
Caller vs. Callee Functions Registers Convention Stack Segment Examples Tasks

LAB 07: MIPS Functions and Stack Segment

Saleh AlSaleh
salehs@kfupm.edu.sa

King Fahd University of Petroleum and MineralsCollege of Computing and MathematicsComputer Engineering Department

COE301: Computer ArchitectureTerm 222

S. AlSaleh (KFUPM) LAB 07: MIPS Functions and Stack Segment February 26, 2023 1 / 11

Caller vs. Callee Functions Registers Convention Stack Segment Examples Tasks

Agenda

1 Caller vs. Callee

2 Functions

3 Registers Convention

4 Stack Segment

5 Examples

6 Tasks

S. AlSaleh (KFUPM) LAB 07: MIPS Functions and Stack Segment February 26, 2023 2 / 11

Caller vs. Callee Functions Registers Convention Stack Segment Examples Tasks

Caller vs. Callee

• The code/function that initiates the call to another function is knownas Caller.

• The function that receives and executes the call is known as the
Callee.

• To execute a function, the program must follow these steps:
• The caller must put the parameters (if there are) in a place where the

callee function can access them.
• Transfer control to the callee function.
• Execute the callee function.
• The callee function must put the results (if there are) in a place wherethe caller can access them.
• Return control to the caller (point of origin) next to where the call wasmade.

S. AlSaleh (KFUPM) LAB 07: MIPS Functions and Stack Segment February 26, 2023 3 / 11

Caller vs. Callee Functions Registers Convention Stack Segment Examples Tasks

Caller vs. Callee

• The code/function that initiates the call to another function is knownas Caller.
• The function that receives and executes the call is known as the

Callee.

• To execute a function, the program must follow these steps:
• The caller must put the parameters (if there are) in a place where the

callee function can access them.
• Transfer control to the callee function.
• Execute the callee function.
• The callee function must put the results (if there are) in a place wherethe caller can access them.
• Return control to the caller (point of origin) next to where the call wasmade.

S. AlSaleh (KFUPM) LAB 07: MIPS Functions and Stack Segment February 26, 2023 3 / 11

Caller vs. Callee Functions Registers Convention Stack Segment Examples Tasks

Caller vs. Callee

• The code/function that initiates the call to another function is knownas Caller.
• The function that receives and executes the call is known as the

Callee.
• To execute a function, the program must follow these steps:

• The caller must put the parameters (if there are) in a place where the
callee function can access them.

• Transfer control to the callee function.
• Execute the callee function.
• The callee function must put the results (if there are) in a place wherethe caller can access them.
• Return control to the caller (point of origin) next to where the call wasmade.

S. AlSaleh (KFUPM) LAB 07: MIPS Functions and Stack Segment February 26, 2023 3 / 11

Caller vs. Callee Functions Registers Convention Stack Segment Examples Tasks

Caller vs. Callee

• The code/function that initiates the call to another function is knownas Caller.
• The function that receives and executes the call is known as the

Callee.
• To execute a function, the program must follow these steps:

• The caller must put the parameters (if there are) in a place where the
callee function can access them.

• Transfer control to the callee function.
• Execute the callee function.
• The callee function must put the results (if there are) in a place wherethe caller can access them.
• Return control to the caller (point of origin) next to where the call wasmade.

S. AlSaleh (KFUPM) LAB 07: MIPS Functions and Stack Segment February 26, 2023 3 / 11

Caller vs. Callee Functions Registers Convention Stack Segment Examples Tasks

Caller vs. Callee

• The code/function that initiates the call to another function is knownas Caller.
• The function that receives and executes the call is known as the

Callee.
• To execute a function, the program must follow these steps:

• The caller must put the parameters (if there are) in a place where the
callee function can access them.

• Transfer control to the callee function.

• Execute the callee function.
• The callee function must put the results (if there are) in a place wherethe caller can access them.
• Return control to the caller (point of origin) next to where the call wasmade.

S. AlSaleh (KFUPM) LAB 07: MIPS Functions and Stack Segment February 26, 2023 3 / 11

Caller vs. Callee Functions Registers Convention Stack Segment Examples Tasks

Caller vs. Callee

• The code/function that initiates the call to another function is knownas Caller.
• The function that receives and executes the call is known as the

Callee.
• To execute a function, the program must follow these steps:

• The caller must put the parameters (if there are) in a place where the
callee function can access them.

• Transfer control to the callee function.
• Execute the callee function.

• The callee function must put the results (if there are) in a place wherethe caller can access them.
• Return control to the caller (point of origin) next to where the call wasmade.

S. AlSaleh (KFUPM) LAB 07: MIPS Functions and Stack Segment February 26, 2023 3 / 11

Caller vs. Callee Functions Registers Convention Stack Segment Examples Tasks

Caller vs. Callee

• The code/function that initiates the call to another function is knownas Caller.
• The function that receives and executes the call is known as the

Callee.
• To execute a function, the program must follow these steps:

• The caller must put the parameters (if there are) in a place where the
callee function can access them.

• Transfer control to the callee function.
• Execute the callee function.
• The callee function must put the results (if there are) in a place wherethe caller can access them.

• Return control to the caller (point of origin) next to where the call wasmade.

S. AlSaleh (KFUPM) LAB 07: MIPS Functions and Stack Segment February 26, 2023 3 / 11

Caller vs. Callee Functions Registers Convention Stack Segment Examples Tasks

Caller vs. Callee

• The code/function that initiates the call to another function is knownas Caller.
• The function that receives and executes the call is known as the

Callee.
• To execute a function, the program must follow these steps:

• The caller must put the parameters (if there are) in a place where the
callee function can access them.

• Transfer control to the callee function.
• Execute the callee function.
• The callee function must put the results (if there are) in a place wherethe caller can access them.
• Return control to the caller (point of origin) next to where the call wasmade.

S. AlSaleh (KFUPM) LAB 07: MIPS Functions and Stack Segment February 26, 2023 3 / 11

Caller vs. Callee Functions Registers Convention Stack Segment Examples Tasks

Caller vs. Callee

• The code/function that initiates the call to another function is knownas Caller.
• The function that receives and executes the call is known as the

Callee.
• To execute a function, the program must follow these steps:

• The caller must put the parameters (if there are) in a place where the
callee function can access them.

• Transfer control to the callee function.
• Execute the callee function.
• The callee function must put the results (if there are) in a place wherethe caller can access them.
• Return control to the caller (point of origin) next to where the call wasmade.

S. AlSaleh (KFUPM) LAB 07: MIPS Functions and Stack Segment February 26, 2023 3 / 11

Caller vs. Callee Functions Registers Convention Stack Segment Examples Tasks

Functions: Definition, Execute(Call), Return Back

• Definition:
• Define a label similar to ifstatements and loops.
• Write the body of the function afterthe label.

• Execution:
• Prepare the arguments in $a0-$a3registers.
• Call the function using the jalinstruction (e.g. jal function).

• Return Back:
• Prepare the results if any in$v0-$v1 registers.
• Return to the caller using jrinstruction (jr $ra)

Function Example:
function: # function name
function body
return statement(essential!)
jr $ra

S. AlSaleh (KFUPM) LAB 07: MIPS Functions and Stack Segment February 26, 2023 4 / 11

Caller vs. Callee Functions Registers Convention Stack Segment Examples Tasks

Functions: Definition, Execute(Call), Return Back

• Definition:
• Define a label similar to ifstatements and loops.
• Write the body of the function afterthe label.

• Execution:
• Prepare the arguments in $a0-$a3registers.
• Call the function using the jalinstruction (e.g. jal function).

• Return Back:
• Prepare the results if any in$v0-$v1 registers.
• Return to the caller using jrinstruction (jr $ra)

Function Example:
function: # function name
function body
return statement(essential!)
jr $ra

S. AlSaleh (KFUPM) LAB 07: MIPS Functions and Stack Segment February 26, 2023 4 / 11

Caller vs. Callee Functions Registers Convention Stack Segment Examples Tasks

Functions: Definition, Execute(Call), Return Back

• Definition:
• Define a label similar to ifstatements and loops.
• Write the body of the function afterthe label.

• Execution:
• Prepare the arguments in $a0-$a3registers.
• Call the function using the jalinstruction (e.g. jal function).

• Return Back:
• Prepare the results if any in$v0-$v1 registers.
• Return to the caller using jrinstruction (jr $ra)

Function Example:
function: # function name
function body
return statement(essential!)
jr $ra

S. AlSaleh (KFUPM) LAB 07: MIPS Functions and Stack Segment February 26, 2023 4 / 11

Caller vs. Callee Functions Registers Convention Stack Segment Examples Tasks

Functions: Definition, Execute(Call), Return Back

• Definition:
• Define a label similar to ifstatements and loops.
• Write the body of the function afterthe label.

• Execution:
• Prepare the arguments in $a0-$a3registers.
• Call the function using the jalinstruction (e.g. jal function).

• Return Back:
• Prepare the results if any in$v0-$v1 registers.
• Return to the caller using jrinstruction (jr $ra)

Function Example:
function: # function name
function body
return statement(essential!)
jr $ra

S. AlSaleh (KFUPM) LAB 07: MIPS Functions and Stack Segment February 26, 2023 4 / 11

Caller vs. Callee Functions Registers Convention Stack Segment Examples Tasks

Registers Convention

Register Name Register No. Register Usage

$zero $0 Always zero, forced by hardware
$at $1 Assembler Temporary register, reserved for assembler use
$v0 - $v1 $2 - $3 Results of a function
$a0 - $a3 $4 - $7 Arguments of a function
$t0 - $t7 $8 - $15 Registers for storing temporary values
$s0 - $s7 $16 - $23 Registers that should be saved across function calls
$t8 - $t9 $24 - $25 Registers for storing more temporary values
$k0 - $k1 $26 - $27 Registers reserved for the OS kernel use
$gp $28 Global Pointer register that points to global data
$sp $29 Stack Pointer register that points to top of stack
$fp $30 Frame Pointer register that points to stack frame
$ra $31 Return Address register used to return from a function call

S. AlSaleh (KFUPM) LAB 07: MIPS Functions and Stack Segment February 26, 2023 5 / 11

Caller vs. Callee Functions Registers Convention Stack Segment Examples Tasks

Stack Segment

• Stack Segment provides an area thatcan be allocated and freed by functions.The programmer has no control overwhere these segments are located inmemory.

• The stack segment can be used byfunctions for passing many parameters,for allocating space for local variables,and for saving and preserving registersacross calls.
• Without the stack segment in memory,it would be impossible to writerecursive functions, or pure functionsthat have no side effects.

MIPS Memory Organization

S. AlSaleh (KFUPM) LAB 07: MIPS Functions and Stack Segment February 26, 2023 6 / 11

Caller vs. Callee Functions Registers Convention Stack Segment Examples Tasks

Stack Segment

• Stack Segment provides an area thatcan be allocated and freed by functions.The programmer has no control overwhere these segments are located inmemory.
• The stack segment can be used byfunctions for passing many parameters,for allocating space for local variables,and for saving and preserving registersacross calls.

• Without the stack segment in memory,it would be impossible to writerecursive functions, or pure functionsthat have no side effects.

MIPS Memory Organization

S. AlSaleh (KFUPM) LAB 07: MIPS Functions and Stack Segment February 26, 2023 6 / 11

Caller vs. Callee Functions Registers Convention Stack Segment Examples Tasks

Stack Segment

• Stack Segment provides an area thatcan be allocated and freed by functions.The programmer has no control overwhere these segments are located inmemory.
• The stack segment can be used byfunctions for passing many parameters,for allocating space for local variables,and for saving and preserving registersacross calls.
• Without the stack segment in memory,it would be impossible to writerecursive functions, or pure functionsthat have no side effects.

MIPS Memory Organization

S. AlSaleh (KFUPM) LAB 07: MIPS Functions and Stack Segment February 26, 2023 6 / 11

Caller vs. Callee Functions Registers Convention Stack Segment Examples Tasks

Stack Segment

• Stack Segment provides an area thatcan be allocated and freed by functions.The programmer has no control overwhere these segments are located inmemory.
• The stack segment can be used byfunctions for passing many parameters,for allocating space for local variables,and for saving and preserving registersacross calls.
• Without the stack segment in memory,it would be impossible to writerecursive functions, or pure functionsthat have no side effects.

MIPS Memory Organization

S. AlSaleh (KFUPM) LAB 07: MIPS Functions and Stack Segment February 26, 2023 6 / 11

Caller vs. Callee Functions Registers Convention Stack Segment Examples Tasks

Recursive Function Example

int fact(int n){

if (n < 2)

return 1;

else
return n*fact(n-1);

}

Recursive factorial function

Recursive factorial function in MIPSAssembly
fact:bge $a0, 2, else # branch if (n >= 2) to elseli $v0, 1 # $v0 = 1jr $ra # return to callerelse:addi $sp, $sp, -8 # allocate 8 bytes in the stacksw $a0, 0($sp) # save the argument nsw $ra, 4($sp) # save the return addressaddi $a0, $a0, -1 # argument $a0 = n-1jal fact # call fact(n-1)lw $a0, 0($sp) # restore $a0 = nlw $ra, 4($sp) # restore return addressmul $v0, $a0, $v0 # $v0 = n * fact(n-1)addi $sp, $sp, 8 # free stack framejr $ra # return to the caller

S. AlSaleh (KFUPM) LAB 07: MIPS Functions and Stack Segment February 26, 2023 7 / 11

Caller vs. Callee Functions Registers Convention Stack Segment Examples Tasks

Live Examples

S. AlSaleh (KFUPM) LAB 07: MIPS Functions and Stack Segment February 26, 2023 8 / 11

Caller vs. Callee Functions Registers Convention Stack Segment Examples Tasks

Task #1

Write a MIPS assembly program thatthat implements the read, reverse,and print functions used by f functionin Figure 7.6 & Figure 7.7 in the PDFfile. These functions should workwith any size n (not only size 10).Then write a main function that callsfunction f.

f function in C

f function in MIPS Assembly
S. AlSaleh (KFUPM) LAB 07: MIPS Functions and Stack Segment February 26, 2023 9 / 11

Caller vs. Callee Functions Registers Convention Stack Segment Examples Tasks

Task #1

Sample Run
Enter integer 1: 1
Enter integer 2: 2
Enter integer 3: 3
Enter integer 4: 4
Enter integer 5: 5
Enter integer 6: 6
Enter integer 7: 7
Enter integer 8: 8
Enter integer 9: 9
Enter integer 10: 10
Integer reversed = 10 9 8 7 6 5 4 3 2 1

S. AlSaleh (KFUPM) LAB 07: MIPS Functions and Stack Segment February 26, 2023 10 / 11

Caller vs. Callee Functions Registers Convention Stack Segment Examples Tasks

Task #2

Write a MIPS assembly program thatasks the user for an integer n hewishes to compute the Fibonaccinumber at that index. Calculate
fib(n) based on the following code.Finally, print out the result.

int fib(int n) {

if (n <= 1)

return n;

return fib(n-1)+fib(n-2);

}

Recursive Fibonacci function

Sample Run
Enter n: 7
fib(n) = 13

S. AlSaleh (KFUPM) LAB 07: MIPS Functions and Stack Segment February 26, 2023 11 / 11

	Caller vs. Callee
	Functions
	Registers Convention
	Stack Segment
	Examples
	Tasks

