+BeGTu5BnsuF5c+dxDWp10bAVG8VfibfJ/XsPOMJ995IgUQLQRAEQTwIJEm0MDkycQ4HV7jkZ7rwyI634R2Z0vXgzGK0vVS+J0rI+S28tIKIIAiCINKehImWyCXPc5j0vYut2YpwYSGnFCf6/Jy4CcBX6wn/P3sj9h55F20d3ej1DeLa2E/2zkAiCIIgCCLlSaJoEZlDYLAdFR5urxbXk3jz/E25x4UXLbmo9N6SrkoIdzDQUoY1hb+H1z8jXyQIgiAIIl2JQbSU4tTofQQDtzA61I8L3i6cav0bPhmejJicay1aQgiByzi1fwPcyr2P1eCCtE/LFC7Vb5Lfy+/EOwP/uaNYL03QdXCAI0EQBEEQKUsMoiVKWHEoYm5JdNEyAV9tIdw5z6Puoyu4ExQgDLdiq/o8pTeHXxq9ChXdNyEIUxjpqUGRMqzkegGnRu6HHksQBEEQRNpiT7SMd2Gvsuw4aog8/TmqaBGGcapY2ZPFheWep7HdkyP//RDcRa0Ylvd8ESY+Q9VqeafcbA+e3Zwb7pF5KAub6r/AvdCtBEEQBEGkMfZEi27LfeOwFpXe8E4sInODjfAo/9f0tPAHIPLPYMG1BccuTnBDTXMIDHdFnlEkrjgqbcfwLM3EJQiCIIgHAXuiRRQZY334y6Hi0D4qnmdQWn4E9c3tOOvtw6WhUfwYMJicG/wO5xtexvrsLKw5/Cm0/TDsqdPfw3fmBA6WFGC5KxdF5cfx4cDtiIMXRcTToD9pPoJdnhy4c4txpKUPY0ESLARBEATxoGBTtBAEQRAEQSQXEi0EQRAEQaQEJFoIgiAIgkgJSLQQBEEQBJESkGghCIIgCCIlINFCEARBEERKQKKFIAiCIIiUgEQLQRAEQRApAYkWgiAIgiBSAhItBEEQBEGkBCRaFpvJv6N6bTbWlBxFW+8NTNPJAwRBEAQREyRaFpuxDuxSD3ksQ+eY0clKRPIJInDLj2uDX8J3sRc9Z/4LPb1fYei7CRKaaQ/z/fh1DF74BD0XRsjfSYfK4uKTunmeRMtiQ6IlJdCcSK4J63DQ+wN36jiRFgi3Mfjff0X94ZdRlJvJ+TsX+zqGDQ9tJRIDlcVFIk3yPImWxYZEi31mv0FnxSY8sroc7VcD8sXEEPTVYrnqJ214+IAXd+X7kk48bJREOycDYeIfOLZlI7YfasEnw5OhRk9TLnXBtQNNA+lvl6gkOX88MGUx0XZOkzxPomWxIdFiG/4LK7O8GxPy9UQw11+Pn6t+ysET20qw98BR1NW+jaYzl3FniXzexcNGybRzwhH86KlYK/v1ISyv9YW+KIWb6K15JmrjqN73AJLs/PGglMWE2zlN8jyJlsWGFy3LqnFhhi9xs/B3H0WRh30Flr2FzqFU/bqLTzo0X1jZtfAlsgTxfkr0ux1gbSNrXyTVzgkliPHuSjyqpJUFbcUszp24ibGbP2FamMG11uej3JdKLLwsJj1/pEVZXKrlMPXzPImWxca0AAbgq/XImcaFn9f3Y07+T2oRn3QI413YlyHbamMzhublfyQC3k872jG6RAfOrW1k7Yuk2jmBCBPncHCFS7ZFKESvmIMsC5TZuG+ps/CymPT8kRZlMRXKYWrmeRIti41t0ZIuFeVC0jGDsb6TaKh7D2ev3k3shDveTyUdGJMvhxEwO9yF3x2oQUv3ICaCyapJrWxkxxdJtHPCuMvssEm1g7k9RPgKPAtbW79JUbvEoywmOX+kRVlMhXKYmnmeRMtiQ6IlNbCsKPmu1HxU9d6Wry810iVPLZC5q2h/cScq3q7CrkzZr6b2mMNE92vIlO7Lxq6OUfl6qkFlcWmQCn5IzTyfBqJFwPTVk9i3OgvLC17Gu303ObUoIOg/h5rCFcwpOXhiRzmqm3swODEr/1+LEPgW3sb9WJ+7AbsqT+BM/w+RGS0YwI9jPyLAqfu5q83YnLEa2w+9jwtjM/LVEJpxyy2tuKaRsks/Y9uyiaN0RPeXMNqBF7OzkFf4Cmo6BhDQ2GoOQdnmwsQ/0bR7HdzZHhTvPx79K0W4g8HTv8VTOfkorf8MfrMvMsuKkk+jC8sffxx5OR5sL3sDDe29uBYw6oSfQ2CgjaV1JZ4oOYgTZ3zwT0fvA7Zja3MbiVj7wsrO9uMcg08STdCHumzZr1HsoRAuq/GowLmv2DjNV0hUWbTOY1QWRczttNByKLL4ZTG+eT4xpKhoYYVt6Ayqyg+hqbcf3sPh1QGasUHdygEluAv+gL4JPmOL4uZjVBVkae915WPfySuYlu8SM4aqTLN3oMEXmu8ddnzk2KVGtEQUQCcVTKKxaxMRq3TY85fGVpqKfhzeA+JvsrC5+Rw+rlwX/r0YVhyCV+NPEear3qNYo96XhfVHPo5eWXIVpbusi71RjzaN+uAuOAqvXytYce8i6tZmaO9b/SraBu7oKhH7to5uIwXrPGX6DNtxjsUnSSAtREtiy6J5HqOyqGBupwWWQ5EElMX45vnEkKKiRTuBSBOyqtA7FXLp/HArnnbJ11eUo/n9A3LBycSmxstQ+1uEG+gsFXtjQve6PU/j2Vw5s3DP02bEsJP5zKfPnJqMqYgWIYCRCz04034ce5X3qCET/8bilvTq3o5NbKfDnr+iF+JRdJZkR/5WDbmo9N6S75WZ/xptRcsi73WtxvYD76FXX6lxFaVxw6arKF0bsL/5LP6n+WV5dYoLj1Z8hHG1NpnHXe8beFi5nw855egc4ao/2/nPxEYO8lR0OzuIcyw+SQYxiZZ4jO/HUbQkuCxGzx8iVBYVDO0Ul3IokpiyGN88nxjSQrS4nyxFmaKM1Yw1jaHmbfI9skiZ6UP1stBv+KGa+aFm/FJ+VsaK13HW/zWXCfi9Vfw4W6Zk6AWIlrnLaMrXZ+hwMKtYQ8wjMPQpOjs6nAfvECvy1tiyie102PGXrjLV9ErpCyWrlPZ/gI/eKZL/jvxK0MQ/4yW0+c6gMkv5vcFXhVVFKQzjVLESh2Uobr8eKuD3v0LDOtkGGa+hR/2iucW+fnLl+/WBxb/yHCYc5z8TG8XoC62d7cc5Fp8kBY1oyYCHazT0mJVj53B2XqBoSWxZnDXJHyJUFkNEKUdxKYciiSmL8c3ziSEtRMvy2n9gpGMvMkVnHT6PSfGW+Sto2ahsVbwNLUNMmQrXcWqHrPjVioSfjJSBX9R/hfuaTMBnVP76Cuzt8rNrcxjvehVu6Vqk4w1Fi+HKBheWe57BrpK9+F33DSZLzNBleCchonAYYdcmdtNhw1/6NGniqSuUrufQcvUud7++UPKC1YVVb/VhStN45aO67658r4xpRclEYl8N173Nv4+Pmwd1PlkSzlxE3crwctvM4jZ8c70DLypLHF170OkX3+Ik/5nZKDZfaJ5hO84iTn2SJDR+N4/T0hQtiS6LZnlMhMpiiGh2ikM5FElQWSTRkjB4h8tKO+jHhQ9Oq12Ngr8DpcrQkLypWzDwJZoKlbFKJQMaPAs30VO+UncfQ6OilUKhzXxmokUzPitO6B35FHUFirDiCpklugzvJERUQkY4sImtdFj7KyJNmnhqC6W7uB0jAn+/vlDycV2Lqt4J9ni+ouQrnxD8F1Zk4RUwPfBnFCn5iX+fJk9sQkP/lHRZGG7FVvl5aves8A3atij5T+mydWBrUxsxHPtC+wz7cRZx6pMkkfKixUH+iEtZjJ4/QlBZDGFipwWWQ5FElUUSLQnDyiECpnqr8DPZGRmuXDz1jEd1TigoGVA7dugu/CP6A//C0Mk9yHMxhfzcSVxTuj00hU3JiNrMZyZaIjMFn9mMMnaycGATCat02ClAJoV4rh8Nq5Svjkz8svkKi6HJM/lhQKWbmPedpus4hHXhnUCvOmkx/D6NOFbzlC7/Zb4B713RYPwzlDFkJ7Y2sZGKE1/wz3ASZ4ZTn+gRfsK1L3zw+WINVzBm52ja8S7sNWrgDAjnAWebss2P+fB/I4Zi/4aWAxtD780sQd3f9P9nwdZQbaLLokUeo7IoY2GnmMuhSOLKYqx5PpmkqWiZxWh7qfz/KCHnt+qMau3OmS48suNteEemQhmCRyNankfbsPhlon1XeogWBzaRWGTRorG7/LVm9kyue1mdu8Q/w+DL17qiNJqEzXcns5DfiEEpS+nSou7qabyiwL6tTWykEmtl6SzOjn2iR/P7WELkF7ohfF6wiFM4D1jEXQefdxwFQ/9FktiyaJHHqCzKWNhpQaLFWZwd+4Qj1jyfTNJUtGidm5G9EXuPvIu2jm70+gZxbUw8d0G+VWIOk753sTVbyaws5JTiRJ8/lCkUNJlDqTSjZCQZTYXmOGMnE5s2kVgE0cLvaaOxuzw/STNWrn0mb/Oct/ogDUDd9aJS2WQsbhWldrJc+ATaaHlCe3/4ul1bm9hIxWFlqT7DYZwd+iQCze9jCQ+OaElsWbTIY1QWZazKYqzlUCRxZTHWPJ9MUlS03MNg4xYTh/BO58f+GMIdDLSUYU3h73Vr+ecQGGxHhUcZM2TB9STePM9tVqfJHEqlGS3zh9BUaHETLYu/eiiEDZtIWKXDyl8iukLMV2aGdud9vBL7u2+G7mVxDn9xKePSQYx3lYe/wgwqSv5kWb0PQ0RWlJqzQzT5LEqloxlz19vBjq1NbKTisLJUn+Ewzo58kkQSIFqM4exs6CenJKosWuQxKosyVmUx1nIokriySKIlYURmWi1TuFSvzODmM8wM/OeOYr007mnsJCFwGaf2b1BXA2U8VoMLytp8g8wh3O5Ghck24YsjWnQZ3kmw/XUXxtQmElbpsPKXiEkhtiyU/Dv554S6SoXJf+LYBq4CMqgo2Y/Uxs1eRfktRtpfCNtEHXcWMT49VbOc8qEtaBq8F7qdw9zWVhWlSKyVpcM4O/JJErEtWvh5BGb32YWzs6GfYmPxy6JFHqOyKP/XqiwuRLQkqizGO88nhjQVLbzCX4UKpjIFYQojPTUoUrr9XC/g1Mh9du8Ee1Yh3DnPo+6jK7gTFHQzt5VMwOCXTIvdcFfH0N+wLZypWdAXstQULQ5sIhEP0aKzFV+IY64o2fWLN+Cr26Lx0cIrymXY/s6fULVa+erJQH7tRfYNq6CdSBdaNaZbCrmuAZfuixWgM1tHtZGKdZ4yfoaTODPSTrTw+SYeFTj3PEM/2SXxZdE0j1FZDD2WYV4WYy2HIokqi/HO84khTUULc/vEZ+GMnO3Bs5tzucKShU31X4QytmajIheWe57Gdk+O/DfLMEWtGFZnjM9guHWn/Bx2b+6qcKaTQ2JEyyLjyCYiCRQt6mqD6IUy3L2ciTzPuggfRVb0DK6iVMfeNfDv04WcCpz1686zuvcFGpQvyowdqP7rUWxXu69zsLN9GJIJHdravKIUWUBlaTfOIg59kjRSXbQkoSya5jEqiyrmZXEhooWRkLJIoiWB8Ct2ohl7DoHhrsgzJFhmfKS0HcOzSjefeNaEcqgifx8Lri04dnGC3REmonuTPe/RF15CiTxEpBctc4ON8Cj3popocWgT63TY8RdfwbGgzpgX/8GP5SqVHD82r3tn8Dt4jzzJiVTm85IK/Nqj7JtgXlEa90ZFqyhzsa9jWOPzEMyGY39HU1m+9suSBXfhnzGgzgR3ZuuoNlKxzlPRn2E3zgynPkkW9/8XTRuV8qrMqzBiiYoWh/kjHmXRNI9RWVQxL4sLKYciiSiLJFoSijDGMte21XC7itDQr9tRkUM8rfOT5iPYxRSzO7cYR1r6MBbU5A4JYfp7+M6cwMGSAix35aKo/Dg+HLhtXADGfThVXYb12Suwfv9/YGDSD690SJXBNuGs0J5veJndm4U1hz+FuBgtzG18XvsifrVzM/JyXsIpaQn10sG+TazTYctf01fxoWTXx7C18atQT5jEDMb63scR9vvMdcfgk8aVBXb7aVQUsC+hnFfQOaJ7Z/AmfG1HsD13FZ6qPI3BwHWuElFm2IfRVCC2K8qVKD72OXfGiQHCJK71nkRdeRHyopwELmLb1lFtpGAjT1k9w1acY/BJUmDl9aer8DYfYnlhHV7uGmVXjFiqoiVEQsuiaf6gsqhiaqc4lEORRS2LJFoebIITuObrwyWDQkAsBcy/fDRdtZYVpTipkFViQY08JVIaq1U1RPygsrg0SM08T6KFeEBwUFGuKEPDf/4NbY1vo672BNo++RYBgd/OO1p3K5FSCNO4c3MMY6NDuOT7BC1lin9T58Tb1ITKYtJIgzxPooVIQwQEAxO4M83PUDSvKOeHW/G0ugW4PuSzr7kvTH9PpBrmu2Ybr1ohnENlcemQHnmeRAuRfshncbg9r+PU4J3Q14NmsppyBANPAEOtZXhEV5Cl4NqI6r4vqaJMMzST5HWBREucoLK4pEiHPE+ihUg/5r9GW5G8n46rAPveeR/t9XuQpxRQfo8DHnHSdN1OrPEUY//h42g5/RE+H7iO8YBYlM2/DokURLiJC3+tQeVLhchzZSJv83PYtbscVX94F6f7b6dEV/mSh8ri0iIN8jyJFiINmcPkxePYZNjFvAxbmweh28nBBlRREoRzqCwS8YVEC5GmzMB//jiKc7iDz1hwbzgO32QsKw1o8h9BxAaVRSJ+kGgh0ph5TI/24i+Hik33ZbCHgODEZZxtOIDtq0sNxuEJgogOlUUiPpBoIQiCIAgiJSDRQhAEQRBESkCihSAIgiCIlIBEC0EQBEEQKQGJFoIgCIIgUgISLQRBEARBpAQkWgiCIAiCSAlItBAEQRAEkRKQaCEIgiAIIiUg0UIQBEEQRAoA/D/EpjvWBLop8gAAAABJRU5ErkJggg==" } }, "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "- Now we can move the duplicated computation outside the if statement:\n", "![ch03-lab-fig6.PNG](attachment:ch03-lab-fig6.PNG)" ] }, { "attachments": { "ch03-lab-fig7.PNG": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAArEAAABICAYAAADh2K3VAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAACpqSURBVHhe7Z2PU1TX3f+//4kzO8wwzBAfBs00E4f4Y7TlIRobJ4pJqiShSpNBTSyaTiSpSloD04IxYFpsA0m+kEe0XX2eYEfI4yaRtJhx2+BXmUgSNJAuFitRNgph4b6/5969P869e/fee3YXdhc+r5kzo5d7757zOed8zvuen/8HBEEQBEEQBJFlkIglCIIgCIIgsg4SsQRBEARBEETWQSJ2ITP+V9SuKsDK8kNo7/kaE5J6nZg/TF1Hd+3TWJGzBi+8fx0z6mXCAbJZ9iN9g7N7f4Tcgk14pfMrTKmXidlAwmSwAQ8VbUV103+jb3RSvZ5uMjVes8FspjWz7UgidiEz4se2RYuQo4RKnBqJqH+Ya2YwcfvOAhfREiLhf2PkZhipy4W7GGh5CrlK/q7Gy4F/sV8hnCGbJUaG1eFIEA0Fqm8r92NEvUzMBhHWlFSq7cgiLKkPptCHJUOmxms2mM20ur17Ntou75CIXchkiIiVRjuxKycPK3ccx8CCVLITGGjbjiVyPvg2oK73ZmqE091e1D7gU/I3r8KPEKkxd8hmCZFxdZgXsVs7MEz5OIuQiE0/6RKxs9R2CTA/ROzUlzi1dz3uX16Fjqth9aIAyT6frWSEiJ3BncAruE+JQzEagmm0f9rKwTRudb2k2oCF1U249H2yriCC0c4q5CnvXM/seke97sYUbg8E0Lq/DCt8TJRsfwPdg+MZ0hs5g3Dfn3C4vh4NSjiE6srt2FZejm1PFkcdqRwKnkBd4JsEnHiiNpPJZLvxyL0mw7j0oR8tr+3Btg1FyC0oRllVHdo+/ArhhCI8S3U4mfrIi9iCegTnr3pxZ9b9WhaK2HnX5qdLxM5G2yXGvBCx0/3NKFaNmFfVhTH1uleSfT5ryQgRew/9zZvUOFTgxHD6Zq+ltRzcCaA6T8uLDWjqS9KxSoM4UVYQTYvXHsVICL3NO7HSp8VDDYVPo6HrywQFTiqZZiJztzrU7xJ8JXj57JCYI0/EZjIZbzeNWwj+/tnYeOqhCLv8gwk0frNTh5OqjyRidWbfr2WfiJ1/bX66RCwj1W2XIPNCxEaC9VwvjNVhTSHUdQilxY9gS+VrODUQa2Dn5+cxvIhdXIsLk+lobUM4U7k0Godljbg0rV4Wxj2f3UhvObiB7qoHo7+9KA8/bvkciS8okjDVfwzrlXcVo7b3W/V6fKTwJby9fZn6+zYhTUNFVvjGxznk4IeNn+F79Tl3xG0mky12i8LVtXghofimqg6bca+PDnWeRKzO7Pu17BOx86/NT6OITWnbJc68ELHR+VhqgXykBQMmC4YRrC9WDezDQ419sPpY5+fnMbyITVdFvtuDmvxoHJL7InbPZzfSWw4iCPl36L2MydniW1x4LWqL3E2tGJhykiQSIqFzqNtoETcFm1Dd3I7WfY/o13LLOjCUbjUm3cCFd46o0wnqUFP1LHbuO8T+/UtsK8rh0vA4jvXfVR/ygojNZLLMbgpM9Pl3qtMlCvFw+Uuoa26D3+/Hibeq8ViiZT9lddiMe310qPMkYnVm369ln4idf21+OkVsKtsucZIUsRKmBjvxq311aO3qx1gkXZ56EiO9x9HU8BbOXL1j6UXgHV28zHV6fh6TASJ2ZqAFP1bikOwXnJd8diO95cDUy7imGf2J9miNn0fNUnlx0gPY1flPx3RI45/i8Lp83W5yyC2pwRllPucEBlqeNP6W9woCdzLU209fxrE1nIgVbZgEbCaTtXabuIoz7/wPgqG7XBqZH7/ais3aNANBX5CSOiyF0PPHP+JE4P9hZEJ7g1t9dKjzJGI5ZtuvZZ+InX9tfjpFbArbrgRIUsRO4lrb02ri1qCm55Z6PZNIhbiZp6RdxE5jrOsXas/QKlZ+kvl+mwf5zM8tSlj4cIuTVh1G8J6De44M4tSOIt1mcm/W/dtb0Temzmnk5ogqwbcbZ0bn0DsJYAgpOSzG421fCIgpAZvJzCO7yUjhPhzbWqjHV6wnJTV12Mg/Zst95zz+vkcROy962jKZbBSx8430itjUtF2JkaSI5Z2ID0t+9COsKCzGlspX0NTRg2thO8c9jfCVduxa/iAeLn8ZR08HEdK/vGORwl8h0LwHa4vWYVv1UZzu+1eMAaVhP54tyMeKjS+gzn/FspDCXdw4Py8jEudpRNQeaWnsUxzbvjq6+nfPkYz74jPNC9rUhmsxkeOHTAvx8NYq1LZ0o19rrE0kku67uNS4Xs2bp9E+aL+Jspcy4F3ESpi4epzlZT6WlDyPN3tv6HHzUg6E0ijdRv/JX+KxwjWoaPwYIbeRClNvYoIL7XQBtRibW/rhuMSG205KDrkbf4c+vc7yc0TVMMdf2N6x9Hz6foYTQ95nwwrZTGbe2I3FNmZOr7eeaAOHOjz1Jfw71yCvqAw1/IEDEqtH0/wvmIcjtbrrXh89itiU7hMbz38I+MqJy2jbvor5jq1oCo6x5z5G0/ZirNy4B0cD1zEhsXeN9OJtZacLVr6KNqLywLu4MGLjH5mPudK2G2tWPYsm5Vn1OkfK/VoMTiJHpA3hie+nvRM/Xu42Yfd4anfYfaG/4MVVq1G6uw5t3Vfwbyc/7yG/DERs4CY0E80HGQ8iNhVtV4KkUMTGhtySQwiELBXv3kU0rOLnrrH7lu9G+5XblgySjf4BakrMQ3Y5vjXYdfxz1mwZOE/Sdhc3rpO8Pcd5FIF9q9jf87Gh5Rw+qF5teiZn6X4ExjKnNTOl287RSyF075XTw6WBhdyS36LXlI5E080tCMmvQc9daxX1Xgac85k5g4HTqKnaj2M9fQgc4NLE9dI4lwPRNE5jrOcQVur35GPtwQ9chOwwTpVrPXhPonXAnEJ3OAGVsxOnQm4OagJD/ircz+6PqavSvxAwpVF0odQcMvM5Wh/J0+MqNgdV1GYy88FurG6NyoLFvCgtd+MfcEVon1eHOsyP9OgLvr7DleYnkGtaQDaGHr1OPog9XTeUq65+2anOj3Vhjzbnkfm2IaUBf4CJgZ047HfuOInFg//w7CsZo53YqUzdKMC24wFLr/4q7P3zX9BSZvSMR4MPPzhwHuPqK6JYfUweVjxZg5P95nYptX5NYxrhwb/hTOeHCA58hWDzVv0ZUz6I2MWLnV3xFi9nm4i0O8Zc+mjwYcmGV/Be8EaMzvCWXyI28JgHMkL5ICPwboVk267ESa2I9a3DnpYz+N+W5/ED5RqreHvPYlTPIX4/QUsorMKpIS7h0tc4VaE6RxZyix/HT7SFGxZnaVsgpTCGLnTjdMcR7DQt+JBDHv6z+TLLpijOBVogzqaMtAtFqA7cVO9NP6Z024jYmcE2PK7Nk1tahZZ396kVMA/rmf2M5j7BdE/3oWmZ2qNl11vlpQx4ymfzl6QpcGXJuRwIpnHmC7SXLo69z7ccW/a9hR7rx53CHeYQ16j3JrLf5h1WH+VeMbsGLw6RbxB4/XfoNsXHMkdSifczcXvK0415KkEBnu4Y5BoFNxKwmUxW220SoxdbsWu5IfzlYNvp4IZTHeYWfOn1afIiGh6M3l/4Wi+LCcP0EWI0gHHro5c6zwvoR3ejmpsuIQcxse7uP7z7SobeS8wET9EyI43W4FuPfYd2GqLHImKk8b+hztK5ooTldbgQNm5MqV9TmMb4xSNYz5dzLvAiR8guHv10fLzHy9EmAtrDtECMDzm/QLdFHHrLL6828J5WGbF8EHt3lGTbrsRJTsSa5n4tRlnH9Wjj8f1naFqtZpYpM2+yrz7+q5MPrBGpPocxNY9MDdPSl3Am9AVX2fjuakuma2LMutDDEoyMiPO8jvc4xzoE9vc97+HsG6Xq/9mXt39YvdeJGYQHPsIpv188BAbYp4U3nEUsP0SrFvTJXtQuVu83TT9IMN2W3pIYEe2lDHjKZ3Me5z5agUrtK1t3DG7lQCyNprjnPIf24GlUaw163HLAfxQm4Aj0YW7RjfotxPQmWsu5E3NTdg3CuNS4wYir6FSCVNlMJuPtph7IsG9TjHBKSMDKONVhm8VVEmtMN2u/q93Pv0Pf6s+hPnqp87yItQ0i83fd/Mc9AV/J4O2ihBysrP4TAr83ervkcN+eLtwKxVu3wO80kYM1tQF89n+19Sl82lLr1xTu/R1NlkWNfDDaVpE2RMaLn3bAc7ycbSKiPYzDUaxhPZr6+N1REsuvuDbwnFYZwXwQerdGkm1XEiQhYpnT7a0zvhJNhZ2vGFyCuK9wOeSVtePL6348qzkw3w6cCsnm4RcLaMNx/Ds9iFi9h0W9rgT25Vv8BLaV78Svur5mKZBxqeSe4yxjcQi+p9B69Q73/njixYolTiIhxknFx1HE2vWOSNdxYqvau2hyqImlWxruQJn6jN4ro+O1DHjJZ7M9l9T/DUOKQ2EOW+99cykHQmnknYYPy1ja7poarjWo7bUTTMk4Am7EYN0x9LtuERUPCff6jpq/wpW0et2uam7Krg7/wcyC2FSCVNlMJhvsZinDXMgt3ovW3hCLhRiOdZj3F0p9/d48qqX6EPuN553qo4c6HyNiZaHYjo792kdGPja3femxx97Ffwj5SoZVxCrTWO5Z8l/tAY23+Jaf4hbzPO+LUunXZJhfDuxXR1pZWP4qAqM3uOkgnMgRtYubndW77BGIl6NNBLSH9E+c2fGAer0AZW2f4ny83sgE88veBiJpZQjlg+C7dbJSxEqYuPIHlOpOm8sI05ey8UVi+grXKqn0Jdo3aapfG7rgM1Lr4eU31PUiYhmRMP499BEaSrQMtDOuU4EWibOM2SFEG1T+/VaHEA9LnERCjJOKDy9icys7Mapel5FCflRoeav2jkTC/8CxjVq6+TxILN3878dWDP55lzLgms8274qEcOG9k9ywvsXmLs7eOY18PNWvbFPDxduOJwlHoDtU0eF0C1P9aN2kCQ85MOfpuTdRxmJHkSBQdqNI+L6vCT/U3yGY9lTZTCYr7GYRLDFhGSpaL9kucomHcx3m64G86Guc282GBWWU7nsYp7DxwtKlPrrVeauIVYTDGFe/4jXGdvBxifUfYr6SYRGxeTuY7zX5Eha0EUxbESvhbm8dlinXc7Cm/iLumeIYXxQl59cYJuG2FM/6v2ax4f2WYVdhu7jY2RGBeDnbxCYOcdodOX1GZ5Y8AnQrjv9ONL/i2EAorYL5IPhugyTariRJck4sPyHfyAiT0XQDsYzsqcF/qIYwtmHg36E5MfM81Ojq3+8wcHwHVvjYF/dTx3FNn/LjVCBl+EpqZ1yn50XizODnhy3S9kyMV1jTT/wGyJJuXxEee4I7m14JXMFPMN3G72vOgkekDMg45bOXPHApRyJp5IdqtMaIb7hs5ktF4R2BMTfQC/rcrJwqnBmNdTHemMBQR6XaC6HF1etip3TAH3fKguBUgtTYTCZb7ObhxC720fViV8hSF+PjXIf58iyPPgyaenRyFm3Csf5vuGvrWL3V+ttc6qOCQ523iNj79gVwx1NjbIeT/xD0lTImEVuICv8Qe4slvdr8V1sRyx2/vLQa3UrZ5Z8X+BgQ9d381A+93vB21d6RgF0c7eyC53jJONnEa7tj3lEjOh+cm15gmgufaH7FsYFQWgXzQejdPPw9Ym1XsqRwYZdmcL47ngV9sr+l4GztwLCSa/w7DMcijZ3Dy8rm4/J1H+7f+joCQ/wG3RpOBVImGRErFmezc9LmuXgolGkivoidwnBHhRrnOKHwl8aq1YTSzZcTe7t4LwMysyxiRdLINzzafCP++ZhhNA3+48jq4J2YxGDbM4qTjDbWicCa0SE/dhVq9paDxy2n0oVpmIwFzyuYZVJhM5lsshuL681+fNLTh+tjE9F6JE3g9jeXEWisUHZbUOL/QB0uuM0/VHCrw7wfYQ31H9vwBjf1QxZw2956B7XaMKtpf0mX+qjgVcRqo2Vx/LYrTv5D0FfKmHyJLOTvyRdN6dXLpK2IZUTu4FrPSbzX842aBj4efBxT6NdYiZkMNqBIfVfudj9CSjHh80G7PwG7ONrZCZF4yTjbxFu7wy9k4vKL5ctw/z/w94Gbar6oJJRfdjYQTatIPoi+myfRtit5ZkHEmhdCGQ1EPAdivt+4Po3x4JvYXMA1DoUVOBozb8tSIGMmizs4OgWn5wXjbHII2tcIPz8yXgFID7yINVdkc7pzCh7BzoNvot3fhZ5gP66NfGve3y6hdHtxWF7LgIxTPnv5LZdyJJBG3q76PEF+M+i4IpZPg4Aj0OeFej/zP4aJK2i1ruBedxR9bhv/pxHzVJ94PQRxSIXNZLLQbrFY97a1LkqJh1u9MvdquQZTnXOpjwoOdd4kYrX9a3m/JnI0tVM6BX2ljMmXaPXcnF69TYknYmWkuxi51I22115AaRH3MWeKY+r8mlkQcfXNNH1Quz8Buzja2QmReMm4lS0v7Q5f9vieVIY0ifB3Nr5bOL/sbCCaVpF8EH03T4JtVwpIuYg1bznBzxc1G1OvpI4Gmka4vwN7i7W5Gyz4HsWr5/lNfy0FMkYgOIkbGafnBeNs65z4dxh7IDqT7t0J+DjzeciQN2turcTKjb8xVjMnlG6vDstLGZBxymd+2Dneb7mUI89p5HuntCFWyyrWeCKWn2sd754YZjDe82p0Iv7qJlz63mwVT0hjCDZsMobG5ODbhMMXxyw29sJc7U5gGfFZtIEJL69Pp8BmMllpNyszmBg6a9kTM/7BI2bc6/B0XyMe0t8bDfdVteLPB35kuibPFSxuNrY9dK2PCh5FrL7jAV9fnXyOFSf/IegrZVxFLPcbfDp4sSVv8Vb7hGVYWAt8HFPl12Ts0mr9ANJ+OwG7ePLTdojES8ZL2XJrd/iyx9tI3UO68Gm8zh9O4Dm/3GwgmlaRfBB9N0dCbVdqSLGI/QpDHT8znLppeIg/otYQhOY9HrWhFTNS+DJO7FlnvNc03OVWIJMRsYJxdnUIdr9vhyVOIsF22M2e+CKWP4WHj/MkQucOYa0y35krzAmlm09jnIrB4VwGZJzy2VpO7X7LpRx5TiP/nujwXMw5+/EqOf8bXofGk16cxPK08yVjNaoScrDy4McCi5J45qbsWofzhMRo0jaTyVa7GUgT/0TQX4cy01SIRcir0IYR3fBQh/WN/bUg91ox0c3P01OCpYF1q48KHkWs/qwXP2CH03OCvlLG1pfEsSWfDj2fp7jtmnxYsmEvmtqO41iV9mHA/56LHYV8N39d7bWN2URf++0E7JKS/HGLl4yXshUlfrtjX/ak0bN4UZ2KYOy0IZJfbjYQTatIPoi+myORtitFpFDELsaWN36PmuVaD6W2Ck/DPME4uhreslWK3hDJq0g3Ipd9zTSc/Ry3I5Jl6FCrbFFMYiymQLqJWKfnReLMEHIITlgqmUhIiYjle7mWYS/7ypSkuxjqrkOpNsTCL6JJKN18Gi3DMQpiZSB5EWuxR8LOnk8Xu3bx69jeunhOk2vwvZ5fLw114GnlGW0oUBDTwg4tFKB0Xz0a6+vRUN+AppbjOHW6GxeGwh4E39yUXfP2TWKnYiVtM5mss5uEyLfX0dfThdN+P060/BrbLIcdKKGwEu1XvfgoGbc6zIixkypWY8RtBU4Mm2cRO/t1mWRErFU0O+HkPwR9pYytL+FtafwGbwNjap62QC8Pa2s/xqhyCiA/FGyOY2r8mgzfSyjf+53Nh5z22wnYxaOfjkUkXlHi28Rru2MjDqURBF7W4q+t7JcRyS83G4imVSQfxO2ok0DblSpSKGItoXAvzlhX5/Kb6OZsRe07h7BFn3pQiGc6BqEIeNMhCuzLpfhxbCk25p3llrZhkFP6zs4uGRHL8BpnGd4h6CvQ4zmE9GNKt6UhlMY+Nj5ICorxkw1FnBDLx/rGvxsfKAml2/yBoE/V0BAsA3MqYl3SaAyh5mFF8WrjnXrQHKEZo4ffOrQaD27uWqJfv6apMS6h8AWcGvIyzDwHmBpfkakEKbCZTNbZzcFXa6HwObwdc5S2Ey51WIHfnkgO6nxbq/30Y2kNnP26jEOdt52DnqgvdvYfQr5SxlY4uotYw77jLD7rlGu5xZV4rb4ONbtLsUL/KDDHMVV+TZ56YsxxfhA/ea4MK00fInIwflvYLi52jo9YvGTi2sRzu8NvMZqPtft+h5YDjxvvNB3XK5JfbjYQT6v3fBB/t4Z425U6ZknEFmGXf9DGoUmIjPwVxyrXmHumWDAfA8juU866ttkOxmbOmWnelb6DgIa7iHV+3mucGSbHrDkn/utGxHHOPvwm47G9OfLZyZ2x50ezin1/RQcG+Y3hE0w370is+9SKlgHnfI7fS8HjWA5E0ijPfzr4KFdemM3K9+LnxVrPl52INTsQb3OntS/8ZM7nt5797RQEF0/NJtwcrNgPGidSYTOZbLObzWEMengQZbV+9I2KC23nOixjmQ/u240zo3ITZxa3dr03zn5ZxqHO8/VVF8jxxJkbbv5DwFfK8Ltq6Pbg5mnruwTw9uW3MJMwNdiBZy3TQIxgjmPK/JrMxFX4+eF1FnJLqtG4/1H1//xvC9rFo5+2RSheTjYRaXemMNZ33DxvVglW/SOSXx5sIJhWoXwQfrdMIm1X6pgFEcsc4uFPMGotnzzSOK71HEdDFfsayVmOLfvfxYWRWAeqzNk6fRQvl5dgia8IpVVH8P6VW7HimBn+/dpKrC14AJubP1O/KjRu4ZP6Z/HTZzZgReFzOGG3YMHxeRVPcZ7ESO+7OPjkcuStPoygMneGfbFdPYm9JexrLpN6smSY2Drf9DxLdz5WHvjIdghACn+FD1sOYhv7Gs0tKsPB1l6MKMMhPIml2zRMYz13XcVzGXDJZ2mEOSYWv1xfKZr64myo5FgOBNMYuYFg+0FsKVqGx6pPoj98nWtw7Yax+RXBXoe5mUDoqcfmkldwNuE9Sc0ONrdoA35a/oyp90H+et9S/jPsOfAG/is4yp7IBFjae5uxq6QEz3cOC8QpFTaTyUa7fYfBzl9HhxHluFW+gqaOAC4N37GpT97wUoeVutDxG/x8YxHy9A8OeeHMn1Cj1OsNqOu9GWsfV7/sVOfl95/EyxsewP37zqm+Tf1NuQ4vP4CAsgemN7z4D2++UobF4+oZHN6xHisse56HR77ApeBlDIejhpS+/Qzv7S/DCt8aJmxvKdeiGGnJlf3i7ldxzH8abQfYvTklqDnPfU6k0q/JRG7hyvsNqFj+INbu+B3OhyZMh45Ye+S928WbneMiEi+XsuW93dHSt5/5+nwsKdmJw52f2xwY4j2/PNlAMA9kPOeD8LsTabtSRwpFrPz1yDI5YufFCMIGfshP75GYr7iNCHA9U17OCSeITGBB1WEiLtJdhIKncbS6Cq92fZMBH2wqmRqv2WA20+r47vS2XUmKWH5ISGR4hiAYps3qjSG0+YmLiOUWwBibTBNEhrOg6jBBEDGkue1KUsS6zzcliPjwp3z4UFR/EbGTDrIRCZHwGG5P8LMgneuKNNyBMuVvcz8xniASZ77WYYIgvJDutotELJFG+AnhLCSz8XwmoX6Z5ha/hBP96mpv0wIK62by/Cpvka1/CCLdzNM6TBCEB9LfdpGIJdLL+HnU6OdUr2dlSHAyfyYy8wXaS9U9TH0l2PXGu+ho3IEVShpZiGnopzHauVtdEer1tCSCyBDmYx0mCMID6W+7SMQSaSaC0fO1WOvLw4qNL6K1L4lz7DOGaYxfPBJnO6PF2NzSD+u6ePlkmJPVpZbVygSRDczHOkwQhBfS3XbRwi6CmBUmETp/JOZIz9x1RxAcpxmvBEEQBJEsSYpYCZGxyzjTtA9bllfQMChBmJjBxHAP3pb3eXTYD5kgCIIgCHGSFLEEQRAEQRAEMfeQiCUIgiAIgiCyjoUjYsf/itpVBVhZfgjtPV9jgnaBITII44x0bW45dxpeQT2Cducd2pCq9xAEQRBEprNwROyIH9uUxl0OlTg1Qq15ZhJB+GYI1/r/geDFHnSf/m9093yGgW/GkvzwYO8dvY7+Cx+i+8JQxn3EkIglCIIgCDFIxBIZxXR/M4r1fOLDarwc+Ff04ACvSLfQ/5d30HjgeZQWaUdjyqEIu/yDTNZmDiRiCYIgCEIMErFELFNf4tTe9bh/eRU6rspCaO4wRFhsuG9fANFt1OVjXYdx6UM/Wl7bg20bipBbUIyyqjq0ffgVwprSNeW5Jfi24tiVuU2bE0Li0yF/SMQSBEEQCwUSsUQMfG9oXlUXxtTrc8F0XyMe0vOpEA8/WY6d+w6hof51HDt9GbelWwj+/lmstD1IQA5cL6t0Az11T8QVxUvqgxnTGysiPp3yh0QsQRAEsVBYmCJ2cS0uTPID01MIdR1CafEj2FL5Gk4NmHu3sofUpMPUGzrXwofPJ9vfDuFM5dLo3+MF3wbU9d5Upx7Ic2xvYOTGt5iQJnGt7Wn9vmwVsU75QyKWIAiCWCgsTBEb05hzDf0iHx5q7EN2nqmUmnRIo53YlaPa6pEWDMzlUXJ8Pm3twHDMJFgm1P07kafcU4iHy19CXXMb/H4/TrxVjccc4x1hr6+M/p2FbBWxTvlDIpYgCIJYKJCIVeDFX2aJGzFSlY5JjPQeR1PDWzhz9Y7YYqpk4fOp3I8R9bKJias4887/IBi6y8VNwtTVVmzWphnYCjZexOZjc9uXc5s2B8TEZ/z8IRFLEARBLBRIxCqQiM0YvIhYG6RwH45tLdTTbj+XdxpjXb9Qe3ELsM0/rF5PP9P9bagsL8e28hfR3n+XXbmL/rYX2f/Ztefa0O+xSz1V7yEIgiCITCeFIlbCxNXj2LU8H0tKnsebvTdMvWSR0DnUbZTnMhbi4a1VqG3pRv/YlPp3M1L4KwSa92Bt0Tpsqz6K033/ihVjkTD+PfJvhCPGr0xfbcGGOGfUGz1ULGxqwzVTF1zmiz9PNhFKR/z8kob9eLYgHys2voA6/xVjtb/CNCKqzaWxT3Fs++rozgB7jsTvtZVuo//kL/FY4RpUNH6MEJdnMSQgYqXwJby9fZme7pxFD2BX5z9t42KUg8wSsSI45w9BEARBLAySFLFMCA2cRk3Vfhzr6UPgwCpDSPBz9aQQuvdyf1NDbslv0TvGdw3JYvcD1JTkm+/1rcGu459jQr3L1KNWsBVNwWifmyFQYueDmkRsjDjKZBHr1SYybunwll8mW5l6rUcR2Cc/k48NLefwQfVq43k5LN2PgCk/ZVhe9RzCSv2+fKw9+EF8IcuJ2NzKTvaLTjDbjMpCmhew7LmNf8CVOKcZzAcRGz9/CIIgCGLhkKSINS+UMYX8GvTcjQqJmcE2PK7NVVxahZZ396miJg/rmy9D74+VvsapCmPleW7x4/hJUU7M+8xizRAjfONuFXC2IlYKY+hCN053HMFO7Xf0kIf/ZHFL++irF5t4Toe3/IovkoZxqrwg9lk9FKE6cFO9V2XmC7SXLo6917ccW/a9hZ6QucecF7HOHxOTGL3Yil3L+UMM5A+jQwhY38lhpC2z5sSKQCKWIAiCIFIsYnMfrUCl1mOoi6IJDLQ8qd6jitbJXtQuVhthbmh/ZqAFP1bflbP0JZwJfcGJJn5vV36bpSRE7PRlHFtjFX1GcO+RnUF44COc8vvFQ2CASXF3PNnEczq85JdF6Jp6ra0i1ocf7HkPZ98oVf8f27tpin/Oc2gPnkZ1vva8TW+oq4idwu2BAFr3bTLyUw1uAlbGqYzEZ/bz2TtO+UMQBEEQC4eUitgl9X/DkLL9ERM3B85jXL5l5nO0PqL1lj2J1oEJQLqOE1vV3jm9J4lfdJODHzZ+hu9NookXsfz1pdjZGWLXpjHauRu5yrVYgWIrYnEHwfr16nu04MOS4iewrXwnftX1NZMvTlgEhUjwJD682sRrOjzkl6NIsohY31NovXqHu98qSvkPGB+WvdaLu5EgGgrU5xetQW1v9AwuHVcRaxXSRsgt3ovW3pDNMwaJidjZzmcRnPKHIAiCIBYOKRSxi1HWcR1SJIQL753Uh4mlkB8V2lQC9ZCBSPgfOLZRm+OpCTGbd+EGuqsetNzHMPU8alsJmRt3JxFrmmspLxAb+ggNJZrQ1t7nhdkWNwI28ZQO9/yKSZODiM0t68CQxN9vFbF8XFehpmeMvZ4XsfyHSRS+51ZUxEbDMlS0Xoq72IlELEEQBEHMD1IoYm2GhpnkuttTg//QGlxfER57otjoEVWCJmRmcCfwCu5Tr+du/B36wt9h4PgOrPD5sOSp47imdYuahJC4iI0VL7wwEhGxs42ATRTc0uGWXzIOImm6D03LfOrf8vDjls9ZDB3eyU8byfkFuuVFX3zeadc43EWmhxO7mGB+sStkO9/VeH+2HmrhkD8EQRAEsYCYZRE7heGOCqPBtQuFv9RXtEtj5/DyUk0k+XD/1tcRGOI3tFcxidin0T4o9yKaf2t+iFgBmyjMsog12V3tWXV6J79dljb3mX+HzaIkdxErIXKzH5/09OH62ETUDtIEbn9zGYHGCtyv/d4DdbigLwQ0MN4fL/2ZDolYgiAIgpCZZRFr3vIpp+AR7Dz4Jtr9XegJ9uPaiHyevXqrwjTGg29ic4Em2lgorMBR6zxHk5jSenKdt5fixVFsw5+5ItazTRRmQcTye+qa7K7ObzbNezW/k7d54Wu9UCYs3AmgOk99R0IiNh4SpvqPYb36bM6i9Wjqkzf7NzPvRGzMnscEQRAEsTBIUsTeQ3/zJrVBdROxlu2XpNu40lqJlRt/Y1lRPo1wfwf2FnP7ovoexavnucMTbEXsTQT2FenPzI2InatV6x5souCWDrf8krGIJF5oun48PIg9XTei97I4G4vStPm8EYx2VqnXWLARsdN9jXhI/bt3ETuDiaGzlr10tR56M4mJ2AzencDGhgRBEASxEEhSxNrv12pwF5catVXzvKiaROjcIaxVFnzZiwkpfBkn9qzTdxswDQ/biCnpVhf2aj18LMyNiLUICpGQwDCwo00U3NLhll8yyYhY/jf590SnHkjjn+LwOk5o2gkwz/vERpEm/omgvw5lhVxPNQt5FX6EYnoo+TnaIiJ2bvPZGRKxBEEQBCEzyyKW741bhr1dNyBJdzHUXYdSbXjc9zOcGPqe3TvG3rURuYVPo+Hs57gdkSANtmGz1ljroonBb9ElD2tfHUFf05OGuGNhfohYAZsopELEWmyVEhHLrl/8GsGGTaY8EhexEiLfXkdfTxdO+/040fJrbLMcdqCEwkq0X7XLQz5O2SpiHfKHIAiCIBYQsyximewY+xg1y9XtsAqK8ZMNRZyQycf6xr/jnnLjIE6UaQJM3uP0cWwpLlT/vwi5pW0Y1FfiT2Kw7Rn1PezeomVGo66GuRGxs4yQTWTmUMTqOwvEE7H81IA8rCheHZNHsSKcwYlYfR6tDv9bcULhc3j7ym3LNAuNREVsZkEiliAIgiCSFrH8jgDxRME0woOdsWf/yyvtKzowOKXJDQmR0DnUbbTZPsm3CYcvjpmESczQNHvfD372HMrVKQVWETvd34xi7d5sEbGCNnFPh5f8Ms9LzdnagWHtR0z782oClJ9na/nNyDcIHHyU+2hheV6+Fz8v1npPnUVsbD5JuNd3FOu1fYdN4UGU1frRNxo7D9ZgfojYuPlDEARBEAuIJEUskxUjTGQ9uRy5vlI09VlOX+KQwl/hw5aD2FZciNyiMhxs7cVIJLb1VeY4nj6Kl8tLsMRXhNKqI3j/yi2TII3CBN5oECdqK7G2YCnW7vkvXBkPIVC9mjXuOShuvszkMwcTVOebnmf35mPlgY8gbw5lcAuf1D+Lnz6zASsKn8MJmwVB6cS7TdzT4Sm/Jq7ifcWuD2Bz82fRnnKFSYz0vouD7Pm81YcRVObjSuz2k9hbUoicwhdwasjym5EbCLYfxJaiZXis+iT6w9c5oa3tcGBgEmi2Q/HfYbDz19HpKAXF2FL5Cpo6Arg0fMfGHlbmh4iNnz8EQRAEsXBIWsRmHJExXAv24tJIZglRQsO5t9h52keyeNmdgSAIgiCIbGD+iVgiwxEQsUsr0fTnP6G9+XU01B9F+4dfxT1ONi7yQQg3RjAyPIBLwQ/RWqkdg5uPzW1fWqZjEARBEASRLZCIJWYRCZHwGG5P8KvPnEXszGAbHred8yqHNajpuaXe6QXnE+O8bOFFEARBEERmQiKWmD2m+9C0zIfc4pdwol/dMcC0OMzuQIIwBtoqjeNj+eB7BLW9IiKW/Ry/oM8SSMQSBEEQRPZCIpaYPWa+QHupup+vrwS73ngXHY07sEITkqubcOl7mwF9eRFewzNYWVyGPQeOoPXkWXxy5TpGwwlITukGLrxTh+rnNmKFLw8rNjyFbdurUPPbN3Gy7xZNJyAIgiCILIVELDGLTGP84pE4W2ItxuaWfkypdxIEQRAEQYhAIpaYZSYROn8k5ljY3HVHEBw3bYJGEARBEAThGRKxxBwwg4nhHry9vwwrcpZjy/53cYG2QCMIgiAIIglIxBIEQRAEQRBZB4lYgiAIgiAIIusgEUsQBEEQBEFkGcD/B4BtrCAKOruwAAAAAElFTkSuQmCC" } }, "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "- Test both branches. \n", "- We will use a different set of strings for testing. For an odd-length string, consider \"monitor\". We get\n", "![ch03-lab-fig7.PNG](attachment:ch03-lab-fig7.PNG)" ] }, { "attachments": { "ch03-lab-fig8.PNG": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZgAAABUCAYAAAC/ZiEuAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAACAgSURBVHhe7Z3/UxRH3sef/8SqLaooqohHoalYWpyYkgsP8UtiBdAYJcopSQrR5ICkhCQKd6dQFzAGzJ1chU08yInes3gXeUrwcU0kF0i5uWAppVyCisliMBJhDzEszPvp2Z2Z7Z6dnZ3ZrwP0q6p/YJiZne5P9+fd3/u/wOFwOBxOHOACw+FwOJy4wAWGw+FwOHGBCwyHw+Fw4gIXGA6Hw+HEBS4wHA6Hw4kLXGA4HA6HExe4wHA4HA4nLnCB4XA4HE5c4ALD4XA4nLjABWYxM/lP1D2ZgTXFh9DeexvTgnSds3CYuYWeuh3ITsnBq5/cwpx0mcNJBFxgFjOjDuxasgQpvlCKzlGv9I9EM4fpBxOLXOAEeD0/YvSeB7GzwhSGWl9Eqs++a/Gm8wfyKxxO4uACs5ixiMAIY2exNyUNa/acxNCiVJlpDLXtxjLRDrZNqO+7FxshmOpD3Qqbz75pJQ64ubpwEszCEJiZb9BZuRGPry5Hxw2PdNEE0T4/X7GEwMxhwvkWHvN9Qy4aXUlM/6Tlg1nc794vpQEJa5tx5edo1cCLsbPlSPO9cyNJ1wnpejhm8GDICfuBImTbiOjvfg89w5PzouUjeFw4VvAUCl+rg73rK7ineYdgslkQAjM7eBy5UuFMK+/GuHTdKNE+P2+xhMA8xODxAukbSnDqzox0PfEkNR9MOFGdJttiE5oHohQ4YRinijL8cTHaevG60Xe8DGts8ndIIXMHGru/gcfSKjOBgaZCqTtQDDYs2/IXDM1K/+YkhQUhMF5Xg797QQwZDXAxfnIG7u5DKMzdgG2lh9E5FFxw9Z9fwNACs7QO/Y+S4UHc6Cpd7v+GVU24ErFDCG/ncCQ3H9xFT/lK/28vScMzrdejGJAXMDPYgo2+d+Wiru8n6XpoBM8VfLh7lfT7GiGWXXcxh8T3hh2b1cIYVX7ixIIFITD+PnwpU21oxRBTMj1wNeRKmc6GXzYNQJ3n9J9fwNACkyxhnepFbbr/G6JrNYS3cziSmw+8cDv2KDXw6NLiJ/Qf9qdFaoEdQzN6siCQhssF1OdLIi+HjAJUH2+HvWqDci21qAMjVlQY4Q66yrLY7xdDsQOj0i2c5BClwJCaw/BZ/K6qHvbuQYx7k5X7HmG07ySaGz9A140JVS2LdjxLsKzBpTFLR+/5BYwFBGZuqBXP+L4h2lq7ETuHI7n5gO6iS8k5jsFIa9+Tl1C7XBzcX4G9Z7/XjYcw+SWOrE9X0k0MqXm16PKNu0xjqHVr4H9pb8E5YbXal4CHriPIob5fCVxgkk6UAvMIN9t2SAbNQW3vfem6lYiF41mgJF1gZjHe/YY0EP0kyT/RjHosADvT4zARO3NqcP/JI3A91JEX7zA699A1fxse323HwLg0DkaN4/iC7TV0jVmsz0m4jc4SufW1AbWH9yFT+t7U0rMYk27jJIcoBYbtllj21FPIzszFttK30NzRi5sercw4C8+1duxdvRJPF7+JY2dcurM9BM+3cB6vwLqs9dhVfQxnBn4IchzCHQdezkhHdv6rqHdcUw1Ghnc8+s+LmPnmWXillpww/iVadq9FakYuiiqOWq51xIw5FLThZtDH0d0nmXh6eznqWnswKDsghkjiPYUrTRsl2+xA+/Aj6TqLkTxgXGBIvfzGSWLLdCzL24f3++4q32YkH5iKo/AAg6ffxnOZOShp+gzucC382atoyUmR4hDhpAtFFJZic+sgdKdMUNOYxZCa/0cMKGWWHseRQjStqrhAKijOA3hC+j5xMsPwF3WKwPDKZPKJocAEh9S8Q3C6VU7j4WU0PikXIum+1a+h/doDVQEVndt51OaxzfcUWw72nrxOGu8B9AdnwzuesIO7hr95DM6qJ8n/07Gp9QLOV69lnklZfgDOceuUUCbeWt0Jghs9lWJ8qDiQkJr3DvqYeEQab2qAP70WvVNqB2w8D+jbmYjK0BnUlh9AS+8AnAepOFFjLfr5wGwcifPrPYQ1yj3pWFdzPozI3EFnsdxi2Ar7EBvD8FCikFKGTne4GXnTGHGU43Fyf1BZFX6Ak4ljCn7V9DV+lv5tCWYGYS9YKn2fuJD0e7gdpco3c4FJPrEVGNt6VLR24f9a90m1ChueqDyHMaVM0WseVCGzHJ0jVIFimr6kAORuwQtZkpNXOSNNxyB4MNLfgzMdR1EmP6eENPz38avEBfjRdywmvplxEFohC9XOe9K9ySecwMwNt2GLPDNneTlaT1RJDjMNG0n6BdxXhPGeHUDzKqkGrVU7NpIHDNnZi1HK8TCBykv6+cBkHOf+jfZC2flRwbYa26o+QK+64uVjAv2Hc6R7I1kTNEHKo9giJOXu4CVMSld18X4H57t/RA/zPRqzsmw7Q7YwkwPbevGvHWLHjLjAJJ/oBIbpo12Koo5b/hr9z1+jea1U2FPeQI9Ss7tHaoEasz18gRSK6gsYl3QjMPhLwvL96HL/myrgdPeBynnIjpLpbggOgcwX4nkF498c7ITI/ys+xrn3CqW/M7DLcUe6V485eIY+RafDYT44h4jsG0NfYOjCKgnKoz7ULZXuZ7rUIoz3eDcq5FlbWgJnJA8YsjNr49RnS1Aqt4oUgQmXD8zFkfn2lFfQ7jqDamm2XOh8QFfYIhAYpcvLzMJKDYJaL+p8rkdi8i4r4BnY0TFMfE/43gpOYolCYEhG6qunugDoQkMXRqqgPLqMxpWBPt+0onZ8c8uBl2UnY9tDmvVilqAHf+WmOf1OAwKj1Oak675gw7Lc57GruAy/675NYiASxrEY/mYRlROyvQj7jQnq/UYFRvVNZoKGow6FrsDMXYd9Q5r0Xqm7RriFU9ulQs3U8COLt3CnA0XSM5mH+8DWj43mASN2ZtNzWcMXGHGUkXcTx6nU9E0KjG4caXG2YRWJ25TXhcYM6dklOajr0xKAaASGammvb8Gg7tRkPQQ8HDiGjUzrRYzrlPT/cCQi76pmjqXtR899sRLLBcZqRCEwAqav/RmFSkakChhTq9yI5gF/5hSG27BZMr7SpSB8g/YCuY9d7magM6ncMqIXohkRGILXgx9HPkVjnuwotQqtvmMx/s0irBPyrxug329dgVHPuBHcDpTItpUWYXo9/0JLvhxv2gaRxZv+/WBnQD8fJg+EtbPGu7xu9H98muqqUqV5GIHRjyP9ndLsOEZg6LSjiUJghO/RtWcFeU6uzUcIM64hBjOtFxFVOpoJRvMu03UqCbjvH3QXIxcYKxDlGMw4epUB00ABY5yTUpgETPXW4heS8QPTMOl3pGNz2zfkTnbcwz+75T8YOrkH2TZSO33xJG4qk7jMOAazAmPmmwn0mIKyriOUE0o+oR28Kt62LDz3fG6gteMLlJOMMN6B36e6VxXM5AERPTsbsUGYfGQmjnRXotxFTAsM021MQwuMuUF+ZZFoSjm6xiJ1q9MY6SiVWo3ytxqZLJBI1OteVqKs9SJcLhdcl/+OOqWSsQRpW+vgcH6JoXtWGjtaXMRwkF8uYHTXBgnK4K2qAG/vwB2fR9Fu1grjF/Cmb7GYeN2Gx7e/C+fIlMoJiYRxDFEJjLlvZmup8rqOEE7IAoQWmBnc6SiRvjlEyHw7MGsqonjT+UQ7XYznAZE4C4yZONLri+SxKvr5oAkEMnTFJVQrR4tHGG7b6dsF4LEqJ6nHRwJpoY44sDdTTm8xGJjqnGiCxofCh9TCNgwzlRFOooiDwLCD4oEMH8Ipq+4PXJ/FpOt9bM6gMnxmCY71uaX/y6gcQ9B6DpMCwzxv8psZJyTXQOn++FDOLTnQAsM6VDbeKRkbUFbzPtod3eh1DeLm6E/s2S0RxduI0zeaB0RiLDDqfGQijnS6KmNL9CLKkAJDx8GEwCiTaoztO6bJ9DXYt2dKv+0PqeuPYUBvoWZSGCd5M5/a1NJAYMZJOYkk5gLD7OfEjE+EcNbMeI268M/CM9iBylxqHYTtWfz2UmBxXJBj0J1eakBgmOdNfjPjhGQHQb9jJSq67/rv1SXZs8job6ZtSBAe4Jq9FGvy/xBYNxFRvI04fREjeUBEz870js2hfitMPjIcR7plJnf90VvnkxBKYOixvZAipGYOk72/9U/XjXSbf4E47cYC1mnbCnDk8niI1qIeCci73u9wqenl4F2fVSF1dTFq3mlEs/08hjQXfXPiTYwF5luMdLwUyKjMdhf0tjIBZ81M51xSgJbBh/7bKQTPVZyqWB9474p69CvrYOIpMCa/OawT0vp9LVTfZCYEdRGGJrTA0Cvs6W9+BPeFQ1jnK9hmhDVcuusJjB/9PCCiZ2d1Po2HwMi/Sb/H35UWtN9XKPGgf8PoZptRD+4Tm57dH1hP4gspWFPzmYmBfZrE5F1N6LEvEpQKISdpxFBglmLbe39C7Wq5Zp+CnIbLpO4oww4c+2ctqaaYKjUwqRksnkNx7joeeAXVbC65gPthHKVpgdF73sw3ExaMwNC18FWoJDVzQZjCSE89CuXuKttLODUireuOWmCoiRIK5vJA9AKjSo+YCAy5dvl2cOsglMCQ1n+ZVCs3upuyMNKBHb5nzE0KUGAmL8ghA4VVDWhqaEBjA2kBtJ5E55ke9I94DAhYEgWGsREXGCsQQ4FRhcxKdKlnnzz8Cs1yTS5lO+o+OoRtSndaJnaSGpiv0sYs4BTXNGzBttxA/7B60C5+AkMw+s0idAZXZgpFIjCJIbTAEBOMfxaoLGTk4oVNWZSTTMfGpq8ClYeI4s2Kd5AzMJkHEiowYeI4O9CEX/qupSE7d23gnUpQi6OfQMs4BbnUThOhocaAIj1eIMxCVSZkvorOEQvPyGKWD2hVWjiJJk4Ck4W9jmGN2oMA7+g/0VKaw9boSEjN/zOuKSPH4h5UGmdUiEGjbzhQoElQZnrJhBcY/eeNfjOBKayyE6H7/60lMMz28EG1x1l4hs8G7wMmzuYq6cAwvZAvwnjTDj1451tzeUDfzvSsuNACo5sPzMRR3H6l5lkqv5A0K67Eb3LlKbRaAkNPyzY6Vifv5RbNPmGBs2PCh2iPVIg3dB4I3+3KiT9xEJiVKDryObX/mAbCJG72nkRjeSGyU1Zj24ET6B8NrhkJ09/DdeYY3izOwzJbFgrLj+KTa/eDhWv6Bj6pK8W6jBXYfPxrqltO5D4+b3gZv965CdmZr+CU1n5Kus9LGPpm8TyRE6jZuhppa4/A5RsjEHfvPY3KPFL7tloNUBwsbd5H4p2ONQc/1eySEXcyvthag12k9ZCaVYQaex9GgzZsjCzeTJdXiJ16DeeBMHYWRolYke9LtRWieSDERF7dfGAyjt67cLXXYFvWKjxXfRqDnluU89PqzqJnpBnt7vJirLcBm/PewrmI16qIZzp14GVpenJq1ib8ungn01oUW7Dbil9CxcH38FfXmErYrQQXGKsRQ4ERBzRJwfeGb9hzOD7oqbtWPGskpoRrSVOr/zV3luaEh17JzwXGCkQpMPSWGNbq/uHMA5j9zuTFiwuVMAJDDban7nbAzfUlAsRu3fNoqcjHMi4wliBKgQlXK+Nw9KBXrtuQ1XAZFupAjAIBXs84HjCH0umXlcDGn0YH+Dm6CLPwznKVTjZcYDhJRHXWTqQLBa2G1BpJzd2PU4PSoXTMJAH16Z30jDrVwlYOZx7DBYaTXCYvoVbZbyzKc0ysAn1WiS0Pe987gY6mPcj2xZGEICGdxdjZ16RZZ6GPjuZw5htcYDhJxouxS3VYZ0tDdv7rsA9EuJeWpZjF5OWj7JkqStDeQFLcqeB0dSGyg3aJ5nDmL3yQn8OJC4/gvnQURczuxEuQuv4oXJN8hIWzOIhSYAR4x6+iq7kK21aX8KY9h8Mwh+k7vfjwQJHuei8OZ6ESpcBwOBwOh6MNFxgOh8PhxIXFIzCT/0TdkxlYU3wI7b232QOzOBwOJ4EE9uGTx66pXVFC7bYdAYn6nVAsHoGhj7ENsZstxwp44bnnxs3Bf8F1uRc9Z/6Ont6vMfTdeJSVAvLesVsY7L+Inv4RXsFIOvGys4y17c0FZqHBBWZewOzwzIS1eNP5g7mNFoX7GPzfj9B0cB8Ks+QtacQQardvTqKIqZ1l5pG9ucAsNLjAGGfmG3RWbsTjq8vRcUPMlIkjUCCCw2NVTviXYYpbsdzBlYsOtB6uwC7xrJqMXBSV16Pt4rfwyN6Jsbkq2Laj5Vpi42Y5LG/nYASPC8cKnkLha3Wwd30FN70dzzyytynHH4WduMAkCi4whqFrl0ZPVowVzJksSzLx9NZilFUdQmPDu2g5cxUPSC3V9Se989ip2qpwF731z4d0ZIv9xENr21m6kWECA02FzDk7y7b8BUPysqJ5ZG8zjj8aO3GBSRS0wCytQ/8jOgfPwN19CIW5G7Ct9DA6h8zVEqxDbOLB1C4TkAkZaDtp/rZ8yJZ0j1awbUJ93z2pm0Xs67+L0bs/YVp4hJttO5T75q/ALAY7qxEwc8OOzeqKxaomXGHWrc4Pe5tx/Pp20s8LXGAShW6GphKd1Ip+2TQwT3ezjU08hLGz2CsfCx3pUbyRQtsp6HRREVKgHGVI891Dar7F+1F/vA0OhwOnPqjGc7rfzZ4XP38FZjHYWYVwB11lWVKcqaB7jr917W3G8evbST8vcIFJFIYFZqE4nmjiIZ7eeBLNjR+g68ZEZAOukULbKZTzmL6Bro/+AZd7ivo2VQ1Xs/DQDmc+n9m+SOysIOCh6why5PvpYFhgrGVvc45fz076eYELTKLgAjM/MOV4AgieAbRsDxzzq91XPYvx7jek1s98PpBqkdlZuI3OErlbdANqD+9DpvRsaulZjEm3BWNde88OtqG0uBi7il9H++AUuTKFwbbXyd/k2ittmseHa6OfF2L3O5ERQ4ERzyc/ib2r07Esbx/e77tLKa0Ar/sC6vPFTJKJp7eXo661B4Pj2ueIi+fAO49XYF3WeuyqPoYzAz8EFyCvBz+O/ggPdT787I1WbAqx51NAyUkoaMNNphpg/QJrKE1MxSO0vYQ7DryckY7s/FdR77gWmJXlYxZeKc2F8S/RsnutfwZXxdHQtWDhAQZPv43nMnNQ0vQZ3EFn+lNEIDCC5wo+3L1KiXfKkhXYe/Z7zW8J5INYOByqhhyj2iC3sxoiEs4DeEK6N63EgeEv6hSBCVdWY2vv5KBvJ2v7rigFhmTeoTOoLT+Alt4BOJXTCUmg+woFN3oqqf9JITXvHfSN0xIqCtF51Oals/facrD35HVMS3f5Mp1cM8nYjmaXv64ayEx6fZEkBGVoKxvJaJqIhIuHMXsxacU4zjE4q8Rn0rGp9QLOV68NPC+G5QfgZOwpQmzVewhrlPvSsa7mfGjnQzke/dqpCEmbMdH50eJCnsv/M66FWFlnXYHhdtZkZhD2AulsHd8ame/hNjGuElt7J4fQdhJZ0ALDDqIxIb0WvVP+zDU33IYtct/48nK0nqiSMmIaNh6/CqUdwzSFScbL3YIXsqRTAKn3sYkayDi0IdQJzRhJFhjBg5H+HpzpOIoy+XeUkIb/tsLRtUbSxHA8jNkrdIamz//RChqnMdKHb9HBRlqaVR+g163aXZhyPPqF5RHGLttJzZxeUEfSJ+8QnOp3UgTiFos++RgKDLezBmzrxX9Q2zSGWrcq7zcuMPN3zE3TTvPBdxFiKjCpz5agVK6BKRmZzhCSoDzqQ91SKTGo7qq5oVY8I70rZfl+dLn/TWV0eu0KPVU1CoFhjrENDuEyr7gdu2foU3Q6HOaDc4jIZHgMpYnheBixl8o5Ma09teOx4YmKj3HuvULp7+BaIvP9Ka+g3XUG1eny8xq1yrCOZwYPhpywVxUE7CmFcOIiopdHzBM7geF21oARrQzs6BgmAmGuxh6ZveNfro0Twk5R+67EEFOBWdbwBUZ8U0hJhjx4CZPiLXPXYd8g1zK3wj5EGvvCLZzaLmUcpWBS3V5LUvCrpq/xM5PRaYGhry9H2Vk3uUYfOxucwJoCgwmSWTdK75GDDctyn8eu4jL8rvs2yWp6qIxvJjAFOhRG08RoPAzYSx0nPcdjexH2GxPU/WpHQlcubFh1uA9TXhcaM6Tnl+Sgrk+1Zjus41E7v0BIza2Evc+t8UwAawoMt3Nw0qlmjqXtR899sU6eCIFRpY2ZYKhcmyGUnaL1XYkhhgKzFEUdtyB43ej/+LTSJBbcDpTI3WPSAkev519oyZf7muXCo/Eu5sRMSmAY9Zan37GGUGcmOqMxfb7iZIGRT9GYJ4ug/D4jxDsjmkgTQ/EIb6+gOOk4ntSiDowI9P1qx0N/65Oo7R0nr6cdD/X9EnRNWNshhBYYf1iFEvsV1UBoAGsKDLdzUNIxXYaSaPn+MYH+wznS9fA2XLgCQ4jKdyWGGAqMRjOYFJOp3lr8Qk4cWxaeez5XMbg/yJlvDhPOt/CYdD01/48Y8PwHQyf3INtGlJk+q5zJvOYFJjij0QXKSkYykSY+wsUjnL1EdDL07ACaV8lHAKfhmdbr5At13kl3haa8gR5xYJi2nXyNIrxDMLCSnzi517vdJPcFE3i/uQWKc6Mu/COoS+RvsFdt8P9mWjEa/6b+PwmGuky4nVk7q9e9rERZ60W4XC64Lv8ddYpDXYK0rXVwOL/E0D3trtFI7W0ddOzkw6q+y0+cBWYGdzpKpP+HCJlvKzNShPELeHO5nLFteHz7u3CO0IvpJBiB2SEd1cz+1sIQGBNp4iPOjodJd6mmqvdOqhtEGWuj36FR6w8vMKQFfG8Qn/cO4Nb4tD8dhGk8+O4qnE0leFz+vRX16JcGs2kC7w8Vf23o7zIVghyCNtzOFMIPcKpnroUJqYVtGNboE4rU3tZBx04+FrXAsP2lKRkbUFbzPtod3eh1DeLmqLhfkHSrj1lMut7H5gy5oJGQWYJj6n51pgDILSD9vlnGQcwrIxlMEx9xcDz0miEm3aXxNKb/nX0nneaZh/vgq2NOOFGdJr0jIoEJhYCZwRZslJ5NWbIRzQP+ThWaSB0Ok3/MBIMCw+1MM07Kcr4ynmoo2Pag0x2cUpHa2zro2MnHghaYhxg8XiBFTsuAtNNXTW0UHuCavRRr8v+gmvkzC89gBypzqfUAtmfx20vUwk1NgbkHZ1Vgr6LECEyiZpsYSBMf4eIRzl4iqgxNO4ewwr4SFd13/feSbw4MXMvjCl6MnS2XrpGg4XjoXXaNC8wcpkfOqdaQyC1bltg6HCqtNOJiHm5nBe93uNSkt2u2P6SuLkbNO41otp/HkCe4Aywye1t4FllQWi5ogaEznZYBp3ClSZ7pQEf+EdwXDmGdL/NoG17wXMWpivWBWgzd5aFRAIT73aiUa0wkJEZgVMY3EwzXbAPopomPcPEIZy+RaBwP/Zv0e/zdLMLklziynnKeWk7ZyPRVCmH6e7gc9SjKpGr+JIgrvt2sVybQY4JmHE4oqDhqxSVCuJ11oMd7wj4bqb1VaWMmRFCu9dGxk49FLTB07WYVKkmtRxCmMNJTj0K5K8D2Ek6N/EzulZrFmTvQeO46HngFCMNt2Ox7VgxyRifQ05zFJvyNUQw0b2Wa1AtDYEykiY9YOB5VWsXE8ZDrl2/D1VjAdnuYdjykbvzTLQz0duMMqS2eav09dqkWWvpCZinaNQ9mor/JSgLD7Ww46ZhvC/dspPamnzMZYi4wYpRD2MnHohYY4hLGP0PtamlKcUYuXhBPH5QTa0k6NjZ9RRr04o3DOFUkJ5Q4n3sLtuUGNi9kB/EeYbhtp/Qecm/WqoABpJAYgYkzptJEJIGOR5kZFMrx0N0gacjOXRtko2DHSaAcj9Kfr0D/VoiQ+Qo+vPZA1aUkY1GB4XZW2VkH4Ru0F8ito3Cr82Nt7+SwiAWGnrkVyoCz8AyfDd5jSZwpU9KB4Rk5e5DaqbIhJn0fCbYCHLlMmt7SnSJBzXDyvideegXFUjeZWmCYM8Dni8CYTJPw8TBiL9phkECf1cGsP5KdBt3fr/pN73dw1jxLVSiIzYsr8ZtcudWh73iC7STg4cAxbNTsl1+JojoHBsb0XJVFBYbb2UStn457OBsuDIEJaScfC1pgSNEYJQVj62qk2grRPKBarUsh7hJ7sbUGu0jNLDWrCDX2PoxqbITn61M/cwxvFudhmS0LheVH8cm1+4xY+CGFcsyFU3WlWJexHOsq/oprk25pemMKctV78YiDhs37yL3pWHPwU9VW7vfxecPL+PXOTcgmNeBTGoPDycR4moSPhyF7Td/AJ750XYHNx7/2tzB9iOdSnEANeT5t7RG4fOMC4m69p1GZR2rcma+ic0T1m967cLXXYBtpZT5XfRqDnltUgZBnKAVgCpOm4/kPhs/+3t/FSlrE20rfQnOHE1fuTGikhxqrCowfbmcjLD6BCW0nEWv7rqgFxnJ4x3HT1Ycrqu36OVZBv8al35UZLUZmV3FiQ7zsTK/kD2dDbu9ks/AEhmNxTDie5aVo/p+/of34u2hsOIb2i9+G3AImJOIizLujGL0zhCuui7CXyluazOcTLecD8bKz2OV+Hi0V+eR5DdHg9rYUXGA4cUSA1zOOB9P0CLW+42GOdggKOajtvS/daQT9nSRMzV7i6JAkOwuz8M7SksHtbTW4wHDih7SnVWrufpwalGZ2MQPIWoshPRhqKw1s+UIH2wbU9ZkRGPJz9OQOVeAOJ0ZYwM4y3N7WggsMJ37Q53nY8rD3vRPoaNqDbLnQ+w6Q0ui0ECdkNO7EmtwiVBw8Cvvpc/j82i2MeSJwD8Jd9H9Uj+pX8pFtS0P2phexa3c5at95H6cH7vMuk1hgBTvLcHtbCi4wnDgyi8nLR0NMK16Kza2DUE4z5cxjuJ052nCB4cSZR3BfOhq0lUvq+qNwTQbvHcWZr3A7c4LhAsNJAHOYvtOLDw8UITtlNbYdOIF+Po18AcLtzGHhAsPhcDicuMAFhsPhcDhxgQsMh8PhcOICFxgOh8PhxAUuMBwOh8OJC1xgOBwOhxMXuMBwOBwOJy5wgeFwOBxOHAD+H0+9zGjTSZbwAAAAAElFTkSuQmCC" } }, "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "- For the even-length string \"monitors\", we get\n", "![ch03-lab-fig8.PNG](attachment:ch03-lab-fig8.PNG)" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "Assemble the if statement in Python. Complete code is as follows:" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Enter a string: welcome\n", "3\n", "Middle: c\n" ] } ], "source": [ "string = input(\"Enter a string: \")\n", "\n", "position = len(string) // 2\n", "if len(string) % 2 == 1 :\n", " result = string[position]\n", "else :\n", " result = string[position - 1] + string[position]\n", "\n", "print(\"Middle: \" + result)" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "# Exercises " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "- Exercise# 1: Write a program that reads in an integer number and print one of the following messages accordingly.
\n", "__ is divisble by 3 and 5
\n", "__ is divisible by 3 only
\n", "__ is divisible by 5 only
\n", "__ is neither divisible by 3 nor by 5
\n", "where __ represents tne number entered by the user.
" ] }, { "cell_type": "raw", "metadata": {}, "source": [ "Sample runs: \n", "Enter an integer value: 7 \n", "7 is neither divisible by 3 nor by 5 \n", "\n", "Enter an integer value: 12 \n", "12 is divisible by 3 only \n", "\n", "Enter an integer value: 25 \n", "25 is divisible by 5 only \n", "\n", "Enter an integer value: 15\n", "15 is divisible by 3 and 5" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#code for exercise 1" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "- Exercise# 2: \n", "Write a program that reads a temperature and its unit (C or F) from the user, then it converts it to the other unit as shown in the sample runs.\n", "The following is the formula for converting the temperature from Celsius to Fahrenheit.
\n", "F = 9/5 C +32
\n", "Note: the input can be lower case or upper case" ] }, { "cell_type": "raw", "metadata": {}, "source": [ "Sample Runs:\n", "Enter current temperature: 100.5\n", "Enter it's unit C or F: C\n", "100.50 C = 212.90 F\n", "\n", "Enter current temperature: 56.8\n", "Enter it's unit: C or F: f\n", "56.80 F = 13.78 C\n", "\n", "Enter current temperature: 120.8\n", "Enter it's unit: C or F: k\n", "Wrong unit" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#code for execise 2" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "- Exercise# 3:\n", "Write a program that reads two real numbers. Then, it will ask the user to enter the symbol of the operation to perform between the numbers (+,-,*,/).
\n", "After that the program performs the right operation and displays the result as shown in the sample runs. Your program should handle the case of wrong operation symbol.\n" ] }, { "cell_type": "raw", "metadata": {}, "source": [ "Enter first number: 12\n", "Enter second number: 5.5\n", "Enter the operation to perform: + Or - or * or /: +\n", "12.0 + 5.5 = 17.5\n", "\n", "Enter first number: 3.5\n", "Enter second number: 7.2\n", "Enter the operation to perform: + Or - or * or /: -\n", "3.5 - 7.2 = -3.7\n", "\n", "Enter first number: 6.5\n", "Enter second number: 4\n", "Enter the operation to perform: + Or - or * or /: *\n", "6.5 * 4.0 = 26.0\n", "\n", "Enter first number: 16.8\n", "Enter second number: 4\n", "Enter the operation to perform: + Or - or * or /: /\n", "16.8 / 4.0 = 4.2\n", "\n", "Enter first number: 12\n", "Enter second number: 11\n", "Enter the operation to perform: + Or - or * or /: @\n", "you entered invalid operation" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#code for exercise 3" ] } ], "metadata": { "celltoolbar": "Slideshow", "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.12" }, "rise": { "theme": "yellow" }, "toc": { "base_numbering": 1, "nav_menu": {}, "number_sections": true, "sideBar": true, "skip_h1_title": false, "title_cell": "Table of Contents", "title_sidebar": "Contents", "toc_cell": false, "toc_position": { "height": "131px", "left": "781px", "top": "290px", "width": "221px" }, "toc_section_display": true, "toc_window_display": false }, "varInspector": { "cols": { "lenName": 16, "lenType": 16, "lenVar": 40 }, "kernels_config": { "python": { "delete_cmd_postfix": "", "delete_cmd_prefix": "del ", "library": "var_list.py", "varRefreshCmd": "print(var_dic_list())" }, "r": { "delete_cmd_postfix": ") ", "delete_cmd_prefix": "rm(", "library": "var_list.r", "varRefreshCmd": "cat(var_dic_list()) " } }, "types_to_exclude": [ "module", "function", "builtin_function_or_method", "instance", "_Feature" ], "window_display": false } }, "nbformat": 4, "nbformat_minor": 4 }