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Abstract. Nonspecific images in a broad domain remain a
challenge for content-based image retrieval. As a typical ex-
ample, consumer photos exhibit highly varied content, di-
verse resolutions, and inconsistent quality. The objects are
usually ill-posed, occluded, and cluttered with poor lighting,
focus, and exposure. Traditional image retrieval approaches
face many obstacles such as semantic description of images,
robust semantic object segmentation, small sampling prob-
lem, semantic gaps between low-level features and high-level
semantics, etc.

To manage the high diversity of images in a broad domain,
we propose a structured learning framework to systematically
design domain-relevant visual semantics, known as seman-
tic support regions, to support index and query in a content-
based image retrieval system. Semantic support regions are
segmentation-free image regions that exhibit semantic mean-
ings and that can be learned statistically to span a new index-
ing space. They are detected from image content, reconciled
across multiple resolutions, and aggregated spatially to form
local semantic histograms. The resulting compact and abstract
representation can support both similarity-based query and
compositional visual query efficiently. The query by spatial
icons (QBSI) formulation is a unique visual query language to
explicitly specify visual icons and spatial extents in a Boolean
expression.

For empirical evaluation, we perform the learning and in-
dexing processes of 26 semantic support regions over 2400
heterogeneous consumer photos from a single family using
Support Vector Machines. We report a 27% improvement in
average precision over a very high dimension feature-based
approach on 24 semantic queries based on multiple examples
and pooled ground truths. Last but not least, we demonstrate
the usefulness of the visual query language with 15 QBSI
queries that have attained high precision values at top retrieved
images on the 2400 consumer images.
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1 Introduction

Retrieving images using their visual content has been a chal-
lenge for multimedia research. Early approaches concentrated
on low-level features, such as colour, texture, shape, etc. Re-
cent approaches apply image analysis and segmentation to ob-
tain semantic description of images and retrieve images using
semantic information. Query methods for the former include
query by example (QBE) and query by canvas (QBC). Query
methods for the latter include query by keywords (QBK), query
by sketches (QBS), and query by spatial icons (QBSI).

1.1 Query methods

Query by example (QBE) (e.g. QBIC [12], Photobook [32])
requires a relevant image to be visible or available as a query
example to start with the search. For example, the ImageRover
[45] and Webseek [39] systems deploy text-based queries to
obtain an initial set of images, and the PicToSeek [13] ap-
proach allows the user to supply a query image. Query by
canvas (QBC) (e.g. QBIC [12], Virage [2]) lets the user com-
pose a visual query using geometrical shapes, colours, and tex-
tures. This approach inherently tends to specify things/stuff of
interest in an indirect way using primitive features. Moreover,
the similarity matching between query and images relies on
effective presegmentation of regions in the images, which is
generally complex and difficult.

Query by keywords (QBK) allows information to be de-
scribed in high-level meaningful terms. But it cannot be gen-
erated automatically by the current content-based image in-
dexing systems. However, manual annotation is usually in-
complete, inconsistent, and context sensitive. Moreover, there
are situations where image semantics cannot be captured by
labelling alone [1]. Query by sketches (QBS) (e.g. [5,10]) lets
the user draw the shape of an object as query. But articulat-
ing a shape precisely or drawing some ill-defined shapes (e.g.
tree, sitting person, mountain) may not be easy. Automatic
object shape extraction from cluttered scene images is also
an open problem. Hence QBS applications have been limited
to images of dominant objects on uniform background [10].
Alternatively, the user is involved in guiding the segmentation
during query [9].
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A new query paradigm that allows explicit placement of
visual semantics (e.g. face, sky, building, etc.) has been pro-
posed independently [17,22,24]. Unlike the discussed query
formulation methods that expect the retrieval system to guess
a user’s intention expressed implicitly in the query, query by
spatial icons (QBSI) lets the user specify a query using higher-
level visual semantics represented by visual icons with spatial
constraints explicitly in a Boolean expression. In the case of
implicit query expression, specifying pool water, sunflowers,
or a crowd is unnatural, if not impossible.

1.2 Semantic gap

Low-level features can be easily extracted from images. How-
ever, they are not completely descriptive for meaningful re-
trieval. High-level semantic information is useful and effective
in retrieval, but it depends heavily on semantic regions, which
are themselves difficult to obtain. Between low-level features
and high-level semantic information is an unsolved “semantic
gap” [37].

In our opinion, the semantic gap is due to two inherent
problems. One problem is that the extraction of complete se-
mantics from image data is extremely hard as it demands gen-
eral object recognition and scene understanding. This is the
semantic extraction problem. The other problem is the com-
plexity, ambiguity, and subjectivity in user interpretation, i.e.
the semantic interpretation problem. The call for user interpre-
tation can occur at three stages, namely prequery (e.g. manual
annotation for QBK as discussed above), query, and postquery
(e.g. relevance feedback) interventions.

In fact, relevance feedback is regarded as a promising tech-
nique for bridging the semantic gap in image retrieval [4,35].
However the correctness of a user’s feedback may not be statis-
tically reflected due to the small sampling problem. Though
there are innovative techniques proposed for increasing the
number of training examples with relevance feedback [46,49],
the experimental results are not conclusive yet. An interesting
interface model based on guided exploration has also been
explored [36]. An inevitable situation that requires user inter-
pretation occurs during query specification. In this paper, we
focus on the semantic interpretation problem as it relates to
query specification.

A unique and promising monotonic tree approach that
models scenery images as discrete structural elements has
been proposed recently to bridge the semantic gap in content-
based image retrieval [41]. Based on simple assumptions about
the colour, location, harshness, and shape of scenery features,
monotonic trees embody the domain knowledge about scenery
images to classify image regions into eight scenery object
types with high accuracy to support semantics-based image
retrieval.

In this paper, we also aim to bridge the semantic gap, but
with different emphases. We study visual semantics that can
be directly extracted from image content (without using asso-
ciated text) with computer vision techniques. In particular, a
challenge for computer vision in an unconstrained broad im-
age domain is the usually very large number of object classes
in polysemic images.As a typical example of a complex image
database [33], consumer photos exhibit highly varied content
and imperfect image quality due to the spontaneous and ca-
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Fig. 1. A structured learning framework for indexing and query

sual nature of image capturing. The objects in consumer im-
ages are usually ill-posed, occluded, and cluttered from poor
lighting, focus, and exposure. Robust object segmentation for
such noisy images is still an unsolved problem [37].

To address the issue of high content diversity, we pro-
pose a structured learning framework to facilitate the modular
design and extraction of domain-relevant visual semantics,
known as semantic support regions (SSRs), and hence to deal
with larger sets of local visual vocabulary (26 SSRs in our
case) in building content-based image retrieval systems. In a
nutshell, our proposed framework incorporates modular view-
based object detectors to generate spatial semantic signatures
for similarity-based and fuzzy-logic-based query processing
without region segmentation. Hence our approach is not re-
stricted to images that have a main area of attention, which
are assumed by other approaches that attempt object-based
indexing and retrieval [27,44].

Semantic support regions are segmentation-free image re-
gions that exhibit semantic meanings and that can be learned
statistically to span a new indexing space. They are detected
in image content, reconciled across multiple resolutions, and
aggregated spatially to form local semantic histograms.The re-
sulting compact and abstract representation can support both
similarity-based query and compositional visual query effi-
ciently. Figure 1 summarizes our proposed framework in a
schematic diagram. In the figure, arrows with solid heads de-
note processing steps and arrows with empty heads represent
matching.

We apply our method to consumer images that contain
highly varied content, diverse resolutions, and inconsistent
quality. The significant contribution of the paper is the intro-
duction of the concept of SSRs, which possess the following
properties:

• They are extracted directly from images without segmen-
tation and possess semantic power. They can be used to
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circumvent the semantic extraction problem in the seman-
tic gap.

• Spatial information is retained in the index based on SSRs,
so QBSI can be naturally and efficiently applied to alleviate
the semantic interpretation problem during query.

• SSRs are learned and detected from multiscale tessellated
image blocks in a modular manner. The blocks are gener-
ally large in number and show statistical significance.

For empirical evaluation, we perform the learning and in-
dexing of 26 SSRs for 2400 heterogeneous consumer photos
from a single family using SupportVector Machines.We report
a 27% improvement in average precision over a very high di-
mension feature-based approach on 24 semantic queries based
on multiple examples and pooled ground truths. Furthermore,
we demonstrate the usefulness of the QBSI with 15 visual
queries that have attained high precision values on the top
retrieved images from the same test collection of consumer
images.

The rest of the paper is organized as follows. In the next
section we point out specific research that shares similar ob-
jectives. In Sect. 3 we explain how SSRs are learned and
used in image indexing. In Sect. 4, we detail query processing
for query by multiple examples and spatial icons. Section 5
presents an evaluation of the framework on QBME and QBSI
with 2400 genuine consumer photos.

2 Related work

Content-based image retrieval research has progressed from
the pioneering feature-based approach (e.g. [2,12,32]) to the
region-based approach (e.g. [8, 18, 38]). However, a desired
feature, and hence a key research challenge, is to extract se-
mantics to support meaningful queries. Here we cover recent
relevant work in this direction not mentioned in the survey
paper ( [37, p. 1361]). For comprehensive coverage and un-
derstanding of the feature-based and region-based approaches,
the reader is referred to the survey paper [37] and to individ-
ual papers [2,8,12,18,32,38]. In the case of semantic video
indexing, we refer the reader to a recent survey [40] and a
representative work [30].

2.1 Semantic extraction and indexing

We first look at related work in semantic extraction and in-
dexing. Town and Sinclair [47] describe a semantic labelling
approach to image retrieval. An image is segmented into non-
overlapping regions, and each is classified into 11 visual cat-
egories suited to outdoor scenes by artificial neural networks.
Both similarity-based matching and region-based matching
are supported. The evaluation was carried out on over 1000
Corel images and about 500 home photos, with better classifi-
cation and retrieval results obtained for the professional Corel
images even though the home photo set was smaller than the
Corel image set.

A generative approach to segmenting and labelling regions
is given in [16]. While generative models offer a modular
framework for learning the semantic classes, such models may
not work well when the classes have close multimodal distri-
butions, and the data near the discriminative boundary will

not be emphasized. In an attempt to classify indoor/outdoor
and natural/man-made images, a Bayesian approach was used
in [16] to combine class likelihoods resulting from multireso-
lution probabilistic class labels [7]. The class likelihoods were
estimated based on local average colour information and com-
plex wavelet transform coefficients. No further semantic ab-
straction was performed locally.A total of 480 and 605 images
were used as training and test sets, respectively.

Indeed highly accurate segmentation of objects is a major
bottleneck for broad domains such as consumer photos except
for selected narrow domains when few dominant objects are
recorded against a clear background [37]. A key innovation
that distinguishes our method from the above systems is that
no presegmentation of regions is needed. Instead, 26 SSRs are
learned and detected during image indexing from tessellated
block-based image regions. Moreover, the local classification
decisions are reconciled across multiple resolutions and ag-
gregated over spatial areas as local semantic representations.

The recent monotonic tree approach [41] provides a unique
framework for analysing scenery images. Based on a new con-
cept of monotonic line, image data are progressively repre-
sented as hierarchies of structural elements, which are classi-
fied and clustered into semantic regions of sky, building, tree,
waves, placid water, lawn, snow, and others with qualifying
scores. The qualifying scores for different element categories
are computed based on different assumptions about the colour,
location, harshness, and shape of scenery features. The scenery
features in [41] were tested on 6776 Corel and 1444 PhotoDisc
images with very good retrieval results.

From the perspective of using local semantics to bridge
the semantic gap, our SSR approach can be viewed in several
respects as an extension of the monotonic tree approach. The
SSR approach deals with more heterogeneous consumer im-
ages using a statistical learning method to automatically map
the relationships between second-order statistical local colour
and texture features and a larger local visual vocabulary (8 vs.
26). Both the monotonic tree and SSR approaches share sim-
ilar motivations in multiscale representations (tree structure
versus mutliscale detection and reconciliation) and qualifying
score computation for a larger image region based on spatial
areas. However, this paper proposes and evaluates a new query
method that allows explicit specification of semantic elements
with spatial constraints.

Motivated as an analogy of the “keywords” of an image,
the theories of keyblocks [50] and visual keywords [23, 24]
also build image indexes from multiresolution image blocks
without segmentation. However, the generation of keyblocks
or visual keywords is based on either clustering [20,21,23,50]
or manual selection [24, 50]. While the semantics obtained
from unsupervised learning is not strong, the manual selection
approach requires intensive human expert labour. Although
automatic selection was proposed as an alternative to keyblock
generation [50], the codebook-based process is primarily clus-
ter based and may not be discriminative enough for semantic
detection.

Interesting and promising efforts have been made recently
to associate images with words automatically [3, 11, 19]. In
the case of annotating specific regions [3,11], one major lim-
itation is that the methods rely on semantically meaningful
segmentation. For research devoted to automatic annotation
of entire images [19], image categories that have visually di-
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verse content (e.g. indoor, street scenes) still present a great
challenge for learning.

2.2 Semantic query specification

Next we turn to semantic query specification with spatial con-
straints. The ImageScape system [17] allows placement of
icons (face, sky, water, tree/grass, sand/stone) on a canvas to
create a query. However, unlike our approach [22,24], the spa-
tial extent of the icons placed is not emphasized. Moreover, it
is not clear in [17] how a query of semantic icons is processed.
Last but not least, no proper evaluation has been reported.

As an enhancement to QBE, the query by multiple re-
gions (QBMR) approach [28] allows for a the composition of
a query from multiple regions from example images with or
without spatial layout. Our QBSI approach can complement
the QBMR method in two ways. It is useful when the user is
not looking for specific visual similarity but rather more ab-
stract visual concepts. The QBSI interface can also be used to
obtain an initial set of relevant images for QBMR as the latter
still suffers from the boostrapping problem. Furthermore, the
QBSI approach does not need the computation of best match-
ing region and best spatial configuration, as is required by
QBMR [28]. The query processing of QBSI, which is based
on principled fuzzy operations, is simple and efficient.

Another novel feature in our approach not available in the
above works is the hierarchy of visual concepts. That is, SSRs
can be structured into an Is-A or a Part-Whole hierarchy for
detection, indexing, and query. For example, a sky SSR class
can be further divided into subclasses of clear, cloudy, and
blue skies with associated specific detectors. A QBSI query
can then involve a specific type of sky or a generic sky concept.
Another interesting structural mechanism is to detect and index
a SSR in terms of its parts (e.g. [29]).

3 Structured learning for image indexing

Semantic support regions (SSRs) are salient image patches
that exhibit semantic meanings. A cropped face region, a typi-
cal grass patch, a patch of swimming pool water, etc. can all be
treated as their instances. In this paper, the SSRs are learned
a priori and detected during image indexing from multiscale
block-based image regions, as inspired by the multiresolu-
tion view-based object recognition framework [31,42], hence
without a region segmentation step. The key in image indexing
here is not to record the primitive feature vectors themselves
but to project them into a classification space spanned by se-
mantic labels and use the soft classification decisions as the
local indexes for futher aggregation.

3.1 SSR learning

To compute the SSRs from training instances, we use Support
Vector Machines (SVMs) [14]. We extract suitable features
such as colour and texture for a local image patch and denote
this feature vector by z. A support vector classifier Si devoted
to a class i of SSR is treated as a function of z, Si(z) ∈
(−∞, +∞). Then elements in the classification vector T for

region z can be normalized within [0, 1] using the softmax
function [6]

Ti(z) =
expSi(z)∑
j expSj(z) . (1)

Due to the properties of the softmax function, Ti(z) will
never be zero. In this paper, as we regard each SVM as an ex-
pert on a SSR class, the outputs of Si ∀i is forced to 0 if there
exists some Sj , j �= i that has a positive output. More specif-
ically, if there is only one SVM classifier Si having positive
output, then Ti(z) = 1 (and Tj(z) = 0, j �= i). If more than
one SVM classifier Si has positive outputs, then Ti(z) will be
positive values determined by the softmax function, while the
other Tj(z) = 0, j �= i. Finally, if all SVM classifers Si ∀i
have non-positive outputs, then the values of Ti(z) will be
non-zero as computed by the softmax function.

For the experiments described in this paper, since we are
dealing with heterogeneous consumer photos, we adopt colour
and texture features to characterize SSRs. Hence a feature
vector z has two parts, namely a colour feature vector zc and a
texture feature vector zt. For the colour feature, as the image
patch for training and detection is relatively small, the mean
and standard deviation of each colour channel are deemed
sufficient (i.e. zc has six dimensions). We use the YIQ colour
space over other colour spaces (e.g. RGB, HSV, LUV) as it
performed better in our experiments. For the texture feature,
we adopted the Gabor coefficients, which have been shown to
provide excellent pattern retrieval results [26]. Similarly, the
means and standard deviations of the Gabor coefficients (five
scales and six orientations) in an image block are computed
as zt, which has 60 dimensions. To normalize both the colour
and texture features, we use the Gaussian (i.e. zero-mean)
normalization.

The distance or similarity measure depends on the kernel
adopted for the SVMs. For the experimental results reported
in this paper, we have adopted polynomial kernels. To balance
the contributions of the colour and texture features, we have
modified the similarity measure sim(y, z) between feature
vector y and z as

sim(y, z) =
1
2

(
yc · zc

|yc||zc| +
yt · zt

|yt||zt|
)

, (2)

where y · z denotes dot product operation.
For the data set and experiments reported in this pa-

per, we have designed 26 classes of SSRs (i.e. Si, i =
1, 2, · · · , 26 in Eq. 1). They are organized into 8 su-
perclasses, namely People, Sky, Ground, Water,
Foliage, Mountain, Building, and Interior.
Figure 2 shows single examples of these 26 classes of SSRs.
This visual vocabulary is decided by 3 human subjects in con-
sensus after studying the test collection.

We cropped 554 image regions from 138 images and used
375 (i.e. two thirds) of them (from 105 images) as training data
for SVMs to compute the support vectors of the SSRs and the
remaining one third (i.e. 179) as test data for generalization
performance. In other words, both the training and test data
for SSRs utilize only a small percentage (5.8%) of the 2400-
image collection. We experimented with the polynomial and
radial basis function kernels with different parameter values.
Among all the kernels evaluated, those with better general-
ization results on the test data were used for the indexing and
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Fig. 2. Examples of semantic support regions (top down, left to right): People (Face, Figure, Crowd, Skin),
Sky (Clear, Cloudy, Blue), Ground (Floor, Sand, Grass), Water (Pool, Pond, River), Foliage
(Green, Floral, Branch), Mountain (Far, Rocky), Building (Old, City, Far), Interior (Wall,
Wooden, China, Fabric, Light)

Table 1. Training statistics of the 26 SSR classes

Min. Max. Avg.

Num. pos. trg. 5 26 14.4

Num. sup. vec. 9 66 33.3

Num. pos. test 3 13 6.9

Num. errors 0 14 5.7

Error (%) 0 7.8 3.2

retrieval tasks.A polynomial kernel with degree 2 and constant
1 (C = 100) [14] produced the best results on precision and
recall. Hence it was adopted in the rest of our experiments.

Table 1 lists the training statistics of the 26 SSR classes.
The columns show, left to right, the minimum, maximum, and
average of the number of positive training examples (from a
total of 375), the number of support vectors computed from
the training examples, the number of positive test examples
(from a total of 179), the number of misclassified examples
on the 179-region test set, and the percentage of error on
the test set. The negative training (test) examples for a SSR
class are the union of positive training (test) examples of the
other 25 classes. The minimum number of positive training
and test examples are from the Interior:Wooden SSR,
while their maximum numbers are from the People:Face
class. The mininum and maximum numbers of support vectors
are associated with the Sky:Clear and Building:Old
SSRs, respectively. The SSR with the best generalization is
the Interior:Wooden class, while the worst test error be-
longs to the Building:Old class.

3.2 SSR detection

Once a vocabulary of domain-relevant SSRs has been learned
in the form of binary SVMs, an image can be indexed automat-
ically against the SSRs. Figure 3 depicts a three-layer visual
information processing architecture for image indexing. The
bottom layer denotes the pixel-feature maps computed for fea-
ture extraction. In our experiments, conceptually there are 3
colour maps (i.e. YIQ channels) and 30 texture maps (i.e. Ga-
bor coefficients of 5 scales and 6 orientations). From these
maps feature vectors zc and zt compatible with those adopted
for SSR learning (Eq. 2) are extracted.

To detect SSRs with translation and scale invariance in an
image to be indexed, the image is scanned with windows of
different scales, similar to the strategy in view-based object de-

sx
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ry

dxdy

pixel-feature layer

N

M

B

A

Q

P

Spatial Aggregration Map

Reconciled Detection Map

Fig. 3. A visual information processing architecture for image index-
ing

tection [31]. More precisely, given an image I with resolution
M × N , the middle layer (Fig. 3), Reconciled Detection Map
(RDM), has a lower resolution of P × Q, P ≤ M, Q ≤ N .
Each pixel (p, q) in RDM corresponds to a two-dimensional
region of size rx × ry in I . We further allow tessellation dis-
placements dx, dy > 0 in X, Y directions, respectively, such
that adjacent pixels in RDM along the X direction (along the
Y direction) have receptive fields in I that are displaced by dx

pixels along the X direction (dy pixels along the Y direction)
in I . When an image has been scanned, each pixel (p, q) that
covers a region z in the pixel-feature layer will consolidate the
SSR classification vector Ti(z) (Eq. 1).

In our experiments, we progressively increase the window
size rx×ry from 20×20 to 60×60 at a displacement (dx, dy)
of (10, 10) pixels, on a 240×360 size-normalized image. That
is, after the detection step, we have five maps of detection of
dimensions 23 × 35 to 19 × 31, which are reconciled into a
common RDM to be explained below.

Using larger images may allow for more accurate features
for SVM learning and classification, but the computation re-
quirement is higher. In fact, the strategy adopted in view-based
object detection [31,42] is to fix the window size and resize
the image so that it is smaller to achieve multiscale detection.
Hence the number of pixels available for object detection is
constant. To alleviate the effect of feature extraction on small
window size, we fix the image size (after size normalization)
and increase the window size instead. As our features zc and
zt are second-order statistical features (i.e. mean and standard
deviation), we do not see any problem with the window sizes



322 J.-H. Lim, J.S. Jin: A structured learning framework for content-based image indexing and visual query

r+1

k
z r+1

k

z r
z r

z r z r

z r+1

kz r+1

k

z

Fig. 4. Reconciling multiscale SSR detection maps

we adopted, as can be seen from the generalization perfor-
mance shown in Table 1.

3.3 Multiscale reconciliation

In the case of object detection [31,42], the system only needs to
output the bounding box of an object detected at any location
at any image scale attempted. In our case of image indexing,
we seek a common representation of multiple SSRs detected
from various image scales attempted. Hence we need to devise
a new way to fuse multiscale SSR detection outcomes.

To reconcile the detection maps across different resolu-
tions onto a common basis, we adopt the following principle:
If the most confident classification of a region at resolution r
is less than that of a larger region (at resolution r+1) that sub-
sumes the region, then the classification output of the region
should be replaced by those of the larger region at resolution
r +1. For instance, if the detection of a face is more confident
than that of a building at the nose region (assuming “nose” is
not in the SSR vocabulary), then the entire region covered by
the face, which subsumes the nose region, should be labelled
as face.

To illustrate the point, suppose a region at resolution r is
covered by four larger regions at resolution r + 1, as shown
in Fig. 4. Let ρ = maxkmaxiTi(zr+1

k ), where k refers to one
of the four larger regions in the case of the example shown
in Fig. 4. Then the principle of reconciliation says that if
maxiTi(zr) < ρ, the classification vector Ti(zr) ∀i should
be replaced by the classification vector Ti(zr+1

m ) ∀i, where
maxiTi(zr+1

m ) = ρ.
Using this principle, we compare detection maps of two

consecutive resolutions at a time, in descending window sizes
(i.e. from windows of 60 × 60 and 50 × 50 to windows of
30 × 30 and 20 × 20). After four cycles of reconciliation,
the detection map that is based on the smallest scan window
(20 × 20) would have consolidated the detection decisions
obtained at other resolutions as the RDM (Fig. 3) for further
spatial aggregation.

3.4 Spatial aggregation

The purpose of spatial aggregation is to summarize the recon-
ciled detection outcome in a larger spatial region. Suppose a

Fig. 5. An example image index

Table 2. Key SSRs recorded as index for image shown in Fig. 5

Image block Key SSR aggregated Ti(Z)
Top Foliage:Green 0.78
Top Foliage:Branch 0.11
Centre People:Crowd 0.52
Centre Foliage:Green 0.20
Right People:Crowd 0.36
Right Building:Old 0.32

region Z is comprised of n small equal regions with feature
vectors z1, z2, · · · , zn, respectively. To account for the rela-
tive proportion of detected SSRs in the spatial area Z, the SSR
detection vectors of the RDM are aggregated as

Ti(Z) =
1
n

∑
k

Ti(zk) . (3)

This is illustrated in Fig. 3 where a spatial aggregation map
(SAM) further tessellates over RDM with A×B, A ≤ P, B ≤
Q pixels. This form of spatial aggregation does not encode the
spatial relation explicity. But the design flexibility of sx, sy

allows us to specify the location and extent in the content to
be focused and indexed. We can choose to ignore unimportant
areas (e.g. margins) and emphasize certain areas with overlap-
ping tessellation. We can even have different weights attached
to the areas during similarity matching (Sect. 4).

The SAM has a representation scheme that is similar to
that of local colour histograms, except that the bins refer to
proportions of SSRs instead of proportions of colours. They
are invariant to translation and rotation about the viewing axis
and change only slowly under change of angle of view, change
of scale, and occlusion [43]. The effect of averaging in Eq. 3
will not dilute Ti(Z) into a flat histogram. As an illustration,
we show the Ti(Z) ≥ 0.1 of SSRs shown in Fig. 2 in Table 2
for the three tessellated blocks (outlined in red) in Fig. 5. We
observe that the dominant Ti(Z) shown capture the content
essence in each block with small values distributed in other
bins.
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3.5 Scalability

Thanks to the modular nature (binary detectors, tessellations,
and multiple scales) of our proposed framework, it is straight-
forward to parallelize the learning, detection, and aggregation
tasks. That is, we can train the binary detectors independently.
During SSR detection, we compute the feature maps for the
pixel-feature layer (Fig. 3) in parallel and feed the combined
feature vector to the binary detectors, which can perform clas-
sification concurrently. Further parallelization can be achieved
by performing SSR detection on different parts of an image
(i.e. firing the nodes in RDM simultaneously) and along dif-
ferent scales. After the reconciliation process, which is a se-
quential process, the spatial aggregation by different nodes in
SAM can be carried out concurrently. In short, the indexing
process as depicted by Fig. 3 is inherently parallel.

In the current implementation, since we are using two-
class SVMs that require both positive and negative exam-
ples, retraining of the SVMs is necessary when a new SSR
class is added. If we replace two-class SVMs with one-class
SVMs [25] or generative models [16], we can train only the
new SSR detector based on new positive examples. The per-
formance of one-class SVMs has been shown to be reasonable
when compared to other two-class classifiers, though they are
rather sensitive to the choice of parameters [25]. The potential
problem with generative models was mentioned in Sect. 2.

In general, re-indexing is desirable when the number of
SSRs (say s) has been expanded. This is applicable to other
indexing methods as well when new feature dimensions are
added (e.g. more bins for colour histograms, new feature vec-
tor for region segmentation or recognition). However, suppose
retraining of existing detectors is not required in the case of
one-class SVMs; when a new SSR class s+1 has been trained
or a better detector becomes available to replace the detector
of an existing SSR class j, an efficient re-indexing procedure
can be executed as follows. First, SSR detection is performed
on all images to be indexed with the new detector (s + 1 or j)
only. The detection outcome [Ts+1(z) or Tj(z)] is set to ei-
ther 1 or 0 using a threshold. Next the same reconciliation step
can be used to compute the RDM nodes to have either value
1 or 0. Lastly, for each SAM node with a tessellated area Z
(size denoted as |Z|) in RDM, we count the number (i.e. area)
of RDM nodes with value 1 within Z as |X|. The new index
T ′(Z) that includes new SSR detector s + 1 is computed as

T ′
s+1(Z) =

|X|
|Z| , T

′
i (Z) = Ti(Z) ·

(
1 − |X|

|Z|
)

, (4)

and the new index T ′(Z) with replacement of the better SSR
detector j is revised as

T ′
j(Z) =

|X|
|Z| , T

′
i �=j(Z) =

Ti(Z)∑
i �=j Ti(Z)

·
(

1 − |X|
|Z|

)
. (5)

4 Query formulation and processing

4.1 Query by multiple examples (QBME)

In QBME, the content-based similarity λ between a query q
and an image x can be computed in terms of the similarity

between their corresponding local tessellated blocks. For ex-
ample, the similarity based on L1 distance measure (city block
distance) between query q with m local blocks Yj and image
x with m local blocks Zj is defined as

λ(q, x) = 1 − 1
2m

∑
j

∑
i

|Ti(Yj) − Ti(Zj)| . (6)

This is equivalent to histogram intersection [43] with further
averaging over the number of local histograms m, except that
the bins have a semantic interpretation as SSRs. There is a
trade-off between content symmetry and spatial specificity.
If we want images of similar semantics with different spa-
tial arrangements (e.g. mirror images) to be treated as simi-
lar, we can have larger tessellated blocks in SAM (i.e. global
histograms). However in applications where spatial locations
are considered differentiating, local histograms will provide
good sensitivity to spatial specificity. Furthermore, we can at-
tach different weights to the blocks (i.e. Yj , Zj) to emphasize
the focus of attention (e.g. centre). In this paper, we report
experimental results based on even weights as grid tessella-
tion is used. In this paper, we have attempted various simi-
larity and distance measures [e.g. cosine similarity, L2 dis-
tance, Kullback-Leibler (KL) distance, etc.], and the simple
city block distance in Eq. 6 has the best performance.

When a query has multiple examples [i.e. query by multi-
ple examples (QBME)], Q = {q1, q2, · · · , qK}, the similarity
is computed as

λ(Q, x) = max
i

λ(qi, x) . (7)

4.2 Query by spatial icons (QBSI)

A QBSI query is composed as a spatial arrangement of visual
semantics. A visual query term (VQT) q specifies a region R
where a SSR i should appear, and a query formulus chains
these terms up via logical operators. The truth value λ(q, x)
of a VQT q for any image x is simply defined as

λ(q, x) = Ti(R) , (8)

where Ti(R) is as defined in Eq. 3.
In our current implementation, we support a two-level Is-A

hierarchy of SSRs (Fig. 2), though it can be extended to deeper
or other forms of hierarchies (e.g. Part-Whole hierarchy). A
VQT can involve a specific visual semantics (e.g. swimming
pool water, denoted as Water:Pool) or a more abstract se-
mantics (e.g. water, denoted as Water). On the other hand,
the spatial constraint R defines the location and size of the
specified visual semantics as drawn on a canvas.

As the visual semantics is learned based on the specific
SSR i, the truth value of a VQT that specifies a more abstract
visual semantics j (People, Sky, Ground, Water,
Foliage, Mountain, Building, and Interior) is
computed as

Tj(R) = max
i∈Vj

Ti(R) , (9)

where Vj denotes the set of classes i that belonged to super-
class j.
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A QBSI query Q can be specified as a disjunctive normal
form of VQT (with or without negation),

Q = (q11 ∧ q12 ∧ · · · ) ∨ · · · ∨ (qc1 ∧ qc2 ∧ · · · ) . (10)

Then the query processing of query Q for any image x is
to compute the truth value λ(Q, x) using appropriate logical
operators. As uncertainty values are involved in SSR detection
and indexing, we adopt fuzzy operations [15] as follows:

λ(q̄, x) = 1 − λ(q, x) , (11)

λ(qi ∧ qj , x) = min(λ(qi, x), λ(qj , x)) , (12)

λ(qi ∨ qj , x) = max(λ(qi, x), λ(qj , x)) . (13)

In short, the query processing of QBSI deals with the
certainties Ti(R) and Tj(R) of word labels i and j (e.g.
Water:Pool, Water) extracted from image region R.
These are abstractions learned upon low-level features such
as colour and texture. The indexes no longer store the feature
values, and hence the matching does not involve low-level
features.

Nevertheless, the vocabulary for QBSI is limited by the se-
mantics that can be learned and detected in image content. For
instance, abstract concepts such as “happiness” and “Africa”
would require the presence of additional text annotation as-
sociated with the images [19], which are not always available
in certain application domains (e.g. consumer photos). In this
paper, we focus on semantics that can be extracted from the
image content alone.

In our existing Web-based prototype, an intuitive graphi-
cal interface is provided for a user to specify a QBSI query.
To specify a VQT, the user first selects a SSR (specific or ab-
stract) from a palette of icons associated with the SSR. Then a
spatial image region based on the selected icon can be drawn
by clicking and dragging a rectangular box in a canvas. If the
user wishes to apply a negation operator, he or she can click
on the NOT button followed by the drawn region. A yellow
cross will be superimposed on the selected region. The user
can continue to specify more VQTs in a conjunct by repeating
the above steps. The user can also start a new conjunct in the
disjunctive normal form (Eq. 10) by clicking on the OR but-
ton to bring up a new window with canvas and icons. A reset
button is provided to clear all the icons drawn for a conjunct
in a given window. A typical screen shot is given in Fig. 6
(note that only a subset of the visual icons is displayed in this
prototype).

As the region specified by a VQT is arbitrary, the precise
computation of Ti(R) using Eq. 3 on reconciled small regions
zk is not cost effective in terms of speed and storage. Hence as
a trade-off in our implementation, we pre-indexed the images
using a uniform 3 × 3 spatial tessellation with the 26 SSRs
defined in Fig. 2 based on Eqs. 1 and 3. The truth value of a
VQT q with region R and SSR i is approximated as

λ(q, x) =

∑
Zj∈Z Ti(Zj)

|Z| , (14)

where Z consists of any of the 3×3 blocks that has more than
half of its area covered by region R.

Another QBSI interface that corresponds to the 3 × 3 in-
dexing grid is also supported. That is, the user can click on an
icon associated with a SSR and fill any block in the grid with

the selected icon. In a similar way, a negation operator (NOT
button) can be applied to a block (which will be crossed in
yellow) and a new window with grid and icons can be invoked
(OR button) to start a new conjunct.

5 Experimental results

5.1 Test collection

In this paper, we have decided to evaluate our proposed struc-
tured learning framework on unconstrained consumer images.
Unlike professional images, which are well defined, carefully
taken, and clearly layered, or domain-specific images such
as medical images, which have a clear classification and are
usually attached with semantic annotation, consumer image
content varies significantly, as we highlighted at the begin-
ning of the paper. More often than not, there is no dominant
homogeneous colour or texture regions, which poses great dif-
ficulty for image segmentation. Moreover, very few consumers
will annotate their photos. Hence we cannot assume availabil-
ity of text for content association. We believe that consumer
images are more challenging than the Corel images used by
many image retrieval researchers. For example, the region-
based matching approach described in [47] was evaluated on
over 1000 Corel Photo Library images and about 500 home
photos, with better classification and retrieval results obtained
for the professional Corel images, even though the home photo
set is smaller than the Corel image set.

In this paper, we evaluate our proposed approach on 2400
heterogeneous consumer photos from a single family. These
genuine consumer photos were taken over 5 years in several
countries in both indoor and outdoor settings. The images are
those of the smallest resolution (i.e. 256 × 384) from Kodak
PhotoCDs, in both portrait and landscape layouts. After the
removal of possibly noisy marginal pixels, the images are of
size 240×360. The indexing process automatically detects the
layout and applies the corresponding tessellation template. On
one hand, the small size of the images allows for more efficient
processing. On the other hand, they pose a greater challenge
for feature extraction and SSR detection.

To have a feel of the content diversity in our 2400-image
collection, we show 72 (3%) of them in Fig. 7. For outdoor
images, the content varies from natural landscape (beach, lake-
side, river, pond, park, forest, garden, mountain, rocky area,
etc.) to city scenes (urban area, rural area, crowded street,
market, road with vehicles, swimming pool, temple, mosque,
castle, etc.) from different countries and cultures (Singapore,
France, China, Cambodia, Malaysia, Indonesia, etc.). The in-
door images are taken with different focuses (portrait of single
person or a few people, groups of different sizes, people eat-
ing, cultural performance, wedding ceremony, interior layout,
display of objects like painting, toys, antique collection, etc.).
In both outdoor and indoor images, the subject of focus could
be people (or faces in photo frame), statues, animals, flow-
ers, buildings (or their miniature in theme park), etc. and their
mixture with occlusion, taken with different postures, during
the day or at night, from different viewpoints, and at differ-
ent distances. Figure 8 illustrates some of the photos of bad
quality (e.g. faded, overexposed, blurred, dark, etc.). We did
not remove these bad-quality photos from our test collection
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Fig. 6. A screen shot for QBSI interface: a
disjunct of two conjuncts, one with 3 visual
query terms (left) and the other with 2 vi-
sual query terms (right), one of which is a
negation on water

because we wanted to reflect the complexity of the original
data.

As part of our project, the QBSI interface shown in Fig. 6 is
one of the query functions provided in our operational proto-
type, which is implemented in C and Java with Microsoft Ac-
cess. Our Web-based system also allows query by examples,
query by text, query by mixture of query modes, browsing
along different dimensions (time, place, people, categories),
data management (e.g. addition, deletion, copying of photos
and albums), text annotation, SMIL-based [51] slideshow au-
thoring and presentation with music. Last but not least, sepa-
rate tools are also provided for uploading images to the Web,
visual queries (QBME and QBSI), and slideshow presenta-
tions on PocketPC.

5.2 QBME experiments

Based on the consensus of 3 human subjects, 24 semantic
queries and their ground truths (GT) among the 2400 photos
are constructed (Table 3). That is, for each query, every hu-
man subject has to look through the entire collection to build
the list of relevant images. Note that Q17 and Q18 are not re-
stricted to indoor images, while Q14–Q16 are. Q22 includes
both indoor (in building) and outdoor (near building) images.
In fact, Fig. 7 shows, in top-down left-to-right manner, three
relevant images for queries Q01–24. As we can see from these
sample images, the relevant images for any query considered
here exhibit highly varied and complex visual appearances.
Hence to represent each query, the three human subjects se-
lected three (i.e. K = 3 in Eq. 7) relevant photos as query
examples for our experiments because a single query image is
far from satisfactory for capturing the semantic of any query.
Indeed single query images resulted in poor precisions and
recalls in our initial experiments. The precisions and recalls
were computed without the query images themselves in the
lists of retrieved images.

Table 3. The 24 semantic queries used in our QBME experiments

Query Description GT

Q01 Indoor 994

Q02 Outdoor 1218

Q03 People eating 76

Q04 People indoors 840

Q05 Interior or object 134

Q06 City scene 697

Q07 Nature scene 521

Q08 At a swimming pool 52

Q09 Street or roadside 645

Q10 Near water 150

Q11 In a park or garden 304

Q12 Near mountain 67

Q13 Buildings 239

Q14 People close up, indoors 73

Q15 Small group, indoors 491

Q16 Large group, indoors 45

Q17 People (mid-range) 277

Q18 People (close-up) 104

Q19 People near water 61

Q20 People, with foliage 259

Q21 People near mountain 35

Q22 People near or in a building 1517

Q23 Garden with flowers 19

Q24 Mountain (far view) 35

In our experiments, we compared our SSR approach (de-
noted “SSR”) with the feature-based approach that combines
colour and texture in a linearly optimal way (denoted “CTO”).
We do not compare our approach with other approaches such
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Fig. 7. Sample consumer photos associated
with queries 01 to 24
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Fig. 8. Some consumer photos of
bad quality

as region-based matching here as our initial attempt with re-
gion segmentation using 500 outdoor images [48] does not
scale up on the 2400-image collection. Indeed, very high di-
mensions are required for the CTO approach to produce rea-
sonable performance as we shall see below.We adopted similar
colour and texture features for the CTO approach to demon-
strate the advantage gained from the abstraction layer of SSRs.
For the CTO approach, we conducted experiments with vari-
ous system parameters and selected their best performances.
We looked at both the overall average precisions (denoted
Pavg) and average precisions on the top 30 retrieved images
(denoted P30) over 24 queries to select the best performance.

For the colour-based signature, both global and local (4×4
grid) colour histograms of b3 (b = 4, 5, · · · , 17) number
of bins in the RGB colour space were computed on an im-
age. In the case of global colour histograms, the performance
saturated at 4096 (b = 16) and 4913 (b = 17) bins with
Pavg = 0.31 and P30 = 0.48. Hence the one that used fewer
bins was preferred. Among the local colour histograms at-
tempted, the one with 2197 bins (b = 13) gave the best preci-
sions with Pavg = 0.32 and P30 = 0.49. These performance
figures show that more bins are required for a larger image
region when the colour distribution is potentially richer in our
heterogeneous consumer photo collection. Histogram inter-
section [43] was used to compare two colour histograms.

For the texture-based signature, we adopted the means and
standard deviations of Gabor coeffients and the associated dis-
tance measure as reported in [26]. The Gabor coefficients were
computed with 5 scales and 6 orientations. Convolution win-
dows of 20×20, 30×30, · · · , 60×60 were attempted. Simi-
larly, both global and local (4×4 grid) signatures were experi-
mented with. The best results were obtained when 20×20 win-
dows were used. We obtained Pavg = 0.20 and P30 = 0.25
for global signatures and Pavg = 0.21 and P30 = 0.32 for lo-
cal signatures. These inferior results when compared to those
of colour histograms led us to conclude that simple statistical
texture descriptor is less effective than colour histograms for
heterogeneous image content.

Based on the performances of global and local signatures
of colour and texture, we decided to fuse their local signatures,
which have better precisions. The distance measures between
a query and an image for the colour and texture methods were
normalized within [0, 1] and combined linearly. Among the
relative weights attempted at 0.1 intervals, the best fusion was
obtained with Pavg = 0.33 and P30 = 0.50, with a 0.8 of
colour influence and 0.2 of texture influence. The same per-
formance values (up to two decimal points) were obtained
when a multiplicative fusion operator was used.

In our experiments, the tessellation for detection of SSRs
was a 4 × 4 grid of rectangular regions. We compared our
SSR approach with the best CTO result (fusion of local colour
and texture signatures). Table 4 shows the average precisions
(over 24 queries) among the top 20, 30, 50, and 100 retrieved
images as well as over all recall points for the methods com-

Table 4. Average precisions on top retrieved images for QBME ex-
periments

Avg. prec. CTO SSR %

At 20 0.56 0.69 23

At 30 0.50 0.63 26

At 50 0.46 0.56 22

At 100 0.39 0.47 21

Overall 0.33 0.42 27

pared. The results show that our SSR approach outperforms
CTO as a whole by nine precision points (a significant 27%
improvement) and produces more relevant images on top re-
trieved images.

The experiments were conducted on a Pentium IV PC
(1.4 GHz, 256 MB memory). The learning of 26 SSRs on 375
training samples was very fast (less than a minute). The index-
ing of one image with the SSR approach required about 20 s
(without any code optimization), four times that of the CTO
approach (local colour and texture histograms). However, the
small footprint of SSR signatures is highly efficient in storage
space and retrieval. Suppose a 4-byte floating point number is
required for each Ti(Z). Then a SSR image index requires less
than 2 KB (26 × 16 × 4) of storage and simple operations on
a small number of vectors. Compared to the high-dimension
features required by the CTO index (2000+ ×16×4), there is
almost a 100× reduction. In fact, the actual storage size can be
further reduced as most of the Ti(Z) entries are zeroes. This
would have great advantage over the need to represent and
process very high dimensions of colour and texture features
and yet not achieve the same level of retrieval performance.

In summary, the image signatures based on SSRs realize
semantic abstraction via prior learning and detection of visual
classes when compared to direct indexing based on low-level
features. The compact representation also resulted in better
performance than the optimal fusion of very high dimensions
of colour and texture features in our QBME experiments using
24 semantic queries on 2400 heterogeneous consumer photos.
Hence we feel that the computational resources devoted to
prior learning of SSR and their detection during indexing are
a good trade-off for concise semantic representation as well
as effective and efficient retrieval performance.

5.3 QBSI experiments

To further evaluate the effectiveness of the local semantic re-
gions indexed for the 2400 consumer photos, we have designed
15 QBSI queries as illustrated in Figs. 9–13.

While queries 01 to 04 focus on single VQTs, queries 05
to 15 demonstrate multiple VQTs. In particular, query 06 is
composed to look for indoor images with close-ups of peo-
ple. Query 07 specifies faces in 3 different regions to enforce
‘small group of people’. Query 10 intends to retrieve images
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face

Q01

flowers

Q02

pool water

Q03

crowd

Q04

Fig. 9. QBSI queries 01 to 04

building

Q05

sky

ground

face

Q06

wall

wall

Q07

face faceface

Fig. 10. QBSI queries 05 to 07

Q09

mountain:far

water:river

Q10

fabric fabricface

sky

foliage

Q08

Fig. 11. QBSI queries 08 to 10

related to wedding events whereby auspicious fabric can be
seen. Query 14 shows the use of the negation operator. Last
but not least, query 15 illustrates the usefulness of the disjunct
operator. All the queries except 05 and 08 involve specific

Q11

building buildingface

Q12

face waterwater

Q13

foliagefacefoliage

Fig. 12. QBSI queries 11 and 13

^foliage:green NOT face

Q14

building:farbuilding:city

Q15

v

Fig. 13. QBSI queries 14 and 15

SSRs. Queries 05 and 08 are based on superclasses of SSRs.
Queries 11 to 13 illustrate the flexibility of mixing SSR (face)
and the superclasses (building, water, and foliage). Our SSR
indexing framework supports queries with different levels of
visual semantics and their mixture.

The indexes are computed based on Eqs. 1 and 3 with
face detection enhancement [34]. With our modular frame-
work, the replacement of object detection decisions is simple
as described in Sect. 3.5.

Table 5 lists the number of relevant images among the top
20 and 30 retrieved images as well as the size of the ground

Fig. 14. Top 18 retrieved images for
QBSI query 02

Fig. 15. Top 18 retrieved images for
QBSI query 05
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Fig. 16. Top 18 retrieved images for
QBSI query 07

Table 5. Precisions on top retrieved images for QBSI experiment

Query Top 20 Top 30 GT

Q01 14 24 590

Q02 18 23 26

Q03 14 16 44

Q04 16 19 78

Q05 19 26 281

Q06 14 20 302

Q07 20 20 380

Q08 18 25 83

Q09 12 16 19

Q10 14 17 112

Q11 16 25 523

Q12 11 16 61

Q13 18 25 259

Q14 18 25 107

Q15 15 20 234

Avg. 15.8 21.1

truth (GT) for each of the queries tested. As shown in the
table, the average precisions for the top 20 and 30 retrieved
images are 0.79 and 0.70, respectively, which we consider
effective for practical applications. Interestingly, queries 02
and 09 demand small numbers of specific images (i.e. around
1%) to be found among 2400 images. The recall among the
top 30 retrieved images is high with recall values of 0.88 and
0.84, respectively.

Next we show the top retrieved images for 3 of the 15
queries, namely queries 02, 05, and 07, in Figs. 14, 15, and 16
respectively. In the figures, the top 18 images retrieved are
shown in top-down, left-to-right order of decreasing relevance.

For query 02 (Fig. 9), the intention was to look for images
with flowers (cf. Foliage:Floral in Fig. 2) at the centre.
Of the top 18 images shown in Fig. 14, only image 15 is
irrelevant as the flower regions is considered too small.

With query 05 (Fig. 10), we look for images with a spatial
layout of sky, building, and ground (cf. Fig. 2). Only the last
image in Fig. 15 is a false positive where the greyish water
was incorrectly detected as ground.

In the case of query 07 (Fig. 10) that looks for small
groups of people appearing at the centre of an image (cf.
People:Face in Fig. 2), the top 18 images shown in Fig. 16
are all found in the GT list for the query.

Compared to existing query formulation methods, our
QBSI approach allows explicit specification of visual seman-
tics as illustrated by the 15 queries in Figs. 9–13. Consider the
case of query by canvas (QBC). How would a user express
visual concepts such as flowers, faces, and buildings using
colour and texture or their combination? Query by sketches
(QBS) is not very useful either as the shapes of flowers, faces,
sky, water, etc. are ill-defined. Compared to the ImageScape
system [17] that also allows placement of visual icons as query,
our QBSI approach has richer expressive power as we support
spatial constraints (Q01 to Q15), negation (Q14), disjunction
(Q15), and concept hierarchy (Q05, Q08, Q11–13).

6 Conclusion and future work

In this paper, we have presented an adaptive view-based de-
tection approach to indexing and querying images based on
semantic regions. More specifically, our contributions can be
listed as follows.

• The proposed SSR approach provides a systematic frame-
work to index image content based on local semantics
learned from domain examples. The modular framework
also allows new and better view-based object detectors to
be embedded easily to enhance retrieval performance, as
illustrated by the face detector in our experiments.

• A novel indexing algorithm detects, reconciles, and ag-
gregates SSRs in an image to form semantic histograms
without the need for robust region segmentation.

• A comprehensive empirical evaluation has been carried
out with 24 semantic queries on 2400 complex images to
verify the usefulness of the proposed framework against a
typical feature-fusion approach.

• A unique visual query language and processing has been
shown to support intuitive and semantic query formulation,
which are not available in existing systems, using 15 QBSI
queries on 2400 consumer photos.

In the coming months, we would like to apply the frame-
work to other content domains such as medical images and
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integrate with other semantic sources such as text [3,19]. We
are also investigating means to reduce the extent of super-
vision in learning while retaining a high degree of semantic
interpretation.
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