Course Outline (tentative)

- Basic Internet Concepts
- HTML
- XHTML
- CSS (style sheets)
- Client-Side Scripting
- XML and XSL
- WAP (Wireless Application Protocol)
- Server Side Scripting
- Accessing a Database
- Web Services
- Web Security
- Web Servers (Hosting)
- Basics of E-Commerce
What this course is not

... there is a difference between training and education. If computer science is a fundamental discipline, then university education in this field should emphasize enduring fundamental principles rather than transient current technology.

Grading

10% 3 quizzes
10% project I
20% project II
15% exam I
20% exam II
25% final exam
Warning

- Demanding course
- No textbook
- Many different topics
- Large project component
- Field changes quickly
 - Each year is essentially a new course

Course Materials

- No textbooks

- WWW
 - http://ics-sukairi/swe444
 - Most content is on the web
 - Lectures are on the web
 - I’m setting up WebCT
Basic Internet Concepts

Abbreviated History

1943 First electronic digital computer Harvard Mark I
1966 Design of ARPA net
1970 ARPA net spans country, has 5 nodes
1971 ARPA net has 15 nodes
1972 First email programs, FTP spec
1973 Ethernet operation at Xerox PARC
1974 Intel launches 8080; TCP design
1975 Gates/Allen write Basic for Altair 8800
1976 Apple Computer formed by Jobs/Wozniak
1977 111 hosts on ARPA net
1979 Visicalc
… Abbreviated History

1981 Microsoft has 40 employees; IBM PC
1982 Sun formed
1983 ARPAnet uses TCP/IP -> birth of internet
1983 Design of DNS
1984 launch of Macintosh; 1000 hosts on ARPAnet
1985 Symbolic.com first registered domain name
1989 100,000 hosts on Internet
1990 Cisco Systems goes public $288 M
Tim Berners-Lee creates WWW at CERN

… Abbreviated History

1993 Mosaic developed at UIUC
 Web grows by 341,000% in a year
1994 Netscape, Amazon, Archtext formed
1995 Netscape, Windows 95, MetaCrawler
1997 Amazon
2000 Internet “bubble” bursts

Jan 2003 171,638,297: Number of Hosts advertised in the DNS
(Source: http://www.isc.org/)
Web Server Survey

- In the September 2003 survey Netcraft received responses from 43,144,374 sites (Source: http://news.netcraft.com/)

How Many Online?

- 605.60 million is an "educated guess" as to how many are online worldwide as of September 2002 (Source: http://www.nua.com/)

<table>
<thead>
<tr>
<th>Region</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>World Total</td>
<td>605.60 million</td>
</tr>
<tr>
<td>Europe</td>
<td>190.91 million</td>
</tr>
<tr>
<td>Asia/Pacific</td>
<td>187.24 million</td>
</tr>
<tr>
<td>Canada & USA</td>
<td>182.67 million</td>
</tr>
<tr>
<td>Latin America</td>
<td>33.35 million</td>
</tr>
<tr>
<td>Africa</td>
<td>6.31 million</td>
</tr>
<tr>
<td>Middle East</td>
<td>5.12 million</td>
</tr>
</tbody>
</table>
How Many Online (by Language)

(Source: http://www.glreach.com/globstats/)

Web Content (by language)

- Source: http://www.vilaweb.com/

<table>
<thead>
<tr>
<th>Language</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>68.4%</td>
</tr>
<tr>
<td>Japanese</td>
<td>5.9%</td>
</tr>
<tr>
<td>German</td>
<td>5.8%</td>
</tr>
<tr>
<td>Chinese</td>
<td>3.9%</td>
</tr>
<tr>
<td>French</td>
<td>3.0%</td>
</tr>
<tr>
<td>Spanish</td>
<td>2.4%</td>
</tr>
<tr>
<td>Russian</td>
<td>1.9%</td>
</tr>
<tr>
<td>Italian</td>
<td>1.6%</td>
</tr>
<tr>
<td>Portuguese</td>
<td>1.4%</td>
</tr>
<tr>
<td>Korean</td>
<td>1.3%</td>
</tr>
<tr>
<td>Other</td>
<td>4.6%</td>
</tr>
<tr>
<td>Total Web pages:</td>
<td>330 B</td>
</tr>
</tbody>
</table>
Number of Internet Users in KSA

According to Internet Services Unit
(Source: http://www.isu.net.sa/)

<table>
<thead>
<tr>
<th>Month</th>
<th>Number of Users</th>
</tr>
</thead>
<tbody>
<tr>
<td>April 2001</td>
<td>690,000 users</td>
</tr>
<tr>
<td>Dec 2001</td>
<td>900,000 users</td>
</tr>
<tr>
<td>July 2002</td>
<td>1,110,000 users</td>
</tr>
<tr>
<td>Dec 2002</td>
<td>1,453,000 users</td>
</tr>
</tbody>
</table>

Assumptions
- Estimated number of users per a 64kbps line is 20 users
- User to dialup subscriber ratio is estimated at 2.5

Structure of the Internet

(Source: CISCO SYSTEMS MAPS, UUNET MAP)
Internet Backbone Structure

- Level 1 (interconnect level, NAPs)
 - billions of pages per day
- Level 2 (national backbone, MAE, FIX)
 - Federal Internet eXchange Points
 - Peering agreements: connect, share routing info
- Level 3 (regional providers, state level)
- Level 4 (local ISP)
- Level 5 (companies, individuals)
- Level 6 (routers)

The World Wide Web

- A way to access and share information
 - Technical papers, marketing materials, recipes, ...
- A huge network of computers: the Internet
- Graphical, not just textual
- Information is linked to other information
- Application development platform
 - Shop from home
 - Provide self-help applications for customers and partners
 - ...

SWE 444 – Internet & Web App. Development
© Dr. Abdallah Al-Sukairi - KFUPM
WWW Architecture

- Client/Server, Request/Response architecture
 - You request a Web page
 - e.g. http://www.msn.com/default.asp
 - HTTP request
 - The Web server responds with data in the form of a Web page
 - HTTP response
 - Web page is expressed as HTML
 - Pages are identified as a Uniform Resource Locator (URL)
 - Protocol: http
 - Web server: www.msn.com
 - Web page: default.asp
 - Can also provide parameters: ?name=Leon
Web Standards

- Internet Engineering Task Force (IETF)
 - Founded 1986
 - A large open international community of network designers, operators, vendors, and researchers concerned with the evolution of the Internet architecture and the smooth operation of the Internet
 - It is open to any interested individual

- World Wide Web Consortium (W3C)
 - http://www.w3.org
 - Founded 1994 by Tim Berners-Lee
 - An open forum of companies and organizations with the mission to lead the Web to its full potential
 - W3C has around 450 Member organizations from all over the world
 - Publishes technical reports and recommendations
 - The rule-making body of the Web is the W3C
 - W3C puts together specifications for Web standards
 - The most essential Web standards are HTML, CSS and XML

Web Design Principles

- **Interoperability**: Web languages and protocols must be compatible with one another independent of hardware and software

- **Evolution**: The Web must be able to accommodate future technologies. Encourages simplicity, modularity and extensibility

- **Decentralization**: Facilitates scalability and robustness
Hypertext Markup Language (HTML)

- The markup language used to represent Web pages for viewing by people
 - Designed to display data, not store/transfer data
- Rendered and viewed in a Web browser
- Can contain links to images, documents, and other pages
- Not extensible
- Derived from Standard Generalized Markup Language (SGML)
- HTML 3.2, 4.01, XHTML 1.0

HTML Forms

- Enables you to create interactive user interface elements
 - Buttons
 - Text boxes
 - Drop down lists
 - Check boxes
- User fills out the form and submits it
- Form data is sent to the Web server via HTTP when the form is submitted
Hypertext Transport Protocol (HTTP)

- The top-level protocol used to request and return data
 - E.g. HTML pages, GIFs, JPEGs, Microsoft Word documents, Adobe PDF documents, etc.
- Request/Response protocol
- Methods: GET, POST, HEAD, ...
- HTTP 1.0: simple
- HTTP 1.1: more complex

HTTP

- HTTP is a stateless protocol
- Each HTTP request is independent of previous and subsequent requests
- HTTP 1.1 introduced keep-alive for efficiency
- Statelessness has a big impact on how scalable applications are designed
HTTP Server Status Codes

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>OK</td>
</tr>
<tr>
<td>201</td>
<td>Created</td>
</tr>
<tr>
<td>301</td>
<td>Moved Permanently</td>
</tr>
<tr>
<td>302</td>
<td>Moved Temporarily</td>
</tr>
<tr>
<td>400</td>
<td>Bad Request – not understood</td>
</tr>
<tr>
<td>401</td>
<td>Unauthorized</td>
</tr>
<tr>
<td>403</td>
<td>Forbidden – not authorized</td>
</tr>
<tr>
<td>404</td>
<td>Not Found</td>
</tr>
<tr>
<td>500</td>
<td>Internal Server Error</td>
</tr>
</tbody>
</table>

What happens when you click?

- **Suppose**
 - You are at www.yahoo.com/index.html
 - You click on autos.yahoo.com

- Browser uses DNS => IP addr for autos.yahoo.com
- Opens TCP connection to that address
- Sends HTTP request
- Receives HTTP Response
- One click => several responses
- HTTP1.1: KeepAlive - several requests/connection
HTTP Request

Method File HTTP version Headers
GET /default.asp HTTP/1.0
Accept: image/gif, image/x-bitmap, image/jpeg, */*
Accept-Language: en
User-Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95)
Connection: Keep-Alive
If-Modified-Since: Sunday, 17-Apr-96 04:32:58 GMT

HTTP/1.0 200 OK
Date: Sun, 21 Apr 1996 02:20:42 GMT
Server: Microsoft-Internet-Information-Server/5.0
Connection: keep-alive
Content-Type: text/html
Last-Modified: Thu, 18 Apr 1996 17:39:05 GMT
Content-Length: 2543

<HTML> Some data... blah, blah, blah </HTML>
Cookies

- A mechanism to store a small amount of information (up to 4KB) on the client
- A cookie is associated with a specific web site
- Cookie is sent in HTTP header
- Cookie is sent with each HTTP request
- Can last for only one session (until browser is closed) or can persist across sessions
- Can expire some time in the future

HTTPS

- A secure version of HTTP
- Allows client and server to exchange data with confidence that the data was neither modified nor intercepted
- Uses Secure Sockets Layer (SSL)/Transport Layer Security (TLS)
URIs, URLs and URNs

- Uniform Resource Identifier (URI = URL or URN)
 - Generic term for all textual names/addresses

- Uniform Resource Locator (URL)
 - The set of URI schemes that have explicit instructions on how to access the resource over the Internet, e.g. http, ftp, gopher

- Uniform Resource Name (URN)
 - A URI that has an institutional commitment to availability, etc.
 - A particular scheme intended to identify resources e.g. urn:schemas:httpmail:subject

Multipurpose Internet Mail Extensions (MIME)

- Defines types of data/documents
 - text/plain
 - text/html
 - image/gif
 - image/jpeg
 - audio/x-pn-realaudio
 - audio/x-ms-wma
 - video/x-ms-asf
 - application/octet-stream
MIME

- Specifies character sets, e.g. ASCII
- Supports multi-part messages
- Originally designed for email, but also used in other places, such as HTTP

Browsers

- Client-side application
- Requests HTML from Web server and renders it

- Popular browsers:
 - Internet Explorer
 - Netscape
 - Opera
 - others

- Also known as a User Agent
Clients & Servers

- Clients
 - Generally supports a single user
 - Optimized for responsiveness to user
 - User interface, graphics

- Servers
 - Supports multiple users
 - Optimized for throughput
 - More: CPUs (SMP), memory, disks (SANs), I/O
 - Provide services (e.g. Web, file, print, database, e-mail, fax, transaction, telnet, directory)

Proxy Servers & Firewalls

- Proxy Server
 - A server that sits between a client (running a browser) and the Internet
 - Improves performance by caching commonly used Web pages
 - Can filter requests to prevent users from accessing certain Web sites

- Firewall
 - A server that sits between a network and the Internet to prevent unauthorized access to the network from the Internet
Networks

Network scope

- Internet: a specific world-wide network based on TCP/IP, used to connect companies, universities, governments, organizations and individuals
- Intranet: a network based on Internet technologies that is internal to a company or organization
- Extranet: a network based on Internet technologies that connects one company or organization to another

Network technology

- Broadcasting
 - Packets of data are sent from one machine and received by all computers on the network
 - Multicast: packets are received by a subset of the machines on a network
- Point-to-point
 - Packets have to be routed from one machine to another; there many be many paths
- In general, geographically localized networks use broadcasting, while disperse networks use point-to-point
Networks - Internet Layer

- Internet Protocol (IP)

- Responsible for getting packets from source to destination across multiple hops

- Not reliable

- IP address: 32 bit value usually written in dotted decimal notation as four 8-bit numbers (0 to 255); e.g. 130.50.12.4
Networks - Transport Layer

- Provides efficient, reliable and cost-effective service
- Uses the Sockets programming model
- Ports identify application
 - Well-known ports identify standard services (e.g. HTTP uses port 80, SMTP uses port 25)
- Transmission Control Protocol (TCP)
 - Provides reliable, connection-oriented byte stream
- UDP
 - Connectionless, unreliable

Networks - Application Layer

- Telnet: Remote sessions
- File Transfer Protocol (FTP)
- Network News Transfer Protocol (NNTP)
- Simple Network Management Protocol (SNMP)
- Simple Mail Transfer Protocol (SMTP)
- Post Office Protocol (POP3)
- Interactive Mail Access Protocol (IMAP)
Networks - Domain Name System (DNS)

- Provides user-friendly domain names, e.g. www.msn.com
- Hierarchical name space with limited root names

 - \texttt{.com}
 - \texttt{.org}
 - \texttt{.net}
 - \texttt{.mil}
 - \texttt{.gov}
 - \texttt{.jp}
 - \texttt{.edu}
 - \texttt{.sa}

- DNS servers map domain names to IP addresses

Extensible Markup Language (XML)

- Represents hierarchical data
- A meta-language: a language for defining other languages
- Extensible
- Useful for data exchange and transformation
- Simplified version of SGML
Client-Side Code

- What is client-side code?
 - Software that is downloaded from Web server to browser and then executes on the client

- Why client-side code?
 - Better scalability: less work done on server
 - Better performance/user experience
 - Create UI constructs not inherent in HTML
 - Drop-down and pull-out menus
 - Tabbed dialogs
 - Cool effects, e.g. animation
 - Data validation

Client-Side Technologies

- DHTML/JavaScript
- COM
 - ActiveX controls
 - COM components
 - Remote Data Services (RDS)
- Java
- Plug-ins
- Helpers
Server-Side Code

What is server-side code?
- Software that runs on the server, not the client
- Receives input from
 - URL parameters
 - HTML form data
 - Cookies
 - HTTP headers
- Can access server-side databases, e-mail servers, files, mainframes, etc.
- Dynamically builds a custom HTML response for a client

Why server-side code?
- **Accessibility**
 - You can reach the Internet from any browser, any device, any time, anywhere
- **Manageability**
 - Does not require distribution of application code
 - Easy to change code
- **Security**
 - Source code is not exposed
 - Once user is authenticated, can only allow certain actions
- **Scalability**
 - Web-based 3-tier architecture can scale out
Server-Side Technologies

- Common Gateway Interface (CGI)
- Internet Server API (ISAPI)
- Netscape Server API (NSAPI)
- Active Server Pages (ASP)
- Java Server Pages (JSP)
- Personal Home Page (PHP)
- Cold Fusion (CFM)
- ASP.NET

Web Services

- A programmable application component accessible via standard Web protocols
- The center of the .NET architecture
- Exposes functionality over the Web
- Built on existing and emerging standards
 - HTTP, XML, SOAP, UDDI, WSDL, ...
Evolution of the Web

- **Generation 1**: Static HTML
- **Generation 2**: Web Applications
- **Generation 3**: Web Services

Search Engine vs Directory vs…

- How do you find information on the Web?
 - Google
 - Teoma
 - alltheweb
 - altavista
 - ??????
Standard Web Search Engine Architecture

create an inverted index

store documents, check for duplicates, extract links

crawl the web

DocIds

create an inverted index

inverted index

Reading List

- History of the WWW
- Glossary of Internet Terms
- HTTP Made Really Easy
- Internet Search Techniques