Experiment № 11

Using the Mouse

Introduction:

The mouse is an I/O device that replaces the arrow keys on the keyboard for graphical and text style programs. This experiment shows how to add the mouse to applications through a series of macros that enable and allow the mouse to function.

Objectives:

1. Develop macros that detect the mouse and enable it for applications.
2. Develop macros that track the mouse position and test button status.
3. Use the mouse in simple programs.

References:

INT 33H:

The mouse is controlled through INT 33H function call instructions. There are actually more than 50 functions for mouse control. However, we will limit ourselves to the most commonly used functions. These functions are listed in Table 11.1.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
<th>Entry</th>
<th>Exit</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>Reset Mouse</td>
<td>AH = 00H</td>
<td>BX = Number of Mouse Buttons</td>
</tr>
<tr>
<td>01</td>
<td>Show Mouse Cursor</td>
<td>AH = 01H</td>
<td>Displays the mouse cursor</td>
</tr>
<tr>
<td>02</td>
<td>Hide Mouse Cursor</td>
<td>AH = 02H</td>
<td>Hides the mouse cursor</td>
</tr>
<tr>
<td>03</td>
<td>Read Mouse Status on the fly</td>
<td>AH = 03H</td>
<td>BX = Button Status</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CX= Horizontal Cursor Position</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DX= Vertical Cursor Position</td>
</tr>
<tr>
<td>04</td>
<td>Set Mouse Cursor Position</td>
<td>AH = 04H</td>
<td>BX= Desired button</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0 for left and 1 for right</td>
</tr>
<tr>
<td>05</td>
<td>Get Button Press Information</td>
<td>AH = 05H</td>
<td>AX = Button Status</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BX = Number of presses</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CX= Horizontal Position of Last Press</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DX= Vertical Position of Last Press</td>
</tr>
</tbody>
</table>

Table 11.1: Mouse (INT 33H) Functions
Test the mouse:

To be able to use the mouse it must be first tested whether it is present or not. To detect the presence of the mouse and be able to use it, the following steps are to be followed.

Step 1: Test Interrupt Vector 33H to see if it contains a value other than zero. A zero indicates that the mouse driver has not been installed yet.

Step 2: If the vector is not zero, check if it points to an IRET (value CFH) instruction. For some operating systems, an IRET indicates that the vector is unused.

Step 3: If the vector is neither zero nor does it point to an IRET instruction, then use the following code to test for the presence of the mouse.

```
MOV AX, 0000
INT 33H
```

If a zero is returned in AX, there is no mouse otherwise, the mouse is present.

The following MACRO tests for the presence of the mouse:

```
MP  MACRO    ;Is mouse present?
    LOCAL M1, M2, M3
    PUSH ES
    MOV AX, 3533H   ;Read vector 33H
    INT 21H
    MOV AX, ES
    OR AX, BX    ;Test for ES:BX= 00
    JZ M2
    CMP BYTE PTR[BX], 0CFH ;Test for 0CFH
    JZ M2     ;If not, end macro
    MOV AX, 0000   ;Start mouse
    INT 33H
    OR AX, AX
    JZ M2     ;No mouse
    CLC     ;If mouse, Carry = 0
    JMP M3

M1  DB 13, 10,'*** MOUSE PRESENT ***'

M2:  PUSH DS
      MOV AX, CS
      MOV DS, AX
      ;DISPLAY M1       ;Show no mouse
      POP DS
      STC
      ;If no mouse, carry =1

M3:  POP ES
ENDM
```
Enabling the Mouse:

The presence of a mouse does not mean that it can be used, unless it is enabled. The mouse cursor is enabled with INT 33H function number 01H, and disabled with function number 02H. Neither of these functions returns any information to the caller. The following macros (see below) turn the cursor ON and OFF. The mouse cursor is off until the mouse driver is enabled. If the mouse cursor is enabled and data are displayed to the screen, the computer places a copy of the mouse pointer on the screen. If n items are displayed on the screen, the mouse pointer is also displayed n times. To avoid this problem, the mouse pointer should always be turned OFF before updating the video information, and then turned ON after the update is complete.

```asm
MON MACRO ;Enable Mouse Pointer
  MOV AX, 0001H
  INT 33H
ENDM

MOFF MACRO ;Disable Mouse Pointer
  MOV AX, 0002H
  INT 33H
ENDM
```

Tracking the Mouse Button:

Mouse INT 33H function number 5 returns the button information and position of the last press. When called AX = 5 and BX = the button being tested = 0, 1 and 4 for respectively left, right and middle in case of a three button mouse. On return from function 5, AX gives the button status, i.e. if a button is being pressed.

- Bit 0 = 1 for the left button
- Bit 1 = 1 for the right button
- Bit 2 = 1 for the middle button
- BX = number of times the button has been pressed, since the last time this function was called.
- CX = horizontal position
- DX = vertical position

The following Macro is used for the above purpose:

```asm
MBUT MACRO NUM ;Read Button
  MOV AX, 0005H ;NUM = 0 for left
  MOV BX, NUM ;NUM = 1 for right
  INT 33H ;NUM = 4 for middle
ENDM
```
Tracking the Mouse Position:

In the 80x25-text mode, the values in CX range from 0 to 632 and the values in DX range from 0 to 192 by increments of 8. As an example line 1 position 3 returns CX = 8 and DX = 24. Function 5 returns the mouse cursor position at the most recent button press, whereas function 3 returns the mouse position on the fly, i.e. in real-time, as it occurs. The following macro is used for that purpose.

```
MRTime MACRO NUM
    MOV AX, 0003H
    INT 33H
ENDM
```

The Mouse in Graphics Mode:

To have a good understanding of how the mouse works in video mode, it is of benefit to try program 11.2.

To mode the mouse cursor to position X (horizontal) and Y (vertical), use INT 10H function 02H.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
<th>Entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>02H</td>
<td>Move Mouse Cursor</td>
<td>AH = 02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DH = Line Number</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DL = Column Number</td>
</tr>
</tbody>
</table>

Table 11.2: Move Cursor Function
Pre Lab Work:

7- Write all macros given in the manual, and add them to your MACROS.INC file.
8- Write a program that tests the presence of the mouse using the macros given in the text.
9- Write a program that displays the word LEFT if the left button is pressed and RIGHT if the right button is pressed. Exit the program if AX indicates that both left and right buttons are pressed together. Do not forget to turn off the mouse pointer before displaying LEFT or RIGHT, and turn it back on afterwards.
10- Bring your work to the lab.

Lab Work:

1- Write, link and run program 11-1. Compare the mouse pointer generated in graphics mode with the pointer generated in text mode.
2- Modify Program 11.1, so that it displays the mouse position on the top right corner of the screen. Call this program 11.3

Assignment:

Write a program that displays a green square on the middle of the screen. Use the mouse, so that when the mouse enters the square, the color of the square changes to red. Modify the above program, so that when the mouse is inside the square and you want to leave the square red just press the left button.
TITLE "Program 11-1"
INCLUDE MACROS.INC
.MODEL SMALL
.STACK 200H
.DATA
.CODE
.STARTUP
 MOV AX, 12H ;Switch to mode 12H
 INT 10H
 MP ;Test for mouse
 JC MAIN2 ;If no mouse
 MON ;Enable mouse pointer

MAIN1: MRTIME ;Read Mouse Status on-the-fly
 CMP BX, 3 ;Test for left and right buttons
 JNE MAIN1 ;If both not pressed repeat

MAIN2: MOFF ;Disable mouse pointer
 MOV AX, 03H ;Switch to mode 3
 INT 10H
.EXIT
END

TITLE "Program 11-2"
;a program that displays the mouse pointer and its X and Y
;position in text mode.
;
.MODEL SMALL
.DATA
MES DB 13,'X Position = '
MX DB ' '
 DB 'Y Position = '
MY DB ' $'
X DW ? ;X position
Y DW ? ;Y position
.CODE
.STARTUP
 CALL TM_ON ;enable mouse
 JC MAIN4 ;if no mouse

MAIN1:
 MOV AX, 3 ;get mouse status
 INT 33H
 CMP BX, 1
 JE MAIN3 ;if left button pressed

 CMP CX,X
 JNE MAIN2 ;if X position changed
 CMP DX,Y
 JE MAIN1 ;if Y position did not change

MAIN2:
 MOV X,CX ;save new position
 MOV Y,DX
 MOV DI,OFFSET MX
 MOV AX,CX
 CALL PLACE ;store ASCII X
 MOV DI
; OFFSET MY
MOV AX,Y
CALL PLACE ;store ASCII Y
MOV AX,2
INT 33H ;hide mouse pointer
MOV AH,9
MOV DX,OFFSET MES
INT 21H ;display position
MOV AX,1
INT 33H ;show mouse pointer
JMP MAIN1 ;do again
MAIN3:
MOV AX,0 ;reset mouse
INT 33H
MAIN4:
.EXIT

; procedure that tests for the presence of a mouse driver
; ***Output parameters***
; Carry = 1, if no mouse present
; Carry = 0, if mouse is present
;
CHKM PROC NEAR
MOV AX,3533H ;get INT 33H vector
INT 21H ;returns vector in ES:BX
MOV AX,ES
OR AX,BX ;test for 0000:0000
STC
JZ CHKMI ;if no mouse driver
CMP BYTE PTR ES:[BX],0CFH
STC
JE CHKMI ;if no mouse driver
MOV AX,0
INT 33H ;reset mouse
CMP AX,0
STC
JZ CHKMI ;if no mouse
CLC
CHKMI:
RET
CHKM ENDP

; the TM_ON procedure tests for the presence of a mouse
; and enables mouse pointer.
; uses the CHKM (check for mouse) procedure
; ***output parameters***
; Carry = 0, if mouse is present pointer enabled
; Carry = 1, if no mouse present

TM_ON PROC NEAR
CALL CHKM ;test for mouse
JC TM_ON1
MOV AX,1 ;show mouse pointer
INT 33H
CLC
TM_ON1:
RET
TM_ON ENDP
The PLACE procedure converts the contents of AX into a decimal ASCII coded number stored at the memory location addressed by DS:DI.

Input parameters
AX = number to be converted to decimal ASCII code
DS:DI = address where number is stored

PLACE PROC NEAR

 MOV CX,0 ;clear count
 MOV BX,10 ;set divisor

PLACE1:

 MOV DX,0 ;clear DX
 DIV BX ;divide by 10
 PUSH DX
 INC CX
 CMP AX,0
 JNE PLACE1 ;repeat until quotient 0

PLACE2:

 MOV BX,5
 SUB BX,CX

PLACE3:

 MOV DX
 ADD DL,30H ;convert to ASCII
 MOV [DI],DL ;store digit
 INC DI
 LOOP PLACE3
 CMP BX,0
 JE PLACE5
 MOV CX,BX

PLACE4:

 MOV BYTE PTR [DI],20H
 INC DI
 LOOP PLACE4

PLACE5:

 RET

PLACE ENDP

END