
ICS 313 - Fundamentals of Programming Languages 1

6. Data Types

6.1 Introduction

Evolution of Data Types

FORTRAN I (1957) - INTEGER, REAL, arrays

…

Ada (1983) - User can create a unique type for every category 
of variables in the problem space and have the system enforce 
the types

A descriptor is the collection of the attributes of a variable

Design Issues for all data types

What is the syntax of references to variables?

What operations are defined and how are they specified?



ICS 313 - Fundamentals of Programming Languages 2

6.2 Primitive Data Types

Those not defined in terms of other data types

Integer
Almost always an exact reflection of the hardware, so the mapping is 
trivial
There may be as many as eight different integer types in a language 

Floating Point
Model real numbers, but only as approximations
Languages for scientific use support at least two floating-point types; 
sometimes more
Usually exactly like the hardware, but not always; some languages 
allow accuracy specs in code e.g. (Ada)
type SPEED is digits 7 range 0.0..1000.0;
type VOLTAGE is delta 0.1 range -12.0..24.0;
See book for representation of floating point (p. 223)

6.2 Primitive Data Types (continued)

representation of floating point



ICS 313 - Fundamentals of Programming Languages 3

6.2 Primitive Data Types (continued)

Decimal

For business applications (money)

Store a fixed number of decimal digits (coded)

Advantage: accuracy

Disadvantages: limited range, wastes memory

Boolean

Could be implemented as bits, but often as bytes

Advantage: readability

Character Types

ASCII character set

Unicode

6.3 Character String Types

Values are sequences of characters

Design issues

Is it a primitive type or just a special kind of array?

Is the length of objects static or dynamic?

Operations

Assignment 

Comparison (=, >, etc.)  

Catenation

Substring reference

Pattern matching



ICS 313 - Fundamentals of Programming Languages 4

6.3 Character String Types (continued)

Examples
Pascal 

Not primitive; assignment and comparison only (of packed arrays)

Ada, FORTRAN 90, and BASIC
Somewhat primitive
Assignment, comparison, catenation, substring reference  
FORTRAN has an intrinsic for pattern matching

Ada
N := N1 & N2 (catenation)
N(2..4)  (substring reference)

C and C++
Not primitive
Use char arrays and a library of functions  that provide operations

SNOBOL4 (a string manipulation language)
Primitive
Many operations, including elaborate pattern matching

6.3 Character String Types (continued)

Perl and JavaScript
Patterns are defined in terms of regular expressions
A very powerful facility!    
e.g., 
/[A-Za-z][A-Za-z\d]+/

Java - String class (not arrays of char)
Objects are immutable
StringBuffer is a class for changeable string objects 

String Length Options

Static - FORTRAN 77, Ada, COBOL           
e.g. (FORTRAN 90)

CHARACTER (LEN = 15) NAME;

Limited Dynamic Length - C and C++  actual length is indicated 
by a null character

Dynamic - SNOBOL4, Perl, JavaScript



ICS 313 - Fundamentals of Programming Languages 5

6.3 Character String Types (continued)

Evaluation (of character string types)

Aid to writability

As a primitive type with static length, they are inexpensive to 
provide--why not have them?

Dynamic length is nice, but is it worth the expense?

Implementation

Static length - compile-time descriptor

Limited dynamic length - may need a run-time descriptor for 
length (but not in C and C++)

Dynamic length - need run-time descriptor;     
allocation/deallocation is the biggest implementation problem

6.4 User-Defined Ordinal Types

An ordinal type is one in which the range of possible values 
can be easily associated with the set of positive integers

Enumeration Types 

One in which the user enumerates all of the possible values, 
which are symbolic constants

Design Issue: Should a symbolic constant be allowed to be in 
more than one type definition?

Examples
Pascal - cannot reuse constants; they can be used for array subscripts, 
for variables, case selectors;  NO input or output; can be compared
Ada - constants can be reused (overloaded literals); disambiguate with 
context or type_name ‘ (one of them);  can be used as in Pascal;  CAN 
be input and output
C and C++ - like Pascal, except they can be input and output as integers
Java  does not include an enumeration type, but provides the 
Enumeration interface



ICS 313 - Fundamentals of Programming Languages 6

6.4 User-Defined Ordinal Types

Evaluation (of enumeration types):

Aid to readability - e.g. no need to code a color as a 
number

Aid to reliability - e.g. compiler can check:
operations (don’t allow colors to be added) 
ranges of values (if you allow 7 colors and code them as the integers, 
1..7, 9 will be a legal integer (and thus a legal color))

Subrange Type 

An ordered contiguous subsequence of an ordinal type

Design Issue: How can they be used?

6.4 User-Defined Ordinal Types

Examples
Pascal 

Subrange types behave as their parent types;  can be used as for variables 
and array indices 
e.g.   type pos = 0 .. MAXINT;

Ada
Subtypes are not new types, just constrained existing types (so they are              
compatible); can be used as in Pascal, plus case constants
e.g.
subtype POS_TYPE is INTEGER range 0 ..INTEGER'LAST;

Evaluation of subrange types
Aid to readability
Reliability - restricted ranges add error detection
Implementation of user-defined ordinal types
Enumeration types are implemented as integers
Subrange types are the parent types with code inserted (by the 
compiler) to restrict assignments to subrange variables



ICS 313 - Fundamentals of Programming Languages 7

6.5 Arrays

An array is an aggregate of homogeneous data elements in 
which an individual element is identified by its position in the
aggregate, relative to the first element

Design Issues
What types are legal for subscripts?
Are subscripting expressions in element references range 
checked?
When are subscript ranges bound?
When does allocation take place?
What is the maximum number of subscripts?
Can array objects be initialized?
Are any kind of slices allowed?

Indexing is a mapping from indices to elements
map(array_name, index_value_list) → an element

6.5 Arrays (continued)

Index Syntax
FORTRAN, PL/I, Ada use parentheses
Most other languages use brackets

Subscript Types:
FORTRAN, C - integer only
Pascal - any ordinal type (integer, boolean, char, enum)
Ada - integer or enum (includes boolean and char)
Java - integer types only

Four Categories of Arrays (based on subscript binding and binding 
to storage)

Static - range of subscripts and storage bindings are static 
e.g. FORTRAN 77, some arrays in Ada
Advantage: execution efficiency (no allocation or deallocation)



ICS 313 - Fundamentals of Programming Languages 8

6.5 Arrays (continued)

Fixed stack dynamic - range of subscripts is statically bound, but 
storage is bound at elaboration time 

e.g. Most Java locals, and C locals that are not static

Advantage: space efficiency

Stack-dynamic - range and storage are dynamic, but fixed from then 
on for the variable’s lifetime

e.g.  Ada declare blocks

declare 

STUFF : array (1..N) of FLOAT;

begin

...

end;

Advantage: flexibility - size need not be known until the array is about 
to be used

6.5 Arrays (continued)

Heap-dynamic - subscript range and storage bindings are 
dynamic and not fixed

e.g. (FORTRAN 90)

INTEGER, ALLOCATABLE, ARRAY (:,:) :: MAT

(Declares MAT to be a dynamic 2-dim array)

ALLOCATE (MAT (10, NUMBER_OF_COLS))

(Allocates MAT to have 10 rows and

NUMBER_OF_COLS columns)

DEALLOCATE MAT 

(Deallocates MAT’s storage)   

In APL, Perl, and JavaScript, arrays grow and shrink as needed

In Java, all arrays are objects (heap-dynamic)



ICS 313 - Fundamentals of Programming Languages 9

6.5 Arrays (continued)

Number of subscripts

FORTRAN I allowed up to three

FORTRAN 77 allows up to seven

Others - no limit

Array Initialization 

Usually just a list of values that are put in the  array in the order 
in which the array elements are stored in memory

Examples
FORTRAN - uses the DATA statement, or put  the values in / ... / on the declaration
C and C++ - put the values in braces; can let  the compiler count them  e.g. 
int stuff [] = {2, 4, 6, 8};
Ada - positions for the values can be specified  e.g.
SCORE : array (1..14, 1..2) := (1 => (24, 10), 2 => (10, 7), 3 =>(12, 30), others => 
(0, 0));  
Pascal does not allow array initialization

6.5 Arrays (continued)

Array Operations

APL - many, see book (p. 240-241)

ADA 
Assignment; RHS can be an aggregate constant or an array name
Catenation; for all single-dimensioned arrays
Relational operators (= and /= only)

FORTRAN 90
Intrinsics (subprograms) for a wide variety of  array operations (e.g., matrix 
multiplication,  vector dot product)

Slices

A slice is some substructure of an array; nothing  more than a 
referencing mechanism

Slices are only useful in languages that have array operations  



ICS 313 - Fundamentals of Programming Languages 10

6.5 Arrays (continued)

Slice Examples:

FORTRAN 90

INTEGER MAT (1 : 4, 1 : 4)

MAT(1 : 4, 1) - the first column

MAT(2, 1 : 4) - the second row

Ada - single-dimensioned 
arrays only

LIST(4..10)

Implementation of Arrays

Access function maps subscript 
expressions to an address in the array 

Row major (by rows) or column major 
order (by columns)

6.6 Associative Arrays

An associative array is an unordered collection of data elements that 
are indexed by an equal number of values called keys

Design Issues
What is the form of references to elements?
Is the size static or dynamic?

Structure and Operations in Perl
Names begin with %
Literals are delimited by parentheses, e.g., 
%hi_temps = ("Monday" => 77,  "Tuesday" => 79,…);

Subscripting is done using braces and keys, e.g.,
$hi_temps{"Wednesday"} = 83;

Elements can be removed with delete, e.g., 
delete $hi_temps{"Tuesday"};



ICS 313 - Fundamentals of Programming Languages 11

6.7 Records

A record is a possibly heterogeneous aggregate of data elements 
in which the individual elements are identified by names

Design Issues
What is the form of references? 
What unit operations are defined?

Record Definition Syntax
COBOL uses level numbers to show nested records; others use 
recursive definitions

Record Field References
COBOL
field_name OF record_name_1 OF ... OF record_name_n

Others (dot notation)
record_name_1.record_name_2. ...     .record_name_n.field_name

Fully qualified references must include all record names

6.7 Records (continued)

Elliptical references allow leaving out record names as 
long as the reference is unambiguous

Pascal provides a with clause to abbreviate references

Record Operations
Assignment

Pascal, Ada, and C allow it if the types are identical
In Ada, the RHS can be an aggregate constant

Initialization
Allowed in Ada, using an aggregate constant

Comparison
In Ada, = and /=; one operand can be an aggregate constant

MOVE CORRESPONDING

In COBOL - it moves all fields in the source record to fields with the same names in the 
destination record



ICS 313 - Fundamentals of Programming Languages 12

6.7 Records (continued)

Comparing records and arrays

Access to array elements is much slower than access to 
record fields, because subscripts are dynamic (field 
names are static)

Dynamic subscripts could be used with record field 
access, but it would disallow type checking and it would 
be much slower

6.8 Unions

A union is a type whose variables are allowed to store different type values 
at different times during execution

Design Issues for unions
What kind of type checking, if any, must be  done?
Should unions be integrated with records?

Examples:

FORTRAN - with EQUIVALENCE
No type checking

Pascal - both discriminated and  nondiscriminated unions, e.g.  
type intreal =  record 

tagg : Boolean of

true : (blint : integer);

false : (blreal : real);

end; 



ICS 313 - Fundamentals of Programming Languages 13

6.8 Unions (continued)

Problem with Pascal’s design: type checking is ineffective 

Reasons why Pascal’s unions cannot be type  checked 
effectively:

User can create inconsistent unions (because the tag can be 
individually assigned)
var blurb : intreal;

x : real;

blurb.tagg := true;   { it is an integer }

blurb.blint := 47;    { ok }      

blurb.tagg := false;  { it is a real }

x := blurb.blreal;   {assigns an integer to a real}

The tag is optional!
Now, only the declaration and the second and last assignments are required to cause 
trouble

6.8 Unions (continued)

Ada - discriminated unions

Reasons they are safer than Pascal:
Tag must be present
It is impossible for the user to create an inconsistent union (because tag cannot be 
assigned by itself--All assignments to the union must include the tag value, 
because they are aggregate values)

C and C++ - free unions (no tags)

Not part of their records

No type checking of references

Java has neither records nor unions

Evaluation - potentially unsafe in most languages (not Ada)



ICS 313 - Fundamentals of Programming Languages 14

6.9 Sets

A set is a type whose variables can store unordered 
collections of distinct values from some ordinal type

Design Issue

What is the maximum number of elements in any  set 
base type?

Examples

Pascal
No maximum size in the language definition
(not portable, poor writability if max is too small)
Operations:  in, union (+), intersection (*), difference (-), =, <>, superset 
(>=), subset (<=)

6.9 Sets (continued)

Ada - does not include sets, but defines in as set 
membership operator for all enumeration types

Java includes a class for set operations

Evaluation
If a language does not have sets, they must be simulated, 
either with enumerated types or with arrays

Arrays are more flexible than sets, but have much slower 
set operations

Implementation
Usually stored as bit strings and use logical operations for 
the set operations



ICS 313 - Fundamentals of Programming Languages 15

6.10 Pointers

A pointer type is a type in which the range of values consists 
of memory addresses and a special value, nil (or null)

Uses
Addressing flexibility
Dynamic storage management

Design Issues
What is the scope and lifetime of pointer variables?
What is the lifetime of heap-dynamic variables?
Are pointers restricted to pointing at a particular type?
Are pointers used for dynamic storage management, indirect 
addressing, or both?
Should a language support pointer types, reference types, or 
both?   

6.10 Pointers (continued)

Fundamental Pointer Operations:

Assignment of an address to a pointer

References (explicit versus implicit dereferencing)

The assignment operation j = *ptr



ICS 313 - Fundamentals of Programming Languages 16

6.10 Pointers (continued)

Problems with pointers

Dangling pointers (dangerous)
A pointer points to a heap-dynamic variable that has been deallocated
Creating one (with explicit deallocation):

Allocate a heap-dynamic variable and set a pointer to point at it
Set a second pointer to the value of the first pointer
Deallocate the heap-dynamic variable, using the first pointer

Lost Heap-Dynamic Variables (wasteful)
A heap-dynamic variable that is no longer referenced by any program 
pointer
Creating one:

Pointer p1 is set to point to a newly created heap-dynamic variable
p1 is later set to point to another newly created heap-dynamic 
variable

The process of losing heap-dynamic variables is called memory leakage 

6.10 Pointers (continued)

Examples:

Pascal: used for dynamic storage management only
Explicit dereferencing (postfix ^)
Dangling pointers are possible (dispose)
Dangling objects are also possible 

Ada: a little better than Pascal
Some dangling pointers are disallowed because dynamic 
objects can be automatically deallocated at the end of pointer's 
type scope
All pointers are initialized to null
Similar dangling object problem (but rarely happens, because 
explicit deallocation is rarely done)



ICS 313 - Fundamentals of Programming Languages 17

6.10 Pointers (continued)

C and C++
Used for dynamic storage management and  addressing

Explicit dereferencing and address-of operator

Can do address arithmetic in restricted forms

Domain type need not be fixed (void * )
e.g.  float stuff[100];

float *p;

p = stuff;

*(p+5) is equivalent to stuff[5] and  p[5]

*(p+i) is equivalent to stuff[i] and  p[i]

(Implicit scaling)

void * - Can point to any type and can be type checked (cannot be 
dereferenced)

6.10 Pointers (continued)

FORTRAN 90 Pointers

Can point to heap and non-heap variables

Implicit dereferencing

Pointers can only point to variables that have the TARGET 
attribute

The TARGET attribute is assigned in the declaration, as in:
INTEGER, TARGET :: NODE

A special assignment operator is used for non-dereferenced
references 
e.g. 

REAL, POINTER :: ptr (POINTER is an attribute)

ptr => target (where target is either a pointer or a non-pointer 
with the TARGET attribute))

This sets ptr to have the same value as target



ICS 313 - Fundamentals of Programming Languages 18

6.10 Pointers (continued)

C++ Reference Types
Constant pointers that are implicitly dereferenced

Used for parameters

Advantages of both pass-by-reference and pass-by-value 

Java - Only references
No pointer arithmetic

Can only point at objects (which are all on the heap)

No explicit deallocator (garbage collection is used)
Means there can be no dangling references

Dereferencing is always implicit

6.10 Pointers (continued)

Evaluation of pointers

Dangling pointers and dangling objects are problems, as 
is heap management

Pointers are like goto's
they widen the range of cells that can be accessed by a variable

Pointers or references are necessary for dynamic data 
structures

so we can't design a language without them



ICS 313 - Fundamentals of Programming Languages 19

7. Expressions and Assignment Statements


