Getting Started with ESP32 and
Arduino IDE

Table of Contents

1. Objectives
2. Parts List
3. Background
3.1. Microcontroller
3.2. Arduino IDE
3.3. Blinky Example
4. Wi-Fi
5. Tasks
5.1. Create A Simple WiFi Client
5.2. Create A Simple WiFi Server

Resources

1. Objectives

* Getting familiar with the ESP32 Platform
* Getting familiar with Arduino IDE

* Implementing Wi-Fi client on ESP32

2. Parts List

* ESP32-S3

(o TS T ST NS NG SN

10
10
10
10

» USB A-Type to Micro-B cable

e Breadboard

-
[
-
L
-
-

e mmea

* LED

¢ 330 Ohm Resistor

3. Background

3.1. Microcontroller

ESP32-S3-WROOM-1-N8R8 is a microcontroller manufactured by Espressif. ESP32-S3-WROOM-1-
N8R8 is only one member of a big family of microcontolles. The ESP32-S3-WROOM-1-N8R8
microcontroller is a Xtensa® dual-core 32-bit LX7 microprocessor. Some of its features include: CPU
clock up to 240MHz, 384KB on-chip Flash ROM, 8MB External Flash, 512kB SRAM, 8MB PSRAM, 2.4
GHz Wi-Fi (802.11 b/g/n) up to 150Mbps, Bluetooth LE 5.0, SPI, LCD, Camera Interface, UARTS, 12C,
12S, general purpose I/O pins, full-speed USB 1.1 OTG interface, ADC and other peripherals.

The product data sheet for the ESP32-S3-WROOM-1-N8R8 microcontroller [esp32-s3-data-sheet] is
essential resource for any developer.

ESP32-S3-WROOM-1-N8R8 microcontroller can be programmed by ESP-IDF (Espressif IDE), Arduino
IDE, and Micropython. This guide will use Arduino IDE for programming the microcontroller.

3.2. Arduino IDE

The Arduino IDE is a free IDE software development environment for different types of
microcontrollers such as Arduino Uno, Arduino Mega, Arduino Nano, ST STM32 microncontrollers
and ESP32 microncontrollers.

By default, Arduino IDE only supports Arduino boards. However, support for other
microcontrollers can be installed.

3.2.1. Installation
To install your copy of the Arduino IDE:

1. Using a web browser, navigate to the Arduino Integrated Development Environment (IDE) page.
2. Use the download link that matches your operating system.

3. Run the downloaded installer.

4. After the installation has completed, open the Arduino IDE application.

5. Open the Preferences window by clicking on the File Menu, then Preferences Item.

Preferences b4

Setlings Network
Sketchbook location:
/mome/saleh/Arduino BROWSE

[C) Show files inside Sketches

Editor font size: 14

Interface scale: M Automatic 100 o

Theme: Light (Arduino) hd

Language: English * (Reload required)

Show verbose output during (] compile [_J upload

Compiler wamings None W

(] Verify code after upload
Auto save
[_] Editor Quick Suggestions

Additional boards manager URLs: m

6. Copy and paste the following link in the Additional board manager URLS.
https://raw.githubusercontent.com/espressif/arduino-esp32/gh-pages/
package_esp32_dev_index.json

https://www.arduino.cc/en/software
https://raw.githubusercontent.com/espressif/arduino-esp32/gh-pages/package_esp32_dev_index.json
https://raw.githubusercontent.com/espressif/arduino-esp32/gh-pages/package_esp32_dev_index.json

Preferences *

Settings Network
Sketchbook location:
/home/saleh/Arduino BROWSE

[Tl show files inside Sketches

Editor font size: 14

Interface scale: Automatic 100 Yo

Theme: Light (Arduino} hd

Language: English + (Reload required)

Show verbose output during (] compile [_Jupload

Compiler wamings Nong W

() Verify code after upload
Auto save
(CJ Editor Quick Suggestions

Additional boards manager URLs: hitps:/fraw.githubusercontent.com/espressiffarduino-esp32/gh-pages/package e a

7. Open the Board Manager window/panel by clicking on the Tools menu, then Board — Board
Manager .

8. Type esp32 in the filter your search textbox, then install the esp32 boards by Espressif Systems.

3.2.2. Pin Layout

The pin layout of the ESP32-S3 board is shown in the ESP32-S3 pin layout figure below.

ESP32-S3-DevKitC-1 &) ESPRESSIF

£sp32-53-WRoOM [GND
3V3 UOTXD , GP1043 [CLK_OUTL
RST UORXD ,GP1044 [CLK_OUTZ
ADC1_3 JTOUCH4 GP104 GPIO1 [RTC . TOUCH1[ADC1 0
ADC1_4 JTOUCHS GPIO5 GPI02 | RTC , TOUCH2] ADC1_1
ADC1_5 ;TOUCH6 GP106 MTMS
ADC1_6 [TOUCHT GPIOT MTDI
XTAL32K_P ADC2_4 | UORTS GP1015 MTDO
XTALS2KOW. ADC2_5 | UOCTS GP1016 MTCK
ADC2_6 . ULTXD GP1017 GPl038, FSPIWP | suBsPiwP RGB_LED,
CUKSOUTS" ADC2_7 _ UIRXD GP1018 GP|O37 . SP
ADCL_7 [TOUCHS GPI08
JTAG ADC1_2 JTOUCH3 GP103 GPI035
LOG GPI046 GPIO0
[FSPIHD [suespiHp | ADC1_8 _ TOUCH9. GP109 GP1045
FSPICS0, SUBSPICS0] FSPII04 | ADC1_9 , TOUCH10 GP1010 GPI048
FSPID . 5UBSPID L FSPIIO5 [ADC2 0 TOUCH11 GP1011 GPI04T
FSPICLK] SUBSPICLK] FSPIIO6 | ADC2_1 [TOUCH12 GP1012 GPI021, RTC
ESPIQ , SUBSPIQ LFSPIIO7 [ADC2 2 /TOUCH13 GP1013 (- GPI020, RTC . UICTS | ADC2_9 JeLk ouTt]
FSPIWP } suBsPiMP FSPIDQS] ADC2_3 [TOUCH14 GP1014 "USB_D-
5V0 @D
GND GND.

3V3

w

+0:0:0:8~
:0:0:0:0:0-0-

0:0:0

0:0-0:

I

e

~A=0 =
4 N M N

@
G

@
G

—’\c— PWM Capable Pin

ESP32-S3 SPECS @D GPIO Input and Output

32-bit Xtensa® dual-core @240MHz EIEG[IER) JTAG for Debugging and USB
R Analog-to-Digital Converter
Wi-Fi IEEE 802.11 b/g/n 2.4GHz + BLE 5 Mesh Touch Sensor Input Channel
512 KB SRAM (16 KB SRAM in RTC) @D Other Related Functions
384 KB ROM Serial for Debug/Programming
45 GPIOs, 4x SPI, 3x UART, 2x 12C, e
14x Touch, 2x I2S, RMT, LED PWM, USB-OTG, (U Miscellaneous/SPI functions Ground
TWAI®, 2x 12-bit ADC, 1x LCD interface, DVP Clock utput Powr Ralls (V3 and 1

Figure 1. ESP32-S3 pin layout

3.3. Blinky Example

One of the basic examples to test a microcontroller is to test blinking an LED. Let’s start by
connecting a 330 Ohm resistor to pin 4 and the positive lead of the LED to the other end of the
resistor and negative lead of the LED to GND of the microcontroller. Below is a sample code to blink
an LED connected to GPIO pin 4.

#idefine LED_PIN 4
void setup() {
// configure the LED pin to be as a GPIO output
pinMode(LED_PIN, OUTPUT);
+
void Toop() {
// turn the LED on (HIGH is the voltage level)
digitalWrite(LED_PIN, HIGH);
// wait for a second
delay(1000);
// turn the LED off by making the voltage LOW
digitalWrite(LED_PIN, LOW);
// wait for a second
delay(1000);

Then, select the board "ESP32S3 Dev Module" from the Tools Menu — Board — esp32. Next, connect

the ESP32 microcontoller to the computer and select the port number (e.g. COM3) from the Tools
Menu.

e Make sure to select the Flash Size to be 8MB. In addition to that, ensure to have the
PSRAM selected as OPI PSRAM.

If you have everything configured and LED is connected properly, then the LED should be blinking.

4. Wi-Fi

The ESP32 microcontroller can be used as an Access Point (AP) or a Station (STA).

In Access Point mode, the ESP32 behaves like a WiFi network (a bit like a router): other devices can
connect to it. In this mode, the ESP32 is not connected to any other network and is therefore not
connected to the Internet. This mode is more computationally and energy-intensive (the ESP32
board will heat up) since the ESP32 has to simulate a full WiFi router (Soft AP). The latency and the
bandwidth will be less efficient than in a classic router.

The Station mode (STA) is used to connect the ESP32 module to a WiFi access point. The ESP32
behaves like a computer that is connected to our router. If the router is connected to the Internet,
then the ESP32 can access the Internet. The ESP32 can behave as a client: make requests to other
devices connected to the network, or as a server: other devices connected to the network will send
requests to the ESP32. In both cases, the ESP32 can access the Internet.

In many IoT applications, the ESP32 module will be used as a client that connects to an access point.
The following client example shows how to connect an ESP32 module to an access point and send
data to another server. However, you can modify the arduin code to use the ESP32 as a server that
receives requests from other clients on the same network.

o Refer to Arduino WiFi library documentation [arduino-wifi].

// include Arduino WiFi library
#include <WiFi.h>

// WiFi netword SSID (i.e. name)

const char* ssid = "yourNetworkName";

// WiFi network password

const char* password = "yourNetworkPassword";

// Server IP Address

const char * host = "192.168.8.154";
// Server Port Number

const uint16_t port = 9090;

void setup() {
// start Serial communication to the PC
Serial.beqgin(115200);
delay(1000);

// setting mode for wifi (station, client)
WiFi.mode(WIFI_STA);

// connect to the wifi network
WiFi.begin(ssid, password);
Serial.println("\nConnecting");

// wait until the client is connected to the network
while(WiFi.status() !'= WL_CONNECTED) {
Serial.print(".");
delay(100);
}

// Printing IP Address of the client
Serial.println("\nConnected to the WiFi network");
Serial.print("Local ESP32 IP: ");
Serial.println(WiFi.localIP());

}

void loop() {

WiFiClient client;

if (!client.connect(host, port)) {
Serial.println("Connection to host failed");

// wait one second before attempting to connect to server
delay(1000);

}

else {
// server connection established
Serial.println("Connected to server successful!");
// send a message to server
client.print("Hello from COE454");
Serial.println("Disconnecting...");
// terminate connection to server
client.stop();
// wait for 10 seconds before sending the next request
delay(10000);

The server could be as complex as a cloud based server or a simple as the following python script
running on a computer connected to the same network of the ESP32.

e Refer to python socket library for more information [python-socket].

import socket library

import socket

create a socket object

mySocket = socket.socket()

bind socket to all network interfaces on port 9090

mySocket.bind(('0.0.0.0", 9090))
enable server to accept new connections
mySocket.listen(0)
while True:
accept a new connection from a client
client, addr = mySocket.accept()
while True:
receive 32 bytes from the client
content = client.recv(32)
if len(content) ==0:
break
else:
print(content)
print("Closing connection")
client.close()

If everything is configured properly, then the ESP32 microcontoller will send a request to the server
(i.e. python script) every 10 seconds.

5. Tasks

5.1. Create A Simple WiFi Client

1. Connect a sensor such as temprature sensor to ESP32 microcontoller.

2. Read the sensor value from the ESP32 microcontoller and send the sensor data to a python
server.

3. Write a python server that receives the temprature value and warns the user when the
temprature is too high or too low.

5.2. Create A Simple WiFi Server

1. Connect an actuator such as an LED or a servo motor to ESP32 microcontoller.

2. Write code for ESP32 using WiFiServer class to receive requests from clients that control the
actuator.

3. Write a python (or any other programming language) client that connects to the server and
control the actuator by sending the proper requests.

Resources

= [esp32-s3-data-sheet]

ESP32-S3-WROOM-1 ESP32-S3-WROOM-1U — Product data sheet. Version 1.1 22 July 2022.
https://www.espressif.com/sites/default/files/documentation/esp32-s3-wroom-1_wroom-
1u_datasheet_en.pdf

10

https://www.espressif.com/sites/default/files/documentation/esp32-s3-wroom-1_wroom-1u_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-s3-wroom-1_wroom-1u_datasheet_en.pdf

» [arduino-wifi]

WiFi - Arduino Reference
https://www.arduino.cc/reference/en/libraries/wifi/

= [python-socket]

Python socket (low-level networking interface) documentation
https://docs.python.org/3/library/socket.html

11

https://www.arduino.cc/reference/en/libraries/wifi/
https://docs.python.org/3/library/socket.html

	Getting Started with ESP32 and Arduino IDE
	Table of Contents
	1. Objectives
	2. Parts List
	3. Background
	3.1. Microcontroller
	3.2. Arduino IDE
	3.3. Blinky Example

	4. Wi-Fi
	5. Tasks
	5.1. Create A Simple WiFi Client
	5.2. Create A Simple WiFi Server

	Resources

