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Abstract—Semantic filtering and retrieval of multimedia con-
tent is crucial for efficient use of the multimedia data repositories.
Video query by semantic keywords is one of the most difficult prob-
lems in multimedia data retrieval. The difficulty lies in the mapping
between low-level video representation and high-level semantics.
We therefore formulate the multimedia content access problem as
a multimedia pattern recognition problem. We propose a proba-
bilistic framework for semantic video indexing, which can support
filtering and retrieval and facilitate efficient content-based access.
To map low-level features to high-level semantics we propose prob-
abilistic multimedia objects (multijects). Examples of multijects in
movies includeexplosion, mountain, beach, outdoor, musicetc. Se-
mantic concepts in videos interact and to model this interaction ex-
plicitly, we propose a network of multijects (multinet). Using prob-
abilistic models for six site multijects,rocks, sky, snow, water-body,
forestry/greeneryand outdoorand using a Bayesian belief network
as the multinet we demonstrate the application of this framework
to semantic indexing. We demonstrate how detection performance
can be significantly improved using the multinet to take intercon-
ceptual relationships into account. We also show how the multinet
can fuse heterogeneous features to support detection based on in-
ference and reasoning.

Index Terms—Bayesian belief networks, hidden Markov models,
likelihood ratio test, multimedia understanding, probabilistic
graphical networks, ROC curves, semantic video indexing, query
by example, query by keywords, semantic video indexing.

I. INTRODUCTION

GENERATION of digital multimedia content has increased
tremendously in recent years. Rapid advances in the tech-

nology for media capture, storage and transmission and increas-
ingly affordable prices of these devices has contributed to an
amazing growth in the amount of multimedia, that is available
on the internet. Whether it is sharing of picture albums and home
videos, advertising of movies through interactive preview clips,
live broadcasts of various shows or multimedia reports of news
as it happens, multimedia information has found in the internet,
a medium to reach us. Add to that, innovations in hand-held and
portable computing devices and wired and wireless communi-
cation technology (pocket PCs, organizers, cell phones) on one
end and broadband internet devices on the other and we have
a huge supply and dissemination of unclassified multimedia in-
formation flooding us.
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As content generation and dissemination grows explosively,
the need for tools to filter, classify, search and retrieve this con-
tent efficiently becomes even more acute. Tools for information
retrieval in text databases cannot be extended to this problem.
Lack of tools for efficient access and data-mining threatens to
render most of this data useless. Apart from a few exceptions [1]
most state of the art video retrieval systems neglect the audio
component and support the paradigm of visual query by ex-
ample using similarity in low-level media features. Examples
include [2]–[6] etc. In this paradigm, the query must be phrased
in terms of a video clip or at least a few key-frames extracted
from the query clip. The retrieval is based on a matching al-
gorithm, which ranks the target clips according to a heuristic
measure of similarity between the query and the target. This ap-
proach is suited for browsing and low-level search, but has lim-
itations. It is unrealistic to expect that the user has access to one
or more representative clips. Also, high-level similarity may not
correspond to low-level feature based similarity if there is no at-
tempt to understand the semantics of the query.

To address the aforementioned problems, we need a semantic
indexing, filtering and retrieval scheme. For a system to fetch
clips of anexplosion on a beach, the system must understand
how the conceptsexplosionandbeachare represented. This is a
very difficult problem. The difficulty lies in the gap, that exists
between low-level media features and high-level semantics. In
this paper we present a novel probabilistic framework to bridge
this gap to some extent. We view the problem of semantic video
indexing as a multimedia understanding problem. We apply ad-
vanced statistical pattern recognition and learning techniques to
develop generic models representing semantic concepts.

Semantic concepts do not occur in isolation. There is always
a context to the co-occurrence of semantic concepts in a video
scene. We believe that it is beneficial to model this context.
We use a probabilistic graphical network to model this context
and demonstrate how this leads to a significant improvement
in detection performance. We also show how the context can
be used to infer about some concepts based on their relation
with other detected concepts. We develop models for the fol-
lowing semantic concepts:sky, snow, rocky-terrain, water-body
andforestry/greenery, andoutdoor. Using these concepts in our
experiments, we demonstrate how filtering and key-word based
retrieval can be performed on multimedia databases.

The paper is organized as follows. We review existing tech-
niques in content-based video retrieval in Section II. We present
the probabilistic framework in Section III. Preprocessing, fea-
ture extraction and representation are discussed in Section IV.
We discuss the actual process of developing models for semantic
concepts in Section V. The probabilistic graphical network used
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to model the context is described in Section VI. We show how
the use of the multinet enhances detection performance in Sec-
tion VII. Fusion of soft-decisions from heterogeneous classifiers
using the multinet is shown in Section VIII. We then discuss
how the probabilistic models can be used for filtering and re-
trieval in Section IX. Finally, directions for future research and
conclusions are presented in Section X.

II. REVIEW

The first step in any video data management system is the seg-
mentation of the video track into smaller units. Segmentation of
video into shots is well understood. Processing for segmentation
can be done in compressed [7]–[10] as well as uncompressed
domain [11]. Shots can be grouped based on continuity, tem-
poral proximity and similarity to form scenes. Also, keyframes
can be extracted from shots to help browsing. A typical structure
imposed on the videos for efficient browsing is shown in Fig. 1.

In addition to efficient browsing, video data management also
demands tools for efficient access based on some paradigm of
query. The most supported paradigm of query is the paradigm
of query by example (QBE). Systems that support this paradigm
include [2], [4], [3], [6], [5]. This is just an extension of the tech-
nology for querying image databases, using one or more set of
images or sketches. In its most powerful form, the extension
to video includes use of an object-based model [2], which per-
mits a sketch of objects of specific color, size, location, and mo-
tion trajectory. In simpler forms it supports queries in terms of
video clips, which are matched with clips in the database [6].
An inherent assumption is that the user knows (perfectly or rea-
sonably) the size, shape and/or motion trajectory of the object,
being searched for in the video [2] or has sufficient number of
representative clips [6], or keyframes [4] to pose the query. All
such systems use low-level features based on color, texture, mo-
tion and shape to perform matching of video clips in one way or
another and then rank the retrieved clips in terms of some sim-
ilarity measure.

While there have been tremendous advances in speech
recognition and speech processing related technologies, there
has been little progress in terms of management of nonspeech
audio data. Most of the indexing and retrieval in audio assumes
human speech (sitcoms, radio interviews, news) with relatively
noise-free environment and works on a vocabulary of words.
Recent examples include [12]. Recently, there have been
attempts to segment the sound-track in motion pictures [13],
[14] and television comedies [15].

Query using keywords, which represent semantic concepts
has motivated recent research in semantic video indexing
[16]–[18]. Recent attempts to introduce semantics in the
structuring of videos includes [14], [19], [20]. We [16] present
novel ideas in semantic video indexing by learning probabilistic
multimedia representations of semantic concepts including
semantic events likeexplosionand sites likewaterfall. Chang
et al. [17] introduce the notion of semantic visual templates.
Wolf et al. use hidden Markov models to parse video [19].
Fermanet al. [20] attempt to model semantic structures like
dialogues in video. It is increasingly obvious, that efficient

Fig. 1. Common structure imposed on a video. The hierarchy of scenes, shots
and key-frames is useful in efficient browsing.

Fig. 2. Multiject for the semantic conceptoutdoor. The media support for the
label outdoor is in the form of audio-visual features. In addition to this there
may be support from other multijects representing semantic concepts likesky.

Fig. 3. Conceptual figure of a multinet. The multinet captures the interaction
between various semantic concepts. The edges between multijects denote
interaction and the signs on the edges denote the nature of interaction.

filtering and retrieval cannot be facilitated, unless the semantics
of multimedia content is addressed.

III. FRAMEWORK

Users of multimedia (audio-visual) databases are interested
in finding video clips using queries, which represent high-



NAPHADE AND HUANG: PROBABILISTIC FRAMEWORK FOR SEMANTIC VIDEO INDEXING 143

level concepts. While such semantic queries are very diffi-
cult to support exhaustively, they might be supported par-
tially, if models representing semantic concepts are available.
User queries might involvesky, car, mountain, sunset, beach,
explosion, etc. Detection of some of these concepts may be
possible, while some others may be difficult to model. To
support such queries, we define amultiject. A multiject [16]
is a probabilistic multimedia object, which has a semantic
label and which summarizes a time sequence of features ex-
tracted from multiple media.Multijects can belong to any of
the three categories: objects (car, man, helicopter), sites (out-
door, beach), or events (explosion, man-walking, ball-game).
The features themselves may be low-level features, interme-
diate level visual templates or specialized concept detectors
like face-detectors or multijects representing other semantic
concepts. Fig. 2 shows an example.

Semantic concepts are related to each other. One of the main
contributions of this paper is a probabilistic graphical frame-
work to model this interaction or context. It is intuitively ob-
vious that detection of certain multijects boosts the chances of
detecting certain other multijects. Similarly, some multijects are
less likely to occur in the presence of others. For example, the
detection ofskyandwaterboosts the chances ofbeach, and re-
duces the chances of detectingIndoor. An important observa-
tion from this interaction is that it might be possible to infer
some concepts (whose detection may be difficult) based on their
interaction with other concepts (which are relatively easier to
detect). For example, it may be possible to detect human speech
in the audio stream and detect a human face in the video stream
and infer the concepthuman talking. To integrate all multijects
and model their interaction explicitly we therefore propose a
network of multijects, which we call amultinet. A conceptual
figure of a multinet is shown in Fig. 3 with the positive signs
in the figure indicating a positive interaction and negative signs
indicating a negative interaction.

By modeling the relationship between multijects we can
Enhance detection: The use of mutual information can en-

hance detection of multijects.
Support inference: Some multijects may not provide us with

the required degree of invariance in feature-spaces. For the de-
tection of such multijects, the multinet can support inference
based on the interaction of these multijects with other multi-
jects (which can be detected with greater ease). For example,
we can detect the multijectbeachbased on the presence of such
multijects aswater, sand, trees, boat. Based on this detection of
beachwe can then claim that the scene is anoutdoorscene.

Impose prior knowledge: The multinet can provide the
mechanism for imposing time-varying or time-invariant prior
knowledge of multiple modalities and enforce context-changes
on the structure. For example, knowledge that a movie is an
action movie, may be used to increase the prior probabilities of
such multijects asgunshots, explosion.

IV. PREPROCESSING ANDFEATURE EXTRACTION

Each video frame can be segmented into regions. Within
each video shot, these regions evolve over time along with

Fig. 4. Segmentation.

the audio track to convey a meaningful story-line or narra-
tive. In terms of visual presence, some semantic concepts
exist regionally (face). For many a concept no single region
in the video frame is sufficient to convey the concept and
the meaning is conveyed only by all the regions in the
video frame. When this happens, we say, these concepts
occur globally (e.g.,outdoor). The multimodal support for a
concept may thus imply association of one or more regions
with the audio track. To build multiject models we thus
need to extract features at regional and global level from the
visual stream and features from the audio stream as well.

A. Preprocessing the Video Track

The video clips are segmented into shots using the algo-
rithm in [11]. We then use the spatio-temporal segmentation
in [2]1 applied separately to each shot to obtain regions
homogeneous in color and motion. Depending on the nature
of the movie and the story-line, shots may range from
a few frames to a few hundred frames. For large shots,
artificial cuts are introduced every 2 s. This ensures, that the
spatio-temporal tracking and segmentation does not break
down due to considerable appearance and disappearance of
regions. The segmentation and tracking algorithm uses color,
edge and motion to perform segmentation and computes the
optical flow for motion estimation. Segmented regions are
then merged using morphological operations and based on
coherent motion and weak edges. Fig. 4 shows a video frame
and its segmented version with six dominant segments.

The segmentation algorithm is tuned to obtain large blobs.
The idea is to prohibit a single concept to be broken down
into multiple regions as far as possible. The imperfections thus
mostly result in multiple concepts existing in a single region.
In Section V-C we discuss how the system is made tolerant to
such imperfections to a large extent.

The segments thus obtained are labeled manually to create
the ground truth. Since they are tracked within each shot using
optical flow, the labels can be propagated to instances of the
segments in all the frames within the shot.

Each region is then processed to extract a set of features char-
acterizing the visual properties including the color, texture, mo-
tion and structure of the region. We extract the following set of
features.2

1The authors thank D. Zhong and Dr. S. F. Chang for the spatio-tem-
poral segmentation and tracking algorithm.

2Our aim is to work with a set of reasonable features. There is no claim to
the optimality of this set of features. Better features will obviously lead to better
performance. Also dimensionality reduction is possible and even desirable when
the number of training samples is small but we will not focus on those issues.
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Fig. 5. Collection of shots from some of the movies in the database.

TABLE I
MAXIMUM LIKELIHOOD BINARY CLASSIFICATION PERFORMANCEOVER

SEGMENTED REGIONS FORSITE MULTIJECTSUSING GAUSSIAN MIXTURE

CLASS CONDITIONAL DENSITY FUNCTIONS FOR THETRUE AND NULL

HYPOTHESES FOREACH MULTIJECT

Color: A normalized, linearized3 three-channel his-
togram is used, with 12 bins each, for hue (), saturation ( )
and intensity ( ). The invariance to size, shape, intra-frame mo-
tion and their relative insensitivity to noise makes color his-
tograms the most popular features for color content description.

Texture: Texture is a spatial property. A two dimensional
dependence matrix, which captures the spatial dependence of

3A linearized histogram of multiple channels is obtained by concatenating
the histogram of each channel. This avoids dealing with multi-dimensional his-
tograms.

gray-level values contributing to the perception of texture is
called a gray-level co-occurrence matrix (GLCM). A GLCM is
a statistical measure extensively used in texture analysis. In gen-
eral for pairs of intensity values , we denote

(1)

where is the GLCM for the displacement vectorand ori-
entation and is the normalizing factor to make the left
hand side of (1) a probability distribution. In our work, we com-
pute GLCMs of the channel using 32 gray-levels and at four
orientations: corresponding tovalues of , , and
degrees respectively. For all four GLCMs we consider pixels,
which are at a distance of one unit from the current pixel re-
spectively ( ). For each of the four matrices (corresponding
to a fixed and a ), six statistical features of the GLCMs are
computed. The features are Contrast, Energy, Entropy, Homo-
geneity, Correlation, and Inverse Difference Moment [21].

Structure: To capture the structure within each region, a
Sobel operator with a window is applied to each region
and the edge map is obtained. Using this edge map an 18-bin
histogram of edge directions is obtained as in [22]. The edge
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Fig. 6. Two-layered Bayesian multinet. All nodes in the network denote binary random variables. Nodes in Layer 1 are the parent nodes representing thetrue
distributions. Nodes in Layer 0 are the random variables of Equation (6) representing the frame-level multiject-based semantic features. The soft decisions for
nodes at Layer 0 are obtained using Equation (6). The soft decisions for nodes in Layer 1 are obtained through inference using the parameterized multinet and by
introducing evidence at the nodes in Layer 0.

direction histogram is supposed to be a robust representation
of structure [23].

Motion : The interframe affine motion parameters for each
region tracked by the spatio-temporal segmentation algorithm
are used as motion features.

Color Moments: The first order moments and the second
order central moments are computed for each of the three chan-
nels , , and . In all, 98 features are extracted to represent
the visual properties of the region, of which 84 features (color,
texture, structure and moments) are used for sites. For objects
and events, all 98 features are used. A similar set of features can
also be obtained at the global level without segmentation and
also on difference frames obtained using successive consecu-
tive frames [16].

B. Preprocessing the Soundtrack

The soundtrack is digitized at 44.1 kHz sampling frequency.
It is then preprocessed using a 20 channel filter-bank. Cepstral
transformation gives 15 mel frequency cepstral coefficients
(MFCC), 15 delta, and two energy coefficients. A window
width of 25 ms and overlap of 10 ms is used. This gives a
32-coefficients feature vector per window. The segmentation
of the audio-track and the detection of audio-multijects is
integrated. Since we use motion picture soundtracks, we cannot
restrict the type of possible audio signal sources to speech
only. The most common sources are human speech, music,
animal sounds (horse, bear), mechanical sounds (automobile
engine, helicopter) and natural sounds (wind, water, thunder,
waves). The problem with the motion picture soundtrack is that
usually, no single source contributes individually at any time.
Usually, there are multiple sound sources present in the track.
This complicates the analysis of the audio track. We attempt
to develop models, which account for the co-occurrence of
multiple sound sources and use this to perform integrated
segmentation and multiject-detection of the sound track [13].
Results about audio-multijects likemusic, human-speechetc.
are not presented here and can be found in [13].

Fig. 7. ROC curves for overall performance using a Bayesian multinet
with soft child nodes and binary parent nodes. TheOR operator is used
for frame-level fusion. The multiject-based ROC curve corresponds to
classification by a likelihood ratio test using the soft decisions of (6). The
multinet-based ROC curve corresponds to the likelihood ratio test using soft
decisions obtained at the nodes in Layer 1 of Fig. 6. Clearly, the multinet
enhances detection performance.

V. ESTIMATING MULTIJECT MODELS

An identical approach is used to model concepts in video
and/or audio.

A. Multijects Based on Video

Let be the feature vector for region. We define two hy-
potheses and . Under each hypothesis, we assume that
the feature vector is drawn from a distinct probability distribu-
tion as defined in (2):

(2)
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Fig. 8. Modification to the Bayesian multinet in Fig. 6. The nodeoutdoor represents the global multiject existing at the frame level. The nodeoutdoor in
Layer 2 uses the soft decisions of theoutdoor node in addition to the soft decisions of the five nodes in Layer 1 to make a soft decision about the presence of
theoutdoormultiject.

and denote the class conditional probability
density functions conditioned on the null hypothesis (concept
absent) and the true hypothesis (concept present) respectively.
In case of sites the class conditional density functions of the fea-
ture vector under the true and null hypotheses are modeled as
mixture of diagonal Gaussian components (GMM). The tem-
poral flow is not taken into consideration. In case of objects
and events we use hidden Markov models (HMM) with con-
tinuous Gaussian mixture observation densities in each state for
modeling the time series of the feature vectors of all the frames
within a shot under the null and true hypotheses. The EM al-
gorithm [24] is used in both cases to estimate the parameters
of the density models, i.e., the mean vectors, covariance ma-
trices, mixing proportions (GMM and HMMS), and state tran-
sition matrices (HMM).

Here we present results of regional site multijectssky, water,
forest, rocks, andsnow. These multijects are based only on vi-
sual features and are used in experiments reported in the re-
mainder of this paper.

B. Experimental Setup

We have digitized movies of different genres including ac-
tion, adventure, romance, and drama to create a database of a
few hours of video. Data from eight movies has been used for
the experiments. Fig. 5 shows a collection of shots from some
of the movies in the database and should convince the reader of
the tremendous variability in the data and representative nature
of the database. The MPEG streams of data are decompressed
to perform shot-boundary detection, spatio-temporal video-re-
gion segmentation and tracking and subsequent feature extrac-
tion. For all the experiments reported in this paper, segments
from over 1800 frames are used for training and segments from
another 9400 frames are used for testing. These images are ob-
tained by downsampling the videos temporally, in order to avoid
redundant images in the training set. Each image is of the size

pixels. The number of Gaussian components in the
mixtures for the null and true hypotheses can be chosen opti-

mally based on a tradeoff between performance and number of
parameters used for describing the distributions. In our experi-
ment we heuristically use five components for the distribution
under the true hypothesis and ten components for that under
the null hypothesis. It can be argued that the feature distribu-
tion under the null hypothesis should ideally be uniform over
the feature space. This would be true if we had infinite training
data. However due to finite training data, the distribution under
the null hypothesis may have multiple modes each due to a dif-
ferent class of negative examples. We may therefore need more
modes to cover the feature space in this case than to cover the
space of examples for the true hypothesis. Our heuristic choice
of mixing components is based on this belief. We model the five
site multijects:rocksrepresenting rocky terrain,skyrepresenting
the sky,snowrepresenting snow-covered ground,water repre-
senting water-bodies like lakes, rivers, oceans etc., andforest
representing vegetation and greenery.

The detection performance of each of the fivesitemultijects
over the test-set based on maximum-likelihood binary classi-
fication using the GMMs for the two hypotheses is given in
Table I.

C. Integrating Regional Likelihoods to Obtain Frame Level
Multiject Features

A multinet models the interaction between multijects at the
frame-level. To obtain frame-level features we need to fuse the
region-level features. The strategy for fusing region-level mul-
tijects to obtain frame-level semantic features must take imper-
fections in segmentation into account. As described earlier the
segmentation and tracking algorithm favors large regions with
greater possibility of multiple concepts in a single region than
a single concept scattered across multiple regions. We therefore
check each region for each concept independently. By doing this
we avoid a loss of information that could have occurred if we
used classes, which were mutually exclusive and chose one class
(concept) for each region. Also by fusing the information from
all the dominant regions in the frame, we reduce the probability
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Fig. 9. ROC curves for the Bayesian multinet of Fig. 8. The curve in blue
corresponds to the detection using only the Gaussian mixture models for the
outdoor multiject built using global media features only [(13)]. The curve in red
represents the detection of theoutdoormultiject, which uses the soft decision of
the global-features based classifier as well as the soft decisions of the five other
site multijects. [(14)].

Fig. 10. Magnified portion of the ROC curves of Fig. 9 for the range0 �

P � 0:1.

of misdetection at frame level compared to that at the region
level. For the binary classification of each concept in each re-
gion we define binary random variables in (3)

if concept is present in region
otherwise.

(3)

Assuming uniform priors on the presence or absence of any con-
cept in any region and using Bayes’ rule we then obtain [(4)]

(4)

Fig. 11. Block diagram of the multiject-based multimedia understanding
system. Videos from the training set are spatio-temporally segmented and
manually annotated. This training set is then used to estimate multiject models
for various semantic concepts. It is also used to learn the relation between the
concepts i.e., the context. The multiject models along with the multinet are
then used for automatic annotation, filtering and retrieval of semantics.

The multijects used here are region-level detectors. For fusing
regional information at frame level, we define frame-level se-
mantic features , ( is the number of con-
cepts) in (5)

if concept is present in the current frame
otherwise.

(5)

To fuse the region-level concepts we can use various functions.
Let the number of regions in the frame be. Using the compact
notation the fusion is defined in (6)

(6)

For multijects based on global features (representing semantic
concepts at a global level) likeoutdoorthe multijects exist at the
frame-level and there is no need of regions-to-frame fusion.

VI. A B AYESIAN MULTINET

To model the interaction between frame-level concepts, we
propose a Bayesian belief network as the multinet. A Bayesian
belief network [25]–[27] is a probabilistic graphical network,
which specifies a probability distribution over a set of random
variables, which are represented by the nodes of the network.
Any node in a Bayesian network is independent of the rest of the
nodes in the network given the values of its parents. A Bayesian
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net is a directed acyclic graph and the direction of the edges
between the nodes can be interpreted as causality among the
random variables represented by the nodes.

We now describe the Bayesian network based multinet. In
Section V, each concept was detected independent of the others.
The binary random variables , denoting the presence/absence
of multijects at frame-level have been derived from region-level
features for each conceptseparately. However, they repre-
sent semantic concepts in a movie. Since they convey meaning
within a context, they must interact. Since the random variables

do not capture this interaction, we define another set of binary
random variables . For all ,

and correspond to the same concept buttakes into ac-
count the dependence of concepts at frame-level whichig-
nored earlier. Fig. 6 shows the dependence betweenand
for in a two-layered Bayesian network. The five con-
cepts used here aresky, water, forest, rocksandsnow. In Fig. 6,
parent nodes appear in Layer 1 and representthe random vari-
ables denoting the true distributions of the concepts (hence we
use subscript). Child nodes appear in Layer 0 and represent
the concepts . The child nodes are conditionally independent
given the parent nodes (The subscript for child nodesindi-
cates isolated or stand-alone detection because this detection is
done separately for each multiject).

The dependence between the various multijects at frame-level
is modeled in the conditional distributions .
During the training phase4 we first obtain the probability of each
node in Layer 0 being ON and OFF using (6) [i.e.,

]. The ground truth for
nodes in Layer 1 is already available. The parameters of the net-
work are then estimated using the training set so as to maxi-
mize the likelihood of the training set given the Bayesian net-
work. The EM algorithm is used for the likelihood maximiza-
tion. Then, during the testing orinferencephase, the soft de-
cisions at the nodes in Layer 0 are used to feed the network
and we infer the nodes in Layer 1 being ON and OFF, i.e.,

and . This ef-
fectively captures the interaction between the concepts since the
inference is based on the soft decisions of all the detected con-
cepts. We will show in Section VII, that this leads to a significant
improvement in detection performance.

VII. I MPROVEMENT IN DETECTIONPERFORMANCE

In this section, we support our claim that modeling of context
can lead to a significant improvement in detection performance.
To evaluate the performance of the system over the frames in
the test-set, we propose to compare the detection performance
using the receiver operating characteristics (ROC) curves. For
a binary classification problem, an ROC curve is a parametric
plot obtained by plotting the probability of detection against the
probability of false alarms for different values of the parameter.

In testing the hypothesis versus the hypothesis ,
two types of errors are possible. can be falsely rejected
or can be falsely rejected. The design of a test for
versus involves a trade-off, since one can always be made

4The authors thank K. Murphy for the BayesNet Toolbox, used to train the
Bayesian net.

Fig. 12. Filtering to view only those shots with a high probability ofrocks,
waterandgreenery, and low probability ofskyandsnow.

arbitrarily small at the expense of the other. We employ the
Neyman–Pearson criterion [28] for making this tradeoff. The
idea is to place a bound on the false alarm probability and then
to maximize the detection rate subject to this constraint; i.e.,
the Neyman–Pearson design criterion is

subject to (7)

where is bound on false-alarm rate. We achieve this by using
a likelihood ratio test.

From the Neyman–Pearson ROC curve, we can read the max-
imum detection rate corresponding to any false alarm rate. The
ROC curve gives the user the freedom to vary the threshold de-
pending on requirements as the Neyman–Pearson criterion rec-
ognizes the inherent asymmetry in the importance of the two
hypotheses. This is especially relevant in the video retrieval sce-
nario where an end user may be a better person to fix thresholds
than the system designer.

Fig. 7 shows the ROC curve for the overall performance
across all the five multijects. The ROC curve for multiject
based detection performance is obtained by using the likelihood
ratio test in Equation (8) with the soft decisions at frame level
obtained in (6):

(8)

where is the number of multijects. The curve is obtained by
changing the threshold valuefrom one extreme [ cor-
responding to the coordinates (1,1) in the graph] to the other
[ corresponding to the coordinates (0,0) in the graph]. To
obtain overall performance, the performance across all the mul-
tijects is averaged. This represents the best possible detection
performance using the multijects obtained in Section V. This is
then compared against the ROC curve obtained by the likeli-
hood ratio test of (9) using soft decisions at nodes in Layer 1 of
the multinet:

(9)

Fig. 7 demonstrates significant improvement in detection per-
formance by using the multinet than without using it. Improve-
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Fig. 13. Retrieving four clips with high probability for keywordsskyandwater.

ment in detection ( ) is more than 20% for a range of thresh-
olds corresponding to small probability of false alarms ().

VIII. C OMBINING CLASSIFIERS

Some concepts cannot be modeled using low-level features
as they may not offer invariance in these feature spaces. These
concepts may however provide invariance in the high-level fea-
ture space of multiject-based detectors. For example, it is clear
that the presence of one or more of the five site multijects of Sec-
tion VI boost the chances of anoutdoorscene. The role of the
multinet can then be extended to learn the relation between such
a concept and other concepts, which are based on frame-level
features. Inference aboutoutdoormultiject can be based on the
relation it shares with the site multijects. The multinet can thus
be trivially extended to infer concepts, which are not represented
through frame-level feature-based models.

In some cases we may want to use the relation that a concept
shares with other concepts as well as the evidence the multinet
receives from a feature-based model of the concept. For ex-
ample, it is possible to develop a model for theoutdoormul-
tiject based on low-level global features. In this section we will
show how easy it is to extend the multinet for such a task. The
fact that the multinet is a Bayesian network is the reason for this
simplicity.

As mentioned previously, some concepts exists at re-
gion-level, while others at global-level (or frame-level).
Outdoorandbeachare two examples of concepts that exist at
global level. To distinguish between region-based and global
multijects, let us represent the global frame-level multijects by
the set of binary random variables, where
and is the number of global multijects. Defining in (10)

if global concept is present
in the current frame
otherwise.

(10)

Let the global feature vector for the frame be. The two hy-
potheses and are defined in (11):

(11)

and denote the probability density functions con-
ditioned on the null hypothesis (concept absent) and the true hy-
pothesis (concept present). These conditional probability den-
sity functions are again modeled using a mixture of Gaussian

components for thesite multijects. For theobjectsandevents,
hidden Markov models are used and the feature vectors for all
the frames within a shot constitute to the time series modeled
by the HMMs.

We propose a modification to the multinet of Fig. 6. First,
we extract frame-level or global features. The features include
color histogram, color moments, texture and structure. These
features are exactly identical to the features described in Sec-
tion IV except that they are now derived for the whole frame.
The model that we develop using these features thus exists di-
rectly at the frame-level. Just as described in Section V, we then
build a model for the true hypothesis and a model for the null hy-
pothesis. Using these two models and assuming uniform priors
on the presence and absence of the global concept we can obtain
soft decisions as shown in (12):

(12)

We then use the soft decision about the nodeoutdoor along
with the existing soft decisions of the five other site multijects
in Layer 1 of the multinet of Fig. 6. The modified multinet is
shown in Fig. 8. Theoutdoor node could have been placed
in Layer 1 and connected to all the nodes in Layer 0 just like
the other multijects. But it can benefit from the improvement
in detection of the other five multijects and is hence defined
as the parent of the five nodes in Layer 1. Regional and global
data from training-set images is used for training the multinet
and data from test-set images is used for testing. Using the soft
decisions in (12) and the likelihood ratio test in (13) we obtain
the ROC curve for the detection performance of theoutdoor
multiject based on the global multiject model alone:

outdoor

outdoor

(13)

We then compare this with detection using the soft decisions
at nodeoutdoor using the likelihood ratio test in (14), shown
at the bottom of the next page, where . The ROC
curve of (14) represents detection performance of theoutdoor
multiject using the multinet. The two ROC curves are compared
in Figs. 9 and 10.

Fig. 9 reveals that the performance of the Gaussian mixture
models based on media features itself is good. The importance
of fusion of these heterogeneous soft decisions is evident for
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very low false alarm rates as shown by a segment of the ROC
curve in Fig. 10. The maximum improvement in performance is
over 12% for a false alarm probability of 2%.

IX. M ULTIJECTS AND MULTINETS FOR FILTERING AND

SEMANTIC INDEXING

The block diagram of the system using the multijects and
multinet for semantic video indexing is shown in Fig. 11.

We have presented a probabilistic framework of multijects
and multinet for semantic video indexing. This framework is
designed to handle a large number of multijects. This framework
can be used for meaningful filtering of content. For example we
may want to view only those clips, which have a high probability
of rocks, waterbody, andgreeneryand a low probability ofsky
andsnow. Fig. 12 shows a filter playing all video clips with these
constraints.

Since the soft decisions are available the user can vary the
threshold for each multiject to personalize the filter. For fil-
tering, multijects need to be employed at the client browser
if the content is not already preprocessed and indexed. Simi-
larly, multijects for concepts likeexplosion, gunshots, etc. can
be used to block access to all those video clips on the net, which
have graphic depiction of violence. Another example is smart
televisions and video recorders, which can scan the available
channels, and record all possible video clips with abeachor
ball-game. Semantic indexing can also provide key-word search
and bring video clips at par with text-databases. Popular in-
ternet search engines can definitely be enhanced if they support
key-word based video search. Fig. 13 shows four clips retrieved
when searched using the keywordsskyandwater.

Since the actual processing is done at the server hosting the
video clips or at the search engine through crawlers, the problem
of computational cost is not daunting. In fact, once the video
clips are automatically annotated using the multijects and multi-
nets, video search reduces to text-search using the keywords.
Used in conjunction with the query by example paradigm, this
can prove to be a powerful tool for content-based multimedia
access.

X. FUTURE RESEARCH ANDCONCLUSIONS

We have presented a novel probabilistic framework for se-
mantic video indexing. The framework is based on multijects
and multinets. We have used the framework to obtain multi-
ject models for various objects sites and events in audio and
video. To discover the interaction between multiject models we
have presented a Bayesian multinet and described how it is au-
tomatically learnt from examples. Using the multinet to explic-
itly model the interaction between multijects, we have demon-
strated substantial improvement in detection performance and
also facilitated detection of concepts, which may not be directly

unobserved in the media features. We have also extended the
multinet to fuse classifiers and heterogeneous features. Through
the framework of multijects and multinets we have proposed
and demonstrated an open ended and flexible architecture for
semantic video indexing. In addition to the novel probabilistic
framework for semantic indexing we have also used an objec-
tive quantitative evaluation strategy in the form of ROC curves
and have demonstrated the superior detection performance of
the proposed scheme using these curves. Future research aims at
demonstrating the ability of the multinet to seamlessly integrate
multiple media simultaneously and develop multijects for dy-
namically varying events in video. There is also the need to sup-
port dynamically varying relationships amongst semantic con-
cepts. The multinet architecture does not impose any conditions
on the multiject architecture except that it provide confidence
measures. We can therefore experiment with sophisticated class
conditional density functions for modeling multijects. This will
lead to an improvement in the baseline performance as well as
overall system performance.
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