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A Probabilistic Framework for Semantic Video
Indexing, Filtering, and Retrieval

Milind Ramesh Naphade and Thomas S. Hudradlow, IEEE

Abstract—Semantic filtering and retrieval of multimedia con- As content generation and dissemination grows explosively,
tent is crucial for efficient use of the multimedia data repositories.  the need for tools to filter, classify, search and retrieve this con-
Video query by semantic keywords is one of the most difficult prob- oyt efficiently becomes even more acute. Tools for information
lems in multimedia data retrieval. The difficulty lies in the mapping . . .
between low-level video representation and high-level semanti(:s.re'{rleval In text data.lb.ases cannot be extend(.ad. to this problem.
We therefore formulate the multimedia content access problem as Lack of tools for efficient access and data-mining threatens to
a multimedia pattern recognition problem. We propose a proba- render most of this data useless. Apart from a few exceptions [1]
bilistic framework for semantic video indexing, which can support  most state of the art video retrieval systems neglect the audio
filtering and retrieval and facilitate efficient content-based access. component and support the paradigm of visual query by ex-

To map low-level features to high-level semantics we propose prob- | . imilarity in low-level dia feat E |
abilistic multimedia objects (multijects). Examples of multijects in ample using similanty In low-level media 1eatures. Examples

movies includeexplosion, mountain, beach, outdoor, musitc. Se- include [2]-[6] etc. In this paradigm, the query must be phrased
mantic concepts in videos interact and to model this interaction ex- in terms of a video clip or at least a few key-frames extracted
plicitly, we propose a network of multijects (multinet). Using prob-  from the query clip. The retrieval is based on a matching al-
abilistic models for six site multijects,rocks, sky, snow, water-body, gorithm, which ranks the target clips according to a heuristic

forestry/greenenand outdoorand using a Bayesian belief network S .
as the multinet we demonstrate the application of this framework measure of similarity between the query and the target. This ap-

to semantic indexing. We demonstrate how detection performance Proach is suited for browsing and low-level search, but has lim-
can be significantly improved using the multinet to take intercon- itations. It is unrealistic to expect that the user has access to one
ceptual relationships into account. We also show how the multinet or more representative clips. Also, high-level similarity may not
can fuse heterogeneous features to support detection based on inqregpond to low-level feature based similarity if there is no at-
ference and reasoning. .
tempt to understand the semantics of the query.
_ Index Terms—Bayesian belief networks, hidden Markov models, T address the aforementioned problems, we need a semantic
likelihood ratio test, multimedia understanding, probabilistic ,qexing, filtering and retrieval scheme. For a system to fetch
graphical networks, ROC curves, semantic video indexing, query i f ' losi b fh t t understand
by example, query by keywords, semantic video indexing. Clips or anexplosion Or_] a beacrine system must un erls fan
how the conceptexplosiorandbeachare represented. Thisis a
very difficult problem. The difficulty lies in the gap, that exists
. INTRODUCTION between low-level media features and high-level semantics. In

ENERATION of digital multimedia content has increasediS paper we present a novel probabilistic framework to bridge
G tremendously in recent years. Rapid advances in the te&pis gap to some extent. We view the problem of semantic video
nology for media capture, storage and transmission and incrég6lexing as a multimedia understanding problem. We apply ad-
ingly affordable prices of these devices has contributed to yanced statistical pattern recognition and learning techniques to
amazing growth in the amount of multimedia, that is availab@eVelop generic models representing semantic concepts.
on the internet. Whether itis sharing of picture albums and homeS&mantic concepts do not occur in isolation. There is always
videos, advertising of movies through interactive preview clipd, context to the co-occurrence of semantic concepts in a video
live broadcasts of various shows or multimedia reports of ne®gene. We believe that it is beneficial to model this context.
as it happens, multimedia information has found in the interndy/e use a probabilistic graphical network to model this context
amedium to reach us. Add to that, innovations in hand-held a@d demonstrate how this leads to a significant improvement
portable computing devices and wired and wireless commuffi-detection performance. We also show how the context can
cation technology (pocket PCs, organizers, cell phones) on dieused to infer about some concepts based on their relation
end and broadband internet devices on the other and we h@i other detected concepts. We develop models for the fol-

a huge supply and dissemination of unclassified multimedia ilfWing semantic conceptsky, snow, focky—terraln, water?body
formation flooding us. andforestry/greeneryandoutdoor. Using these concepts in our
experiments, we demonstrate how filtering and key-word based
retrieval can be performed on multimedia databases.
I_\/Ianuscrlpt re_celved Ma_y 31, 20_00; revised Decemb_er 1 2000. T_he associaterhg paper is organized as follows. We review existing tech-
editor coordinating the review of this paper and approving it for publication was . . . . .
Prof. Jeng-Neng Hwang. nigues in content-based video retrieval in Section Il. We present
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to model the context is described in Section VI. We show how
the use of the multinet enhances detection performance in Sec-
tion VII. Fusion of soft-decisions from heterogeneous classifiers
using the multinet is shown in Section VIII. We then discuss
how the probabilistic models can be used for filtering and re-
trieval in Section IX. Finally, directions for future research and
conclusions are presented in Section X. Scenes

Video

Il. REVIEW

The first step in any video data management system is the seg-
mentation of the video track into smaller units. Segmentation of
video into shots is well understood. Processing for segmentation
can be done in compressed [7]-[10] as well as uncompressed
domain [11]. Shots can be grouped based on continuity, tem-
poral proximity and similarity to form scenes. Also, keyframes
can be extracted from shots to help browsing. A typical structure Key-frames
imposed on the videos for efficient browsing is shown in Fig. 1.

In addition to efficient browsing, video data management also
demands tools for efficient access based on some paradigniigfi.  common structure imposed on a video. The hierarchy of scenes, shots
guery. The most supported paradigm of query is the paradignu key-frames is useful in efficient browsing.
of query by example (QBE). Systems that support this paradigm

Shots

include [2], [4], [3], [6], [5] This iSjUSt an extension of the tech- P (concept=Outdoor | features, other mutlijects)= 0.7
nology for querying image databases, using one or more set of A

images or sketches. In its most powerful form, the extension

to video includes use of an object-based model [2], which per- ‘

mits a sketch of objects of specific color, size, location, and mo-
tion trajectory. In simpler forms it supports queries in terms of
video clips, which are matched with clips in the database [6]. . ]
An inherent assumption is that the user knows (perfectly or rea- fndeo audio

eatures features
sonably) the size, shape and/or motion trajectory of the object,
being searched for in the video [2] or has sufficient number bf9- 2. Multiject for the semantic conceptitdoor The media support for the
representative dlips [6],or keyframes [4] 1o pose the query. Afflgutoocris n e form of sudo visual featies n addon o i e
such systems use low-level features based on color, texture, mo-
tion and shape to perform matching of video clips in one way or
another and then rank the retrieved clips in terms of some sim-
ilarity measure.

While there have been tremendous advances in speech
recognition and speech processing related technologies, there
has been little progress in terms of management of nonspeech
audio data. Most of the indexing and retrieval in audio assumes
human speech (sitcoms, radio interviews, news) with relatively
noise-free environment and works on a vocabulary of words.
Recent examples include [12]. Recently, there have been
attempts to segment the sound-track in motion pictures [13],
[14] and television comedies [15].

Query_usmg keywords, which r.emesent S.ema.mtlc gonce_'p_ltg 3. Conceptual figure of a multinet. The multinet captures the interaction
has motivated recent research in semantic video indexiffhween various semantic concepts. The edges between multiiects denote
[16]-[18]. Recent attempts to introduce semantics in theraction and the signs on the edges denote the nature of interaction.
structuring of videos includes [14], [19], [20]. We [16] present
novgl |de§s In semantic \_/|deo indexing bY learning propab'l's.tfﬁtering and retrieval cannot be facilitated, unless the semantics
muItlmgdla repre_sentatlor_ls of seman_uc concepts 'nCIUd'BQmuItimedia content is addressed.
semantic events likexplosionand sites likewaterfall. Chang
et al. [17] introduce the notion of semantic visual templates.
Wolf et al. use hidden Markov models to parse video [19].
Fermanet al. [20] attempt to model semantic structures like Users of multimedia (audio-visual) databases are interested
dialoguesin video. It is increasingly obvious, that efficientin finding video clips using queries, which represent high-

Audio, video and
closed captioning

I1l. FRAMEWORK
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level concepts. While such semantic queries are very diffi-
cult to support exhaustively, they might be supported par-
tially, if models representing semantic concepts are available.
User queries might involveky, car, mountain, sunset, beach,
explosion etc. Detection of some of these concepts may be
possible, while some others may be difficult to model. To
support such queries, we definenaultiject A multiject [16] Fig. 4. Segmentation.
is a probabilistic multimedia object, which has a semantic
label and which summarizes a time sequence of features ex- ] ] ]
tracted from multiple mediaMultijects can belong to any of the audio track to convey a meaningful story-line or narra-
the three categories: objectsat, man, helicoptey sites out- tive. In terms of visual presence, some semantic concepts
door, beach, or events éxplosion, man-walking, ball-game ©Xist regionally face. For many a concept no single region
The features themselves may be low-level features, internjg-the video frame is sufficient to convey the concept and
diate level visual templates or specialized concept detectdf§ meaning is conveyed only by all the regions in the
like face-detectors or multijects representing other semanYde0 frame. When this happens, we say, these concepts
concepts. Fig. 2 shows an example. occur globally (e.g..putdoob. Th.e multlmodal support for a
Semantic concepts are related to each other. One of the mEfcept may thus imply association of one or more regions

contributions of this paper is a probabilistic graphical framé"-’Ith the audio track. To bu'lq multiject models we thus
work to model this interaction or context. It is intuitively ob-neeOI to extract features at regional and global level from the

vious that detection of certain multijects boosts the chances'6fu@l Stream and features from the audio stream as well.

detecting certain other multijects. Similarly, some multijects are )
less likely to occur in the presence of others. For example, the Preprocessing the Video Track
detection ofskyandwaterboosts the chances béachandre-  The video clips are segmented into shots using the algo-
duces the chances of detectiimgloor. An important observa- rithm in [11]. We then use the spatio-temporal segmentation
tion from this interaction is that it might be possible to infein [2]* applied separately to each shot to obtain regions
some concepts (whose detection may be difficult) based on theimogeneous in color and motion. Depending on the nature
interaction with other concepts (which are relatively easier tif the movie and the story-line, shots may range from
detect). For example, it may be possible to detect human speacfew frames to a few hundred frames. For large shots,
in the audio stream and detect a human face in the video streantificial cuts are introduced every 2 s. This ensures, that the
and infer the concegituman talking To integrate all multijects spatio-temporal tracking and segmentation does not break
and model their interaction explicitly we therefore propose @down due to considerable appearance and disappearance of
network of multijects, which we call enultinet A conceptual regions. The segmentation and tracking algorithm uses color,
figure of a multinet is shown in Fig. 3 with the positive signgdge and motion to perform segmentation and computes the
in the figure indicating a positive interaction and negative sigmptical flow for motion estimation. Segmented regions are
indicating a negative interaction. then merged using morphological operations and based on
By modeling the relationship between multijects we can coherent motion and weak edges. Fig. 4 shows a video frame
Enhance detection The use of mutual information can en-and its segmented version with six dominant segments.
hance detection of multijects. The segmentation algorithm is tuned to obtain large blobs.
Support inference Some multijects may not provide us withThe idea is to prohibit a single concept to be broken down
the required degree of invariance in feature-spaces. For the @0 multiple regions as far as possible. The imperfections thus
tection of such multijects, the multinet can support inferendgostly result in multiple concepts existing in a single region.
based on the interaction of these multijects with other multin Section V-C we discuss how the system is made tolerant to
jects (which can be detected with greater ease). For examslech imperfections to a large extent.
we can detect the multijebieachbased on the presence of such The segments thus obtained are labeled manually to create
multijects asvater, sand, trees, boaBased on this detection of the ground truth. Since they are tracked within each shot using
beachwe can then claim that the scene isaridoorscene. optical flow, the labels can be propagated to instances of the
Impose prior knowledge The multinet can provide the segments in all the frames within the shot.
mechanism for imposing time-varying or time-invariant prior Each region is then processed to extract a set of features char-
knowledge of multiple modalities and enforce context-chang@ésterizing the visual properties including the color, texture, mo-
on the structure. For example, knowledge that a movie is an and structure of the region. We extract the following set of
action movie, may be used to increase the prior probabilitiesfegtures.
such multijects agunshotsexplosion

1The authors thank D. Zhong and Dr. S. F. Chang for the spatio-tem-
poral segmentation and tracking algorithm.

20ur aim is to work with a set of reasonable features. There is no claim to
the optimality of this set of features. Better features will obviously lead to better

Each video frame can be segmented into regions. Witfhgitormance. Also dimensionality reduction is possible and even desirable when
each video shot, these regions evolve over time along witle number of training samples is small but we will not focus on those issues.

IV. PREPROCESSING ANOFEATURE EXTRACTION
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Fig. 5. Collection of shots from some of the movies in the database.

TABLE | gray-level values contributing to the perception of texture is
MAXIMUM LIKELIHOOD BINARY CLASSIFICATION PERFORMANCE OVER called a gray—level co-occurrence matrix (GLCM) A GLCM is
SEGMENTED REGIONS FORSTE MULTIJECTS USING GAUSSIAN MIXTURE L. . . .
CLASS CONDITIONAL DENSITY FUNCTIONS FOR THETRUE AND NULL a statistical measure extensively used in texture analysis. In gen-
HYPOTHESES FOREACH MULTIJECT eral for pairs of intensity valueg, j), we denote
multiject | Detection Accuracy | False Alarm o P(i i, d 9)
rocks TR 1% p(é, j, d, 0) = W )
sky 81.8% 11.9% ?
snow 8L.5% 12.9% whereP(e) is the GLCM for the displacement vectéand ori-
water 79.4% 15.6% . . .
entationd and /V(e) is the normalizing factor to make the left
forest 85.1% 14.9% . - LS
Overall 50,965 15.88% hand side of (1) a probability distribution. In our work, we com-

pute GLCMs of thél” channel using 32 gray-levels and at four
orientations: corresponding fovalues o0f0°, 45°, 90° and135°
Color: A normalized, linearized three-channeH SV his- degrees respectively. For all four GLCMs we consider pixels,
togram is used, with 12 bins each, for hué)( saturation §) which are at a distance of one unit from the current pixel re-
and intensity ). The invariance to size, shape, intra-frame mapectively ¢ = 1). For each of the four matrices (corresponding
tion and their relative insensitivity to noise makes color hide a fixedd and af), six statistical features of the GLCMs are
tograms the most popular features for color content descriptimomputed. The features are Contrast, Energy, Entropy, Homo-
Texture: Texture is a spatial property. A two dimensionageneity, Correlation, and Inverse Difference Moment [21].
dependence matrix, which captures the spatial dependence @&tructure: To capture the structure within each region, a
3 T . ) . ) Sobel operator with 8 x 3 window is applied to each region
A linearized histogram of multiple channels is obtained by concatenatin

the histogram of each channel. This avoids dealing with multi-dimensional héhd the edge map is obtained. Using this edge map an 18-bin
tograms. histogram of edge directions is obtained as in [22]. The edge
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Forest,

Fig. 6. Two-layered Bayesian multinet. All nodes in the network denote binary random variables. Nodes in Layer 1 are the parent nodes représenting the
distributions. Nodes in Layer 0 are the random variables of Equation (6) representing the frame-level multiject-based semantic featureecl$iersofod

nodes at Layer O are obtained using Equation (6). The soft decisions for nodes in Layer 1 are obtained through inference using the parametetraed loyultin
introducing evidence at the nodes in Layer 0.

ROC curves for overall performance
=T

direction histogram is supposed to be a robust representatit
of structure [23].

Motion: The interframe affine motion parameters for each °°[
region tracked by the spatio-temporal segmentation algoritht os
are used as motion features.

Color Moments: The first order moments and the second _
order central moments are computed for each of the three chagos
nelsH, S, andV. In all, 98 features are extracted to represengos_
the visual properties of the region, of which 84 features (colorZ | ;
texture, structure and moments) are used for sites. For objecg o4 ¢
and events, all 98 features are used. A similar set of features c f
also be obtained at the global level without segmentation an
also on difference frames obtained using successive consec °2f
tive frames [16]. ‘

0.1

1] S : e ' :.— - Withou(themultinét
. : : : : —£— With the Itinet
B. Preprocessing the Soundtrack S S— ' ' ' i ; ' —

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 08 0.9 1

F‘r(-)bability of false alar-ms

The soundtrack is digitized at 44.1 kHz sampling frequency.
Itis then pf‘?proc?ssed using a 20 channel filter-bank. Qe_pSH@! 7. ROC curves for overall performance using a Bayesian multinet
transformation gives 15 mel frequency cepstral coefficientish soft child nodes and binary parent nodes. TBR operator is used
(MFCC), 15 delta, and two energy coefficients. A windowier frame-level fusion. The multiject-based ROC curve corresponds to

idth f, 25 ,d | f10 . d. Thi . classification by a likelihood ratio test using the soft decisions of (6). The
width o < ms ana overiap o mS IS used. 1S gNeS_ rRultinet-based ROC curve corresponds to the likelihood ratio test using soft
32-coefficients feature vector per window. The segmentati@gcisions obtained at the nodes in Layer 1 of Fig. 6. Clearly, the multinet
of the audio-track and the detection of audio-multijects Rfthances detection performance.
integrated. Since we use motion picture soundtracks, we cannot
restrict the type of possible audio signal sources to speech V. ESTIMATING MULTIJECT MODELS
only. The most common sources are human speech, musican identical approach is used to model concepts in video
animal soundsHorse, bea), mechanical soundsagtomobile and/or audio.
engine, helicoptgrand natural soundsMnd, water, thunder,
wave$. The problem with the motion picture soundtrack is thad. Multijects Based on Video

usually, no single source contributes individually at any time. | ot X, be the feature vector for regign We define two hy-
Usually, there are multiple sound sources present in the tragiihesesd,, and H;. Under each hypothesis, we assume that

This complicates the analysis of the audio track. We attempje feature vector is drawn from a distinct probability distribu-
to develop models, which account for the co-occurrence @b as defined in (2):

multiple sound sources and use this to perform integrated

segmentation and multiject-detection of the sound track [13]. Ho: X; ~ P, ( 4,»)
Results about audio-multijects likausic, human-speeatc. . .
are not presented here and can be found in [13]. Hy: Xj ~ P ( j) : 2

[
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Layer 0
F,

i

Fig. 8. Madification to the Bayesian multinet in Fig. 6. The nadgdoor; represents the global multiject existing at the frame level. The nredéoor; in
Layer 2 uses the soft decisions of thetdoor ; node in addition to the soft decisions of the five nodes in Layer 1 to make a soft decision about the presence of
the outdoormultiject.

— —

Fy(X;) and P.(X;) denote the class conditional probabilitymally based on a tradeoff between performance and number of
density functions conditioned on the null hypothesis (conceparameters used for describing the distributions. In our experi-
absent) and the true hypothesis (concept present) respectivelgnt we heuristically use five components for the distribution
In case of sites the class conditional density functions of the faader the true hypothesis and ten components for that under
ture vector under the true and null hypotheses are modeledtas null hypothesis. It can be argued that the feature distribu-
mixture of diagonal Gaussian components (GMM). The tention under the null hypothesis should ideally be uniform over
poral flow is not taken into consideration. In case of objecthe feature space. This would be true if we had infinite training
and events we use hidden Markov models (HMM) with cordata. However due to finite training data, the distribution under
tinuous Gaussian mixture observation densities in each statetf@ null hypothesis may have multiple modes each due to a dif-
modeling the time series of the feature vectors of all the framfeent class of negative examples. We may therefore need more
within a shot under the null and true hypotheses. The EM athodes to cover the feature space in this case than to cover the
gorithm [24] is used in both cases to estimate the parametspace of examples for the true hypothesis. Our heuristic choice
of the density models, i.e., the mean vectors, covariance namixing components is based on this belief. We model the five
trices, mixing proportions (GMM and HMMS), and state transite multijectsrocksrepresenting rocky terraiakyrepresenting
sition matrices (HMM). the sky,snowrepresenting snow-covered groumgter repre-
Here we present results of regional site multijeskg, water, senting water-bodies like lakes, rivers, oceans etc.,farebt
forest, rocksandsnow These multijects are based only on virepresenting vegetation and greenery.
sual features and are used in experiments reported in the reFhe detection performance of each of the foiee multijects

mainder of this paper. over the test-set based on maximum-likelihood binary classi-
fication using the GMMs for the two hypotheses is given in
B. Experimental Setup Table 1.

We have digitized movies of different genres including ac- ) ) o )
tion, adventure, romance, and drama to create a database 5f dntégrating Regional Likelihoods to Obtain Frame Level
few hours of video. Data from eight movies has been used fyjultiject Features
the experiments. Fig. 5 shows a collection of shots from someA multinet models the interaction between multijects at the
of the movies in the database and should convince the readefrafme-level. To obtain frame-level features we need to fuse the
the tremendous variability in the data and representative natuegion-level features. The strategy for fusing region-level mul-
of the database. The MPEG streams of data are decompreggedts to obtain frame-level semantic features must take imper-
to perform shot-boundary detection, spatio-temporal video-rections in segmentation into account. As described earlier the
gion segmentation and tracking and subsequent feature extigeggmentation and tracking algorithm favors large regions with
tion. For all the experiments reported in this paper, segmemgteater possibility of multiple concepts in a single region than
from over 1800 frames are used for training and segments frasingle concept scattered across multiple regions. We therefore
another 9400 frames are used for testing. These images areadteck each region for each conceptindependently. By doing this
tained by downsampling the videos temporally, in order to avoide avoid a loss of information that could have occurred if we
redundant images in the training set. Each image is of the sirged classes, which were mutually exclusive and chose one class
176 x 112 pixels. The number of Gaussian components in t{eoncept) for each region. Also by fusing the information from
mixtures for the null and true hypotheses can be chosen optitthe dominant regions in the frame, we reduce the probability
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ROC curves for "Outdoor” detection Video

Database

Extraction

B Regional and global Labels for processed
feature representation regions

Probability of detection
o °©
Jh (5

0.3 i
024 : : 1
: I Multiiect Model |_\’ Multinet capturing
o1t : : - g ultyect Models contextual interaction
— — Without the multinet 5
. i | | i * | == With the multinet between multijects
G.o ] 1
[ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Probability of false alarms

Fig. 9. ROC curves for the Bayesian multinet of Fig. 8. The curve in blue

corresponds to the detection using only the Gaussian mixture models for the Segmentation, Feature

outdoor multiject built using global media features only [(13)]. The curve in red Extraction
represents the detection of thetdoormultiject, which uses the soft decision of
the global-features based classifier as well as the soft decisions of the five othe,
site multijects. [(14)]. Incoming rggri](l)?l}:l?::d Automatically
\;1:;0 global feature " a.nnot?(ljt;(; video
representation

Performance comparison in the regime of very low false alarms
08 T T T T T T

Fig. 11. Block diagram of the multiject-based multimedia understanding
system. Videos from the training set are spatio-temporally segmented and
manually annotated. This training set is then used to estimate multiject models
for various semantic concepts. It is also used to learn the relation between the
] concepts i.e., the context. The multiject models along with the multinet are
then used for automatic annotation, filtering and retrieval of semantics.

0.7

0.6

505 J
g

504 The multijects used here are region-level detectors. For fusing
£ | regional information at frame level, we define frame-level se-
§0.3 | mantic featured;, ¢ € {1, ---, N} (N is the number of con-

cepts) in (5)

02 N _ 1 if concept: is present in the current frame )
. , ‘ ‘0 otherwise.
] } ' 3 To fuse the region-level concepts we can use various functions.
o . i . . L the Mulinet Let the number of regions in the frame h& Using the compact
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 . — g . . . .
Probability of false alarms notatlonX = {Xl, T, X]w} the fUSIon IS deﬁned N (6)
Fig. 10. Magnified portion of the ROC curves of Fig. 9 for the rafige< M .
Py < 0.1, P(Fizow):HP(Rij:o‘Xj)
=1
P(F;, =1|X) =1— P(F, =0|X). (6)

of misdetection at frame level compared to that at the region

leivil'wFoé t?i?] b'br:ﬂrx Clraiz:ﬁ(r:r?txl/orr]i oglg§if1ncgncept in each "Eor multijects based on global features (representing semantic
gion we define binary random variablé; in (3) concepts at a global level) lilkamuitdoorthe multijects exist at the

. . . . frame-level and there is no need of regions-to-frame fusion.
_ 1 if concept: is present in region 3)

0 otherwise.
VI. A BAYESIAN MULTINET

Assuming uniform priors on the presence or absence of any Cony, qe| the interaction between frame-level concepts, we
ceptin any region and using Bayes’ rule we then obtain [(4)] ;o n0se a Bayesian belief network as the multinet. A Bayesian
. belief network [25]-[27] is a probabilistic graphical network,
P (Xj‘ R;; = 1) which specifies a probability distribution over a set of random
) = = > - variables, which are represented by the nodes of the network.
P (XJ" Rij = 1) +P (XJ" Rij = 0) Any node in a Bayesian network is independent of the rest of the
(4) nodes in the network given the values of its parents. A Bayesian

P (R =15,
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net is a directed acyclic graph and the direction of the edge: | T T A0
between the nodes can be interpreted as causality among tt | ==

random variables represented by the nodes.

We now describe the Bayesian network based multinet. In
Section V, each concept was detected independent of the other
The binary random variablds, denoting the presence/absence
of multijects at frame-level have been derived from region-level
features for each conceptseparately. However, they repre-

. . . . . m
sent semantic concepts in a movie. Since they convey meanin &
within a context, they must interact. Since the random variables T i
L Fovaray o Grooreny

F; do not capture this interaction, we define another set of binary

random variable¥;, : € {1, ---, N}.Foralli € {1, ---, N},

T; and F; correspond to the same concept Butakes into ac-

count the dependence of concepts at frame-level whicly-  Fig. 12. Filtering to view only those shots with a high probabilityrotks

nored earlier. Fig. 6 shows the dependence betWeemd F; waterandgreeneryand low probability ofskyandsnow

for N = 5 in a two-layered Bayesian network. The five con-

cepts used here asly, water, forest, rockandsnow In Fig. 6, arbitrarily small at the expense of the other. We employ the

parent nodes appear in Layer 1 and repreggtiite random vari- Neyman—Pearson criterion [28] for making this tradeoff. The

ables denoting the true distributions of the concepts (hence iglea is to place a bound on the false alarm probability and then

use subscript). Child nodes appear in Layer 0 and represeit® maximize the detection rate subject to this constraint; i.e.,

the conceptd’;. The child nodes are conditionally independerthe Neyman—Pearson design criterion is

given the parent nodé§ (The subscript for child nodesindi- )

cates isolated or stand-alone detection because this detection is max Pp(8)  subjecttoPr(6) < « 7

done separately for each multiject). . . . .
The dependence between the various multijects at frame-le{&l€re« is bound on false-alarm rate. We achieve this by using

is modeled in the conditional distributiod®( £}|T;, - - -, ). & IKelihood ratio test.
During the training phageve first obtain the probability of each From the Neyman—Pearson ROC curve, we can read the max-

node in Layer 0 being ON and OFF using (6) [i.8R(F} = imum detection rate corresponding to any false alarm rate. The
0lX), P(F; = 1|X)}, i € {1, --- N}]. The grourid ,trutzh for ROC curve gives the user the freedom to vary the threshold de-

nodes in Layer 1 is already available. The parameters of the ignding on requirements as the Neyman—Pearson criterion rec-

work are then estimated using the training set so as to maRfnizes the inherent asymmetry in the importance of the two
mize the likelihood of the training set given the Bayesian ndiypotheses. This is especially relevant in the video retrieval sce-

work. The EM algorithm is used for the likelihood maximiza@rio where an end user may be a better person to fix thresholds

tion. Then, during the testing dnferencephase, the soft de- than the system designer.

cisions at the nodes in Layer 0 are used to feed the netword'9- 7 shows the ROC curve for the overall performance
and we infer the nodes in Layer 1 being ON and OFF, i.éCT0SS all the five multijects. The ROC curve for multiject
P(T; = 1|F, ---, Fy) andP(T; = O|Fy, - --, Fy). This ef- based detection performance is obtained by using the likelihood

fectively captures the interaction between the concepts since (il test in Equation (8) with the soft decisions at frame level
inference is based on the soft decisions of all the detected c8Rtained in (6):

cepts. We will show in Section VII, that this leads to a significant  p(F; = 1].x) .

improvement in detection performance. P = 0[%) >7  0<7<o00 d€{l, -+, N} (8)

where/ is the number of multijects. The curve is obtained by
changing the threshold valuefrom one extremes = 0 cor-

In this section, we support our claim that modeling of Conte}‘ésponding to the coordinates (1,1) in the graph] to the other
can lead to a significant improvement in detection performanc[g. = oo corresponding to the coordinates (0,0) in the graph]. To
To evaluate the performance of the system over the framesp¥ain overall performance, the performance across all the mul-
the test-set, we propose to compare the detection performaggRts is averaged. This represents the best possible detection
using the receiver operating characteristics (ROC) curves. Fffrformance using the multijects obtained in Section V. This is
a binary classification problem, an ROC curve is a parametgigan compared against the ROC curve obtained by the likeli-

plot obtained by plotting the probability of detection against theyod ratio test of (9) using soft decisions at nodes in Layer 1 of
probability of false alarms for different values of the parametghe multinet:

In testing the hypothesidiy versus the hypothesi#iy,

VII. | MPROVEMENT IN DETECTION PERFORMANCE

P(T; =1|Fy,---, Fiy)

two types of errors are possiblél, can be falsely rejected > 7
or H; can be falsely rejected. The design of a test Hy P(T; = 0|FY, -+, Fy)
versusH; involves a trade-off, since one can always be made 0<7<00 d€{l,---, N} )

4The authors thank K. Murphy for the BayesNet Toolbox, used to train the F19: 7 demonstrates significant impro_vement i_n d?teCtion per-
Bayesian net. formance by using the multinet than without using it. Improve-
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Fig. 13. Retrieving four clips with high probability for keywordkyandwater.

ment in detectionify) is more than 20% for a range of thresheomponents for theite multijects. For theobjectsandevents

olds corresponding to small probability of false alarms ) hidden Markov models are used and the feature vectors for all
the frames within a shot constitute to the time series modeled
VIIl. COMBINING CLASSIFIERS by the HMMs.

Some concepts cannot be modeled using low-level featureéNe propose a modification to the multinet of Fig. 6._F|rst,
as they may not offer invariance in these feature spaces. Thae extr_act frame-level or global features. The features include
concepts may however provide invariance in the high-level fe olor histogram, colqr mqments, texture and struc_ture. _These
ture space of multiject-based detectors. For example, it is cl 3?tures are exactly identical to the features described in Sec-

that the presence of one or more of the five site multijects of S on IV except that they are now derived for the whole frgme. .
tion VI boost the chances of autdoorscene. The role of the ' '€ model that we develop using these features thus exists di-

multinet can then be extended to learn the relation between s{it _tIy atthe frame-level. Just as dgscrlbed in Section V, we then
a concept and other concepts, which are based on frame-| i/|d a model for the true hypothesis and a model for the null hy-

features. Inference aboatitdoormultiject can be based on theIOOt esis. Using these two models and assuming uniform priors

relation it shares with the site multijects. The multinet can thd! the presence and absence of the glabal concept we can obtain

be trivially extended to infer concepts, which are not represent%%ift decisions as shown in (12):

through frame-level feature-based models. P (X»‘ G, = 1)

In some cases we may want to use the relation that a concngGi -1 ‘X) _ . (12)
shares with other concepts as well as the evidence the multine P (X G = 1) 4P ()2 G = 0)
receives from a feature-based model of the concept. For ex-
ample, it is possible to develop a model for iatdoor mul- We then use the soft decision about the nodgloor, along

tiject based on low-level global features. In this section we willith the existing soft decisions of the five other site multijects
show how easy it is to extend the multinet for such a task. TheLayer 1 of the multinet of Fig. 6. The modified multinet is
fact that the multinet is a Bayesian network is the reason for thiisown in Fig. 8. Thevutdoor, node could have been placed
simplicity. in Layer 1 and connected to all the nodes in Layer O just like
As mentioned previously, some concepts exists at rgve other multijects. But it can benefit from the improvement
gion-level, while others at global-level (or frame-level)in detection of the other five multijects and is hence defined
Outdoorandbeachare two examples of concepts that exist ais the parent of the five nodes in Layer 1. Regional and global
global level. To distinguish between region-based and glolgdta from training-set images is used for training the multinet
multijects, let us represent the global frame-level multijects ynd data from test-set images is used for testing. Using the soft
the set of binary random variablé€g, wherei € {1, ---, N,}  decisions in (12) and the likelihood ratio test in (13) we obtain
andN, is the number of global multijects. Definir@; in (10) the ROC curve for the detection performance of thedoor

1 if global concept is present multiject based on the global multiject model alone:

G, = i 10 =3
. mﬂ'zhe current frame (10) p (m/,t(],oors -1 ‘X)
otherwise. L > 0<7<00. (13)
Let the global feature vector for the frame e The two hy- P (wtdaw - =0]X )

potheses, and H; are defined in (11): o . . .
We then compare this with detection using the soft decisions

Hy: X ~ P, (X) at nodeoutdoor, using the likelihood ratio test in (14), shown
. . at the bottom of the next page, whdre< 7 < ~. The ROC
Hi: X ~P (X) . (11) curve of (14) represents detection performance ofollneloor

multiject using the multinet. The two ROC curves are compared
P,(X) andP; (X ) denote the probability density functions conin Figs. 9 and 10.
ditioned on the null hypothesis (concept absent) and the true hyFig. 9 reveals that the performance of the Gaussian mixture
pothesis (concept present). These conditional probability denedels based on media features itself is good. The importance
sity functions are again modeled using a mixture of Gaussiahfusion of these heterogeneous soft decisions is evident for
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very low false alarm rates as shown by a segment of the R@Bobserved in the media features. We have also extended the
curve in Fig. 10. The maximum improvement in performance maultinet to fuse classifiers and heterogeneous features. Through

over 12% for a false alarm probability of 2%. the framework of multijects and multinets we have proposed
and demonstrated an open ended and flexible architecture for

IX. MULTIJECTS AND MULTINETS FOR FILTERING AND semantic video indexing. In addition to the novel probabilistic
SEMANTIC INDEXING framework for semantic indexing we have also used an objec-

) ) - tive quantitative evaluation strategy in the form of ROC curves
The block diagram of the system using the multijects anghq have demonstrated the superior detection performance of
multinet for semantic video indexing is shown in Fig. 11.  {he proposed scheme using these curves. Future research aims at
We have presented a probabilistic framework of multijecigemonstrating the ability of the multinet to seamlessly integrate
and. multinet for semantic video mdexmg.. This frgmework ifhultiple media simultaneously and develop multijects for dy-
designed to handle alarge number of multijects. This framewaqgk mically varying events in video. There is also the need to sup-
can be used for meaningful filtering of content. For example YWort dynamically varying relationships amongst semantic con-

may want to view only those clips, which have a high probabilitye his The multinet architecture does notimpose any conditions
of rocks waterbody andgreeneryand a low probability 0Bky o the multiject architecture except that it provide confidence

andsnow Fig. 12 shows afilter playing all video clips with theséneasures. We can therefore experiment with sophisticated class

constraints. conditional density functions for modeling multijects. This will

Since the soft decisions are available the user can vary {B&q to an improvement in the baseline performance as well as
threshold for each multiject to personalize the filter. For filgyarql system performance.

tering, multijects need to be employed at the client browser
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