LAB 03: Integer Arithmetic

Saleh AlSaleh
salehs@kfupm.edu.sa

King Fahd University of Petroleum and Minerals
College of Computing and Mathematics
Computer Engineering Department

COE301: Computer Architecture
Term 222

Agenda

© Overflow

@ Logical Bitwise Instructions
© Shift Instructions

@ Pseudo Instructions

© Live Examples

0O Tasks

Overflow
[

Overflow

® Max positive integer number represented in 4-bit:

Overflow
[

Overflow

® Max positive integer number represented in 4-bit: (+7)10 = (0111)2

Overflow
[

Overflow

® Max positive integer number represented in 4-bit: (+7)10 = (0111)2
® Min negative integer number represented in 4-bit:

Overflow
[

Overflow

® Max positive integer number represented in 4-bit: (+7)10 = (0111)2
® Min negative integer number represented in 4-bit: (—8)19 = (1000)>

Overflow
[

Overflow

® Max positive integer number represented in 4-bit: (+7)10 = (0111)2
® Min negative integer number represented in 4-bit: (—8)19 = (1000)>
e Max positive integer number represented in 32-bit:

Overflow
[

Overflow

® Max positive integer number represented in 4-bit: (+7)10 = (0111)2
® Min negative integer number represented in 4-bit: (—8)19 = (1000)>
* Max positive integer number represented in 32-bit: (0x7FFFFFFF)+s

Overflow
[

Overflow

® Max positive integer number represented in 4-bit: (+7)10 = (0111)2
® Min negative integer number represented in 4-bit: (—8)19 = (1000)>
* Max positive integer number represented in 32-bit: (0x7FFFFFFF)+s
e Min negative integer number represented in 32-bit:

Overflow
[

Overflow

® Max positive integer number represented in 4-bit: (+7)10 = (0111)2
® Min negative integer number represented in 4-bit: (—8)19 = (1000)>
* Max positive integer number represented in 32-bit: (0x7FFFFFFF)+s
* Min negative integer number represented in 32-bit: (0x80000000)+¢

Overflow
[

Overflow

® Max positive integer number represented in 4-bit: (+7)10 = (0111)2
® Min negative integer number represented in 4-bit: (—8)1o = (1000)2
* Max positive integer number represented in 32-bit: (0x7FFFFFFF)+s
* Min negative integer number represented in 32-bit: (0x80000000)+¢

add/sub causes/raises arithmetic exception in the case of overflow
and result is not written.

Overflow
[

Overflow

® Max positive integer number represented in 4-bit: (+7)10 = (0111)2
® Min negative integer number represented in 4-bit: (—8)1o = (1000)2
* Max positive integer number represented in 32-bit: (0x7FFFFFFF)+s
* Min negative integer number represented in 32-bit: (0x80000000)+¢

e add/sub causes/raises arithmetic exception in the case of overflow
and result is not written.

e addu/subu ignores overflow and writes result to destination register

Logical Bitwise Instructions
[

Logical Bitwise Instructions

Logical Bitwise Instructions
[

Logical Bitwise Instructions

D [bs [bo | b1 | bo
A lol1]o]n1
AND B [1|1]0]0
AwB| 0 |1]0]0
D [b3 | b2 | b1 | b
Alo]1]o]n
AB| 1][1[0]n

Logical Bitwise Instructions
[

Logical Bitwise Instructions

:D [bs [b2 | b1 | o bs | bs | by | by
A lol]1]oln :)D A lo]1]o]ln
AND B [1|1]0]0 XOR B |1/1]0]0
AwB |0 [1]0]0 ANB[1001
[b3 | b2 | b1 | b
D Alol1]o]n
OR B |1]1/0]0
AB| 1][1[0]n

v
=
2
=
5}
=
=
=
17}
=
o
z
3
I~
()
©
=
B0
)
=

Logical Bitwise Instructions

| b | b2 | b1 | bo

| b3 | b2 | by | by

AnB| 10|01

AwB| 0 |1]0]0

b b [0y b

[b3 | b2 | b1 | b

(ABy|o|o|1]o0

— O |+
o O |O
— — |~
O — |+

m
< 00 |+

<

4/1

LAB 03: Integer Arithmetic January 29, 2023

S. Alsaleh (KFUPM)

Shift Instructions
000

Shift Instructions (Left Shift)

(0010),

Shift Instructions
000

Shift Instructions (Left Shift)

(0010)2 Shift every bit to the left by 1
2 and append 0 in the LSB

Shift Instructions
000

Shift Instructions (Left Shift)

(0010)2 Shift every bit to the left by 1 (0100)2
2 and append 0 in the LSB 4

Shift Instructions (Left Shift)

(0010)2 Shift every bit to the left by 1 (0100)2
2 and append 0 in the LSB 4

(0100); Shift every bit to the left by 1
4 and append 0 in the LSB

Shift Instructions (Left Shift)

(0010)2 Shift every bit to the left by 1 (0100)2
2 and append 0 in the LSB 4

(0100)2 Shift every bit to the left by 1 (1000),
4 and append 0inthe LSB 8

Shift Instructions
[Jelo)

Shift Instructions (Left Shift)

(0010)2 Shift every bit to the left by 1 (0100)2
2 and append 0 in the LSB 4

(0100)2 Shift every bit to the left by 1 (1000),
4 and append 0inthe LSB 8

e This is called Shift Left Logical (sll).

e Every single shift left logical is equivalent to multiplying by 2.
e MIPS instruction: sll $dst, $src, shift_amount.

e.g. sll $t0, $t1, 3
equivalent to multiplying $t1 by 23 = 8

Shift Instructions
0e0

Shift Instructions (Logical Right Shift)

(1010)2

Shift Instructions
0e0

Shift Instructions (Logical Right Shift)

(1010)2 Shift every bit to the right by 1
10 and append 0 in the MSB

Shift Instructions
0e0

Shift Instructions (Logical Right Shift)

(1010)2 Shift every bit to the right by 1 (0101),
10 and append 0 in the MSB 5

Shift Instructions (Logical Right Shift)

(1010)2 Shift every bit to the right by 1 (0101),
10 and append 0 in the MSB 5

(0101)2 Shift every bit to the right by 1
5 and append 0inthe MSB

Shift Instructions (Logical Right Shift)

(1010)2 Shift every bit to the right by 1 (0101),
10 and append 0 in the MSB 5

(0101), Shift every bit to the right by 1 (0010),
5 and append 0 in the MSB 4 2

Shift Instructions
000

Shift Instructions (Logical Right Shift)

(1010)2 Shift every bit to the right by 1 (0101),
10 and append 0 in the MSB 5

(0101), Shift every bit to the right by 1 (0010),
5 and append 0 in the MSB 4 2

e This is called Shift Right Logical (srl).

e Every single shift right logical is equivalent to dividing by 2 (with floor).
e MIPS instruction: srl $dst, $src, shifttamount.
e.g. srl $t0, $t1, 3
equivalent to dividing (with floor) $t1 by 23 = 8

Shift Instructions
ooe

Shift Instructions (Arithmetic Right Shift)

(1010)2

Shift Instructions
ooe

Shift Instructions (Arithmetic Right Shift)

(1010)2 Shift every bit to the right by 1
-6 and duplicate the sign bit

Shift Instructions
ooe

Shift Instructions (Arithmetic Right Shift)

(1010), Shift every bit to the right by 1 (1101),
-6 and duplicate the sign bit 3

Shift Instructions
ooe

Shift Instructions (Arithmetic Right Shift)

(1010), Shift every bit to the right by 1 (1101),
-6 and duplicate the sign bit 3

(1101)2 Shift every bit to the right by 1
-3 and duplicate the sign bit

Shift Instructions
ooe

Shift Instructions (Arithmetic Right Shift)

(1010), Shift every bit to the right by 1 (1101),
-6 and duplicate the sign bit 3

(1101), Shift every bit to the rightby 1 (1110),
-3 and duplicate the sign bit 2

Shift Instructions
00

Shift Instructions (Arithmetic Right Shift)

(1010), Shift every bit to the right by 1 (1101),
-6 and duplicate the sign bit 3

(1101), Shift every bit to the rightby 1 (1110),
-3 and duplicate the sign bit 2

e This is called Shift Right Arithmetic (sra).

e Every single shift right arithmetic is equivalent to dividing by 2 (with
floor) for signed numbers.
* MIPS instruction: sra $dst, $src, shift.amount.
e.g. sra $t0, $t1, 3
equivalent to dividing (with floor) $t1 as a signed number by 2% = 8

Pseudo Instructions
[

Pseudo Instructions

* Maps to one or more basic simple assembly
instruction(s).

Pseudo Instructions
[

Pseudo Instructions

* Maps to one or more basic simple assembly
instruction(s).

® They ease the programmer’s tasks in writing
applications.

Pseudo Instructions
[

Pseudo Instructions

* Maps to one or more basic simple assembly
instruction(s).

® They ease the programmer’s tasks in writing
applications.

e Common pseudo instructions: li, la, abs.

Pseudo Instructions
[

Pseudo Instructions

* Maps to one or more basic simple assembly
instruction(s).
® They ease the programmer’s tasks in writing
applications.
e Common pseudo instructions: li, la, abs.
® |i $t0, OXABCD = addi $t0, $0, OXABCD

Pseudo Instructions
[

Pseudo Instructions

* Maps to one or more basic simple assembly
instruction(s).

® They ease the programmer’s tasks in writing
applications.

e Common pseudo instructions: li, la, abs.

* |i $t0, OXABCD = addi $t0, $0, OXABCD
® |i $t0, 0X89ABCDEF = lui $at, 0X89AB
ori $t0, $at, OXCDEF

Pseudo Instructions
[

Pseudo Instructions

* Maps to one or more basic simple assembly Load Clear
instruction(s). Upper Lower
* They ease the programmer’s tasks in writing 16 bit 16 bit
applications. 0x89AB | 0x0000 [sat
. . . 0x89AB OxCDEF $t0
e Common pseudo instructions: li, la, abs. OR Lower
* |i $t0, OXABCD = addi $t0, $0, OXABCD Keep PR
* i $t0, 0X89ABCDEF = lui $at, 0x89AB Upper immediate
ori $t0, $at, OXCDEF 16 bit value

Live Examples
(]

Live Examples

Task #1

Write a MIPS program where you ask the user to enter a signed integer x.
Then, calculate and print the value of y based on the following equation.

y =53.125x
Sample Run 1 Sample Run 2
Enter x: 8 Enter x: -16
y =425 y =-850

Task #2

Write a MIPS program where you prompt the user for an integer a.
Then, set bit 11 and 17. Finally, display the value of that integer after

modification.

Sample Run 1

Enter a: 465
Result = 133585

Sample Run 2

S. Alsaleh (KFUPM)

Enter a: 1023
Result = 134143

11/11

	Overflow
	Logical Bitwise Instructions
	Shift Instructions
	Pseudo Instructions
	Live Examples
	Tasks

