
Software Reverse Engineering 10/29/2007

Dr.Talal Alkharobi1

Software Reverse Engineering 
Software Cracking

Sometimes, the best way to advance is in reverse

Dr.Talal Alkharobi

22

What is Reverse Engineering?

The process of extracting the knowledge or design blueprints from 
anything man-made.

It is different than conventional scientific research (e.g, coming up 
with blueprints of the atom)

With reverse engineering, the artifact being investigated is 
man-made

With Scientific research, the artifact is a natural phenomenon



Software Reverse Engineering 10/29/2007

Dr.Talal Alkharobi2

33

Software Reverse Engineering

Opening up a program’s “box” and looking inside

No screwdrivers needed, but integrates several arts of

Code breaking

Puzzle solving

Programming

Logical analysis

44

Why Reverse Engineering?

Application development
Why reinvent the wheel
Undocumented API
Interoperability with proprietary software
Software quality and robustness
Taking measurements
Analysis to draw proper conclusions



Software Reverse Engineering 10/29/2007

Dr.Talal Alkharobi3

55

Why Reverse Engineering?

Security-Related
Malicious Software

Black-Hat Hackers: To find vulnerabilities and exploit them
White-Hat Hackers: To identify, dissect and analyze 
malware

Reversing ciphers
Defeating copy right protection
Must-do when it comes to propriety software

Really unknown what the code does and how secure

66

Is reversing legal?

Jury is still out

Bottom line: what is “reverse engineering” used for?



Software Reverse Engineering 10/29/2007

Dr.Talal Alkharobi4

77Approaches to reverse 
engineering

White Box Analysis

Analyzing and understanding source code 

Code coverage – walking down dark allies

Black Box Analysis: Analyzing a running program by probing it 
with various inputs

Gray Box Analysis

88

Program Structure

Static libraries
Third party library external to program
Added to program while being built
Become integral part of the final executable

Dynamic libraries
Idea is to utilize memory
Multiple processes can use the same DLL
Remains separate from the executable
Update to DLL requires no update to program



Software Reverse Engineering 10/29/2007

Dr.Talal Alkharobi5

99

The .exe format and DLLs

Before loading DLLs, 
addresses of functions in DLL 
are pointing to dummy 
addresses in an import table

When process is loaded, the 
OS loader loads every module 
listed in the imported table, 
and resolves the addresses of 
each of the functions listed in 
each modules.  The addresses 
are found in the exported 
table of the module.

1010

Important Flags



Software Reverse Engineering 10/29/2007

Dr.Talal Alkharobi6

1111

Reversing Tools

Disassemblers and low-level debuggers
IDA Pro
ILDasm
OllyDbg
Win32Dasm
WinDbg
Numega SoftICE

1212

Reversing Tools

Decompilers
For Java and C#, the dream has come true

Hex Editors
Hex Workshop
Hiew
WinHex



Software Reverse Engineering 10/29/2007

Dr.Talal Alkharobi7

1313

Decompiling C# function

1414

Reversing Tools

System monitors: 
FileMon, 
TCPView, 
TDIMon, 
RegMon, 
PortMon, 
WinObj, 
Process Exporer



Software Reverse Engineering 10/29/2007

Dr.Talal Alkharobi8

1515IDA-generated function flowchart

1616IDA-generated function interactions at 
high level



Software Reverse Engineering 10/29/2007

Dr.Talal Alkharobi9

1717

Copyright Protection

Open Architecture

CPU can not check “authorized” or “legal” code

Only execution mode and process memory protection by OS

When program runs, its data and code has to be exposed or 
decrypted

Decryption key or decrypted data are impossible to hide – It is 
the CPU that does the decryption operation

Make no mistake: It is virtually impossible to create a totally 
uncrackable copy protection scheme

One crack is not the issue, “class breaks” is

1818

Design Considerations

Resistance to attack

End-user transparency



Software Reverse Engineering 10/29/2007

Dr.Talal Alkharobi10

1919

Types of Protection

Media-Based Protections: Deliberately writing bad sectors on 
floppy
Watermarking: Check for watermark on media before running
Serial Numbers: Program has “secret validation algorithm” to 
check for good serial numbers
Challenge Response 
Online Activations
Hardware-Based Protections: Program runs or keeps running if a 
dongle is attached
Checksum: Check for valid checksum before or during running

2020

checksum

Most BIOSes and Embedded Systems calculate a "checksum" of 
the software before executing it (or at least, before executing 
anything past the "checksum" code). 

Then if the calculated checksum fails to match the "correct" 
checksum, the BIOS refuses to execute the "corrupted" software. 

The checksum assured the programmer that the program really was 
all there. 



Software Reverse Engineering 10/29/2007

Dr.Talal Alkharobi11

2121

Types of Protection

Software as a Service (SaaS) 
Software application delivery model where a software vendor 
develops a web-native software application and hosts and 
operates (either independently or through a third-party) the 
application for use by its customers over the Internet. 
Customers pay not for owning the software but for using it. 
They use it through an API accessible over the Web and often 
written using Web Services or REST. 
The term SaaS has become the industry preferred term, 
generally replacing the earlier terms Application Service 
Provider (ASP), On-Demand and "Utility computing".
Highly secure  but …. Vendor is in control

2222

Types of Protection

Advanced Protection Concepts -- Crypto-Processors
Violates Open Architecture
Originated by Robert M. Best in his patent, “Executing 
Enciphered Programs.”
Decrypt code then Execute 
Each Crypto-microprocessor has 

Two pair of keys
A serial number



Software Reverse Engineering 10/29/2007

Dr.Talal Alkharobi12

2323

Crypto Processors execution 

Software is shipped by the vendor with binary executable 
encrypted
Microprocessor decrypts with private key
Machine code is placed in a special memory not software-
accessable

Similar to macrocode for each machine instruction
Only accessed by the process itself.  
Any other access by OS or any software is a violation.

Code is executed from this (theoretically) inaccessible memory

2424

Antireversing Techniques

It is never possible to entirely prevent reversing

What is possible is to hinder and obstruct reversers by wearing 
them out and making it so slow and painful.

Drown the reverser into a sea of irrelevant information….. they 
give up

Anti-Reversing techniques are techniques for a programmer to foil 
reverse-engineering attempts on their software. 



Software Reverse Engineering 10/29/2007

Dr.Talal Alkharobi13

2525

Anti-Reversing techniques

Obfuscators 

Code Transformations 

Opaque Predicates 

Code Encryption-Decryption 

Code Hashing 

Detecting Debuggers 

Killing Debuggers 

2626Antireversing
Obfuscators 

Eliminate Symbolic

Non-byte-code: Imported, exported and internal Function 
names, string names.

Byte-code (Java and .NET)

Intermediate code of a compiler

Uses internal cross-references than addresses 

More: class names, class member names, names of 
instantiated global objects

Use inlining & addresses for function names



Software Reverse Engineering 10/29/2007

Dr.Talal Alkharobi14

2727Antireversing
Obfuscators 

There are a number of tools on the market that will automate the
process of code obfuscation. 
These products will use a number of transformations to turn a code 
into a less-readable form, although it will not affect the program 
flow itself (although the transformations may increase code size or 
execution time).
Java has used obfuscators to protect intellectual property and/or 
licensing schemes. 
One of the greatest side effects, are in commercial versions many 
are able to find excess libraries, and excess function calls and
remove the Obfuscators

2828Antireversing
Code Encryption

Code can be encrypted, just like any other type of data, except that code 
can also work to encrypt and decrypt itself. 
There are some basic rules to follow on this topic:

Don't decrypt the entire program at once. This is important because if 
the program is ever 100% decrypted, a hacker can dump the 
memory, and obtain a decrypted listing of the program. 
Different parts of the program should be decrypted and re-encrypted 
one at a time, as they are being used, for maximum security. 
Calculate the decryption key at runtime. This prevents hackers from 
getting the key from the code, running an external decrypter, and 
obtaining the decrypted code. Throw keyimmediately after using it to 
make it more difficult for the key to be picked up out of memory. 



Software Reverse Engineering 10/29/2007

Dr.Talal Alkharobi15

2929Antireversing
Code Encryption

Use Large Keys. 32bit keys can be easily decrypted using a moderately 
fast computer, a quick algorithm, and a brute-force approach. 64bit keys 
or longer should be used to ensure security. 
A skilled hacker will be able to get your decryption key anyway, by 
setting a hardware breakpoint at the spot where you finish calculating 

3030Anti-reversing 
Code Transformations

FA()

{  FuncAPart1();

FuncAPart2();

FuncAPart3();}

FB()

{ FuncBPart1();

FuncBPart2();

FuncBPart3();}

main()

{  FA();

FB();}

main: jmp FAP1

FBP3: call FuncBPart3

jmp end

FBP1: call FuncBPart1

jmp FBP2

FAP2: call FuncAPart2

jmp FAP3

FBP2: call FuncBPart2

jmp FBP3

FAP1: call FuncAPart1 

jmp FAP2

FAP3: call FuncAPart3

jmp FBP1

end:



Software Reverse Engineering 10/29/2007

Dr.Talal Alkharobi16

3131Anti-reversing 
Code Transformations

Both previous codes does the same thing 

The code in the right is much harder to read, although it perfectly 
preserves the program flow of the original code 

This code is much harder for a human to read, although it isn't hard 
at all for an automated debugging tool (such as IDA Pro) to read.

3232

Opaque Predicate

A line (or lines) of code in a program that don't do anything, but 
that look like they do something. 

This is opposed to a transparent predicate that doesn't do anything 
and looks useless. 

A program filled with opaque predicates will take more time to 
decipher, because the reverser will take more time reading through 
useless, distraction code.



Software Reverse Engineering 10/29/2007

Dr.Talal Alkharobi17

3333

Code Hashing 

If a reverse engineer experiments with modifying a few bytes of 
the software, then these checksums will fail, and the software will 
refuse to run. 

But many checksums are simple enough that it's easy to modify 
one or two non-critical bytes to force the sum to equal the 
"correct" checksum. Hashes, though, are a different story.

Let's say we use a known hashing algorithm to find the given hash 
value of our program's code. 

Now, we can have the program recalculate the hash value at run-
time, and compare this value to the known value. 

3434

Code Hashing 

If the two numbers don't match up, then we know that a hacker has 
patched the code. 

At this point, we can terminate the program with a warning: "Don't 
hack this program!!!".

A good example of code hashing techniques is the .NET platform. 

.NET allows a programmer to sign a hash value or a "signature" to 
a compiled .NET module. 

If the code has been edited or patched in any way, the program will 
not run.



Software Reverse Engineering 10/29/2007

Dr.Talal Alkharobi18

3535

Detecting Debugger

TF set in EFLAGS

Check handlers in IDT

Enable TF and see if exception is swallowed by debugger

Code checksum

Slowdown runtime

Use only for sensitive functions

Use a special thread to see if program was stopped for long time

3636

Detecting Debuggers

IsDebuggerPresent API: 

Win32 API contains a function "IsDebuggerPresent", which 
will return a boolean true if the program is being debugged. 

The following code shows a general usage of this function:
if(IsDebuggerPresent())

{  TerminateProcess(GetCurrentProcess(), 1);}

It is easy to spot uses of the IsDebuggerPresent() function in 
the disassembled code

A skilled reverser will simply patch the code to remove this 
line.



Software Reverse Engineering 10/29/2007

Dr.Talal Alkharobi19

3737Detecting Debuggers
Timeouts

Debuggers can put break points in the code, and can therefore stop 
program execution. 

A program can detect this, by monitoring the system clock. 

If too much time has elapsed between instructions, it can be 
determined that the program is being stopped and analyzed 
(although this is not always the case). 

If a program is taking too much time, the program can terminate.

3838Detecting Debuggers
Detecting SoftICE

SoftICE is a local kernel debugger, and as such, it can't be detected 
as easily as a user-mode debugger can be. 

The IsDebuggerPresent API function will not detect the presence 
of SoftICE.

To detect SoftICE, number of techniques can be used:

Search for the SoftICE install directory. 

If SoftICE is installed, the user is probably a hacker/reverser. 

Detect the presence of int 1.

SoftICE uses interrupt 1 to debug, so if interrupt 1 is installed, 
SoftICE is running. 



Software Reverse Engineering 10/29/2007

Dr.Talal Alkharobi20

3939Detecting Debuggers
Detecting OllyDbg

OllyDbg is a popular 32-bit usermode debugger. 

Unfortunately, the last few releases, including the latest version 
(v1.10) contain a vulnerability in the handling of the Win32 API
function OutputDebugString(). 

A programmer trying to prevent his program from being debugged 
by OllyDbg could exploit this vulnerability in order to make the 
debugger crash. 

The author has never released a fix, however there are unofficial 
versions and plugins available to protect OllyDbg from being 
exploited using this vulnerability

4040

Keygenning

Definition: The process of creating programs that mimic the key-
generation algorithm for everyone to use
Software can be blacklisted if it always works with same pair of
(serial number or username.)  
Key depends on pair of username plus computer-specific info (disk 
driver serial number)
Ripping Keygen Algorithms: Locate/copy/paste/modify 



Software Reverse Engineering 10/29/2007

Dr.Talal Alkharobi21

4141

Reversing 101

Books
EladElad EilamEilam, , ““Reversing: Secretes of Reverse Engineering,Reversing: Secretes of Reverse Engineering,””
Wiley, 2005Wiley, 2005
Greg Greg HoglundHoglund, , ““Exploiting Software: How to Break Code,Exploiting Software: How to Break Code,””
AddisonAddison--Wesley, 2004Wesley, 2004
Kris Kris KasperskyKaspersky, , ““Hacker Hacker DisassebmlingDisassebmling Uncovered,Uncovered,”” AA--List List 
Publishing, 2003Publishing, 2003

4242

Reversing 101

Web sites
Learn to crackLearn to crack

http://www.learn2crack.com/http://www.learn2crack.com/
http://http://woodmann.net/krobarwoodmann.net/krobar//

Crack FindCrack Find
http://www.crackfind.com/http://www.crackfind.com/
http://www.cracksearchengine.net/http://www.cracksearchengine.net/
http://http://astalavista.box.skastalavista.box.sk
http://http://ttdown.comttdown.com//


