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and result is not written.
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Overflow

® Max positive integer number represented in 4-bit: (+7)10 = (0111)2
® Min negative integer number represented in 4-bit: (—8)1o = (1000)2
* Max positive integer number represented in 32-bit: (0x7FFFFFFF)+s
* Min negative integer number represented in 32-bit: (0x80000000)+¢

e add/sub causes/raises arithmetic exception in the case of overflow
and result is not written.

e addu/subu ignores overflow and writes result to destination register
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:D [ bs [ b2 | b1 | o bs | bs | by | by
A lol]1]oln :)D A lo]1]o]ln
AND B [1|1]0]0 XOR B |1/1]0]0
AwB |0 [1]0]0 ANB[ 1001
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D Alol1]o]n
OR B |1]1/0]0
AB| 1 ][1[0]n
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(0010)2 Shift every bit to the left by 1 (0100)2
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Shift Instructions (Left Shift)

(0010)2 Shift every bit to the left by 1 (0100)2
2 and append 0 in the LSB 4

(0100)2 Shift every bit to the left by 1 (1000),
4 and append 0inthe LSB 8

e This is called Shift Left Logical (sll).

e Every single shift left logical is equivalent to multiplying by 2.
e MIPS instruction: sll $dst, $src, shift_amount.

e.g. sll $t0, $t1, 3
equivalent to multiplying $t1 by 23 = 8
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Shift Instructions (Logical Right Shift)

(1010)2 Shift every bit to the right by 1 (0101),
10 and append 0 in the MSB 5

(0101), Shift every bit to the right by 1 (0010),
5 and append 0 in the MSB 4 2

e This is called Shift Right Logical (srl).

e Every single shift right logical is equivalent to dividing by 2 (with floor).
e MIPS instruction: srl $dst, $src, shifttamount.
e.g. srl $t0, $t1, 3
equivalent to dividing (with floor) $t1 by 23 = 8
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Shift Instructions (Arithmetic Right Shift)

(1010), Shift every bit to the right by 1 (1101),
-6 and duplicate the sign bit 3

(1101), Shift every bit to the rightby 1 (1110),
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Shift Instructions (Arithmetic Right Shift)

(1010), Shift every bit to the right by 1 (1101),
-6 and duplicate the sign bit 3

(1101), Shift every bit to the rightby 1 (1110),
-3 and duplicate the sign bit 2

e This is called Shift Right Arithmetic (sra).

e Every single shift right arithmetic is equivalent to dividing by 2 (with
floor) for signed numbers.
* MIPS instruction: sra $dst, $src, shift.amount.
e.g. sra $t0, $t1, 3
equivalent to dividing (with floor) $t1 as a signed number by 2% = 8
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Pseudo Instructions

* Maps to one or more basic simple assembly
instruction(s).

® They ease the programmer’s tasks in writing
applications.

e Common pseudo instructions: li, la, abs.

* |i $t0, OXABCD = addi $t0, $0, OXABCD
® |i $t0, 0X89ABCDEF = lui $at, 0X89AB
ori $t0, $at, OXCDEF
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Pseudo Instructions

* Maps to one or more basic simple assembly Load Clear
instruction(s). Upper Lower
* They ease the programmer’s tasks in writing 16 bit 16 bit
applications. 0x89AB | 0x0000 [sat
. . . 0x89AB OxCDEF $t0
e Common pseudo instructions: li, la, abs. OR Lower
* |i $t0, OXABCD = addi $t0, $0, OXABCD Keep PR
* i $t0, 0X89ABCDEF = lui $at, 0x89AB Upper immediate
ori $t0, $at, OXCDEF 16 bit value
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Task #1

Write a MIPS program where you ask the user to enter a signed integer x.
Then, calculate and print the value of y based on the following equation.

y =53.125x
Sample Run 1 Sample Run 2
Enter x: 8 Enter x: -16
y =425 y =-850




Task #2

Write a MIPS program where you prompt the user for an integer a.
Then, set bit 11 and 17. Finally, display the value of that integer after

modification.

Sample Run 1

Enter a: 465
Result = 133585

Sample Run 2

S. Alsaleh (KFUPM)

Enter a: 1023
Result = 134143
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