LAB 07: MIPS Functions and Stack Segment

Saleh AlSaleh
salehs@kfupm.edu.sa

King Fahd University of Petroleum and Minerals
College of Computing and Mathematics
Computer Engineering Department

COE301: Computer Architecture
Term 222

Agenda

© Caller vs. Callee

® Functions

© Registers Convention
O Stack Segment

© Examples

0O Tasks

Caller vs. Callee
[

Caller vs. Callee

e The code/function that initiates the call to another function is known
as Caller.

Caller vs. Callee
[

Caller vs. Callee

e The code/function that initiates the call to another function is known
as Caller.

¢ The function that receives and executes the call is known as the
Callee.

Caller vs. Callee
[

Caller vs. Callee

e The code/function that initiates the call to another function is known
as Caller.

¢ The function that receives and executes the call is known as the
Callee.

e To execute a function, the program must follow these steps:

Caller vs. Callee
[

Caller vs. Callee

e The code/function that initiates the call to another function is known
as Caller.

e The function that receives and executes the call is known as the
Callee.
e To execute a function, the program must follow these steps:

® The caller must put the parameters (if there are) in a place where the
callee function can access them.

Caller vs. Callee
[

Caller vs. Callee

e The code/function that initiates the call to another function is known
as Caller.

e The function that receives and executes the call is known as the
Callee.
e To execute a function, the program must follow these steps:

® The caller must put the parameters (if there are) in a place where the
callee function can access them.
® Transfer control to the callee function.

Caller vs. Callee
[

Caller vs. Callee

e The code/function that initiates the call to another function is known
as Caller.

e The function that receives and executes the call is known as the
Callee.
e To execute a function, the program must follow these steps:
® The caller must put the parameters (if there are) in a place where the
callee function can access them.
® Transfer control to the callee function.
® Execute the callee function.

Caller vs. Callee
[

Caller vs. Callee

e The code/function that initiates the call to another function is known
as Caller.

e The function that receives and executes the call is known as the
Callee.
e To execute a function, the program must follow these steps:
® The caller must put the parameters (if there are) in a place where the
callee function can access them.
® Transfer control to the callee function.
e Execute the callee function.
® The callee function must put the results (if there are) in a place where
the caller can access them.

Caller vs. Callee
[

Caller vs. Callee

e The code/function that initiates the call to another function is known
as Caller.

¢ The function that receives and executes the call is known as the
Callee.

e To execute a function, the program must follow these steps:

® The caller must put the parameters (if there are) in a place where the
callee function can access them.

® Transfer control to the callee function.

® Execute the callee function.

® The callee function must put the results (if there are) in a place where
the caller can access them.

® Return control to the caller (point of origin) next to where the call was
made.

Caller vs. Callee
[

Caller vs. Callee

e The code/function that initiates the call to another function is known
as Caller.

¢ The function that receives and executes the call is known as the
Callee.

e To execute a function, the program must follow these steps:

® The caller must put the parameters (if there are) in a place where the
callee function can access them.

® Transfer control to the callee function.

® Execute the callee function.

® The callee function must put the results (if there are) in a place where
the caller can access them.

® Return control to the caller (point of origin) next to where the call was
made.

Functions
[

Functions: Definition, Execute(Call), Return Back

e Definition:
® Define a label similar to if
statements and loops.
® Write the body of the function after
the label.

Functions
[

Functions: Definition, Execute(Call), Return Back

e Definition:
® Define a label similar to if
statements and loops.
® Write the body of the function after
the label.

e Execution:

® Prepare the arguments in $a0-$a3
registers.

® Call the function using the jal
instruction (e.g. jal function).

Functions
[

Functions: Definition, Execute(Call), Return Back

e Definition:
® Define a label similar to if
statements and loops.
® Write the body of the function after
the label.
e Execution:
® Prepare the arguments in $a0-$a3
registers.
® Call the function using the jal
instruction (e.g. jal function).
e Return Back:
® Prepare the results if any in
$v0-$v1 registers.
® Return to the caller using jr
instruction (jr $ra)

Functions
[

Functions: Definition, Execute(Call), Return Back

e Definition:
® Define a label similar to if
statements and loops.
® Write the body of the function after

the label. Function Example:
* Execution: function: # function name
® Prepare the arguments in $a0-$a3 # function body
registers.)
e Call the function using the jal # return statement(essentiall)
instruction (e.g. jal function). jr $ra

e Return Back:
® Prepare the results if any in
$v0-$v1 registers.
® Return to the caller using jr
instruction (jr $ra)

Registers Convention
[

Registers Convention

Register Name ‘ Register No.

Register Usage

$zero $0 Always zero, forced by hardware

$at $1 Assembler Temporary register, reserved for assembler use
$v0 - $v1 $2-$3 Results of a function

$a0 - $a3 $4-%7 Arguments of a function

$t0 - $t7 $8-3%15 Registers for storing temporary values

$s0 - $s7 $16 - $23 Registers that should be saved across function calls

$t8 - $t9 $24 - $25 Registers for storing more temporary values

$kO - $k1 $26 - $27 Registers reserved for the OS kernel use

$gp $28 Global Pointer register that points to global data

$sp $29 Stack Pointer register that points to top of stack

$fp $30 Frame Pointer register that points to stack frame

$ra $31 Return Address register used to return from a function call

Stack Segment
[

Stack Segment

e Stack Segment provides an area that
can be allocated and freed by functions.
The programmer has no control over
where these segments are located in
memory.

Stack Segment
[

Stack Segment

e Stack Segment provides an area that
can be allocated and freed by functions.
The programmer has no control over
where these segments are located in
memory.

® The stack segment can be used by
functions for passing many parameters,
for allocating space for local variables,
and for saving and preserving registers
across calls.

Stack Segment
[

Stack Segment

e Stack Segment provides an area that
can be allocated and freed by functions.
The programmer has no control over
where these segments are located in
memory.

® The stack segment can be used by
functions for passing many parameters,
for allocating space for local variables,
and for saving and preserving registers
across calls.

e Without the stack segment in memory,
it would be impossible to write
recursive functions, or pure functions
that have no side effects.

Stack Segment
[

Stack Segment

e Stack Segment provides an area that
can be allocated and freed by functions.
The programmer has no control over

. ox7FFFFFFF
where these segments are located in ” Stack Segment Stack grows
memo ry. \l] Downwards

/T\
* The stack segment can be used by Heap Aren
functions for passing many parameters, prorer pata seement
for allocating space for local variables, Text segment
and for saving and preserving registers =~ > —
across calls.
e Without the stack segment in memory, MIPS Memory Organization

it would be impossible to write
recursive functions, or pure functions
that have no side effects.

Examples
LYe)

Recursive Function Example

Recursive factorial function in MIPS

Assembly
fact:
bge $a0, 2, else # branch if (n >= 2) to else
int fact (int n) { li $v0, 1 #$v0 =1
if (n o< 2) | jr$ra # return to caller
else:
return 1; addi $sp, $sp, -8 # allocate 8 bytes in the stack
else sw $a0, 0($sp) # save the argument n
return n«fact (n-1); sw $ra, 4($sp) # save the return address
} addi $a0, $a0, -1 # argument $a0 = n-1
1a| fact # call fact(n-1)
w $a0, 0($sp) # restore $a0=n
. . . Iw $ra, 4($sp) # restore return address
Recursive factorial function mul $v0, $a0, $v0 # $v0 = n * fact(n-1)
addi $sp, $sp, 8 # free stack frame
jr$ra # return to the caller

Examples
oe

Live Examples

Task #1

Example function Stack Frame

void f() { saved $ra = 4 bytes
int array[10];
read(array, 10);
reverse(array, 10);
print(array, 1@);

int array[10]
(40 bytes)

Write a MIPS assembly program that |»
that implements the read, reverse,
and print functions used by f function

in Figure 7.6 & Figure 7.7 in the PDF

file. These functions should work [* 5™ &k 5’ @ ieeie mihe s 7

f function in C

-

. . . move $a@, $sp # $a@ = address of array on the stack
with any size n (not only size 10). L a0 #501 - 10
. . . jal read # call function read
Then write a main function that calls Rove $a0, $sp # $a0 - address of array on the stack
. 1i $al1, 10 # $al = 10
function f. jal reverse # call function reverse
move $a0, $sp # $a0 = address of array on the stack
1i $a1, 10 # $al = 10
jal print # call function print

1w $ra, 4e($sp) # load $ra from the stack
addiu $sp, $sp, 44 # Free stack frame = 44 bytes
jr $ra # return to caller

f function in MIPS Assembly
s. Alsaleh (KFUPM) February 26, 2023 9/11

Task #1

Sample Run
Enter integer 1: 1
Enter integer 2:
Enter integer 3:
Enter integer 4:
Enter integer 5:
Enter integer 6:
Enter integer 7:
Enter integer 8:
Enter integer 9:
Enter integer 10: 10
Integer reversed =10987654321

O 00 NOoO U D WN

Task #2

Write a MIPS assembly program that
asks the user for an integer n he
wishes to compute the Fibonacci
number at that index. Calculate
fib(n) based on the following code.
Finally, print out the result.

int fib(int n) {
if (n <= 1)
return n;
return fib(n-1)+fib(n-2);

Recursive Fibonacci function

Sample Run

Entern: 7

fib(n) =13

11/11

	Caller vs. Callee
	Functions
	Registers Convention
	Stack Segment
	Examples
	Tasks

